\parinterval 区别于传统图像上的卷积操作,在面向序列的卷积操作中,卷积核只在序列这一维度进行移动,用来捕捉连续的多个词之间的特征。需要注意的是,由于单词通常由一个实数向量表示(词嵌入),因此可以将词嵌入的维度看作是卷积操作中的通道数。图\ref{fig:11-10}就是一个基于序列卷积的文本分类模型,模型的输入是维度大小为$m\times O $的句子表示,$m$表示句子长度,$O$表示卷积核通道数,其值等于词嵌入维度,模型使用多个不同(对应图中不同的颜色)的卷积核来对序列进行特征提取,得到了多个不同的特征序列。然后使用池化层降低表示维度,得到了一组和序列长度无关的特征表示。最后模型基于这组压缩过的特征表示,使用全连接网络和Softmax函数进行类别预测。在这过程中卷积层和池化层分别起到了特征提取和特征压缩的作用,将一个不定长的序列转化为一组固定大小的特征表示。
...
...
@@ -214,7 +214,7 @@
\label{fig:11-10}
\end{figure}
%----------------------------------------------
\vspace{-1em}
\parinterval 和其它自然语言处理任务不同的是,机器翻译中需要对序列进行全局表示,换句话说,模型需要捕捉序列中各个位置之间的关系。因此,基于卷积神经网络的神经机器翻译模型需要堆叠多个卷积层进行远距离的依赖关系的建模。同时,为了在多层网络中维持序列的原有长度,需要在卷积操作前对输入序列进行填充。图\ref{fig:11-11}是一个简单的示例,针对一个长度$m=6$的句子,其隐层表示维度即卷积操作的输入通道数是$O=4$,卷积核大小为$K=3$。首先对序列进行填充,得到一个长度为8的序列,然后使用这些卷积核在这之上进行特征提取。一共使用了$N=4$个卷积核,整体的参数量为$K \times O \times N$,最后的卷积结果为$m \times N$的序列表示。
\parinterval 在上文提到的评价指标中,无论是准确率、召回率还是$\textrm F_{mean}$,都是基于单个词汇信息衡量译文质量,而忽略了语序问题。为了将语序问题考虑进来,Meteor会考虑更长的匹配:将机器译文按照最长匹配长度分块,并对“块数”较多的机器译文给予惩罚。例如图\ref{fig:4-6}显示的最终词对齐结果中,机器译文被分为了三个“块”——“Can I have it”、“like he”、“?”在这种情况下,看起来上例中的准确率、召回率都还不错,但最终会受到很严重的惩罚。这种罚分机制能够识别出机器译文中的词序问题,因为当待测译文词序与参考答案相差较大时,机器译文将会被分割得比较零散,这种惩罚机制的计算公式如式\eqref{eq:4-11},其中$\textrm{count}_{\textrm{chunks}}$表示匹配的块数。
\parinterval 在上文提到的评价指标中,无论是准确率、召回率还是$\textrm F_{mean}$,都是基于单个词汇信息衡量译文质量,而忽略了语序问题。为了将语序问题考虑进来,Meteor会考虑更长的匹配:将机器译文按照最长匹配长度分块,由于“块数”较多的机器译文与参考答案的对齐更加散乱,意味着其语序问题更多,因此Meteor会对这样的译文给予惩罚。例如图\ref{fig:4-6}显示的最终词对齐结果中,机器译文被分为了三个“块”——“Can I have it”、“like he”、“?”在这种情况下,看起来上例中的准确率、召回率都还不错,但最终会受到很严重的惩罚。这种罚分机制能够识别出机器译文中的词序问题,因为当待测译文词序与参考答案相差较大时,机器译文将会被分割得比较零散,这种惩罚机制的计算公式如式\eqref{eq:4-11},其中$\textrm{count}_{\textrm{chunks}}$表示匹配的块数。
\parinterval 那激活函数又是什么?一个神经元在接收到经过线性变换的结果后,通过激活函数的处理,得到最终的输出$ y $。激活函数的目的是解决实际问题中的非线性变换,线性变换只能拟合直线,而激活函数的加入,使神经网络具有了拟合曲线的能力。 特别是在实际问题中,很多现象都无法用简单的线性关系描述,这时可以使用非线性激活函数来描述更加复杂的问题。常见的非线性激活函数有Sigmoid、ReLU、Tanh等。图\ref{fig:9-15}中列举了几种激活函数的形式。
\parinterval 那激活函数又是什么?一个神经元在接收到经过线性变换的结果后,通过激活函数的处理,得到最终的输出$ y $。激活函数的目的是解决实际问题中的非线性变换,线性变换只能拟合直线,而激活函数的加入,使神经网络具有了拟合曲线的能力。 特别是在实际问题中,很多现象都无法用简单的线性关系描述,这时可以使用非线性激活函数来描述更加复杂的问题。常见的非线性激活函数有Sigmoid、ReLU、Tanh等。图\ref{fig:9-15}和\ref{fig:9-15-2}中列举了几种激活函数的形式。