Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
7faa0869
Commit
7faa0869
authored
Mar 08, 2021
by
zengxin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
postscript
parent
00ebd2a0
显示空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
2 行增加
和
2 行删除
+2
-2
ChapterPostscript/postscript.tex
+2
-2
没有找到文件。
ChapterPostscript/postscript.tex
查看文件 @
7faa0869
...
...
@@ -59,14 +59,14 @@
\item
语音识别与机器翻译是绝配,语音翻译用途广泛,比如翻译机、语音翻译APP和会议AI同传应用。但目前存在一些问题,比如很多实际应用场景中语音识别效果欠佳,造成错误蔓延,导致机器翻译结果不够理想;另外就算小语种的语音识别效果很好,但资源稀缺型小语种翻译性能不够好,最终的语音翻译效果就不会好。
\item
OCR技术可以帮助实现扫描笔和翻译笔的应用、出国旅游的拍照翻译功能,将来还可以与穿戴式设备相结合,比如智能眼镜等等。视频字幕翻译能够帮助我们
欣赏
没有中文字幕的国外电影和电视节目,比如到达任何一个国家,打开电视都能够看到中文字幕,也是非常酷的应用。
\item
OCR技术可以帮助实现扫描笔和翻译笔的应用、出国旅游的拍照翻译功能,将来还可以与穿戴式设备相结合,比如智能眼镜等等。视频字幕翻译能够帮助我们
观看
没有中文字幕的国外电影和电视节目,比如到达任何一个国家,打开电视都能够看到中文字幕,也是非常酷的应用。
\end{itemize}
上面提到的机器翻译技术大多采用串行流水线,只是简单将两个或者多个不同的技术连接在一起,比如语音翻译过程可以分两步:语音识别和机器翻译。其它翻译模式也大同小异。简单的串行流水线技术框架的最大问题是错误蔓延,一旦某个技术环节的准确率不高,最后的结果就不会太好(
$
90
\%
\times
90
\%
=
81
\%
$
)。并且,后续的技术环节不一定有能力纠正前面技术环节引入的错误,最终导致用户体验不够好。很多人认为,英中AI会议同传用户体验不够好,问题出在机器翻译技术上。其实,问题主要出在语音识别环节。学术界正在研究的端到端的机器翻译技术,不是采用串行流水线技术架构,而是采用一步到位的方式,这理论上能够缓解错误蔓延的问题,但目前的效果还不够理想,期待学术界取得新的突破。
\item
机器翻译技术可以辅助人工翻译。即使双语句对训练集合规模已经非常大、机器翻译技术也在不断优化,但机器翻译的结果仍然不可能完美,出现译文错误是难免的。如果我们想利用机器翻译技术辅助人工翻译,比较常见的方式是译后编辑,即由人对自动译文进行修改(详见
{
\chapterfour
}
)。这就很自然地产生了两个实际问题:第一个问题是,自动译文是否具有编辑价值?一个简便的计算方法就是编辑距离,即人工需要通过多少次增、删、改动作完成译后编辑。其次数越少,说明机器翻译对人工翻译的帮助越大。编辑距离本质上是一种译文质量评价的方法,可以考虑推荐具有较高译后编辑价值的自动译文给人工译员。第二个问题是,当机器翻译出现错误,且被人工译后编辑修正后,能否通过一种有效的错误反馈机制帮助机器翻译系统提高性能。学术界也有很多人研究这个问题,目前还没有取得令人满意的结果。除此之外,还有一些问题,如人机交互的用户体验,该需求很自然地带起了交互式机器翻译技术(详见
{
\chaptereighteen
}
)研究的热潮,希望在最大程度上发挥人机协同合作的效果,这个也是值得研究的课题。
\end{itemize}
\parinterval
接下来,简单谈谈笔者对第四代机器翻译技术发展趋势的看法。通常,我们分别将基于规则的方法、统计机器翻译和神经机器翻译称为第一、第二和第三代机器翻译技术。有人说,第四代机器翻译技术会是基于知识的机器翻译技术;也有人说,是无监督机器翻译技术或者新的机器翻译范式,等等。在讨论第四代机器翻译技术这个问题之前,我们先思考一个问题:在翻译品质上,新一代机器翻译技术是否应该比目前的好?现在的实验结果显示,
比如拿商用的英汉汉英新闻机器翻译系统举例
,经过几亿双语句对的训练学习,机器翻译译文准确率的人工评估得分可以达到
$
80
\%
-
90
\%
$
(
$
100
\%
$
为满分,值越高说明译文准确率越高),那我们需要回答的一个简单问题是:所谓的第四代机器翻译技术准备在新闻领域翻译达到怎样的准确率呢?只比现在高
$
2
$
或
$
3
$
个百分点,达到
$
92
\%
$
或者
$
93
\%
$
这一结果,估计无法获得新一代机器翻译技术这一称谓。
\parinterval
接下来,简单谈谈笔者对第四代机器翻译技术发展趋势的看法。通常,我们分别将基于规则的方法、统计机器翻译和神经机器翻译称为第一、第二和第三代机器翻译技术。有人说,第四代机器翻译技术会是基于知识的机器翻译技术;也有人说,是无监督机器翻译技术或者新的机器翻译范式,等等。在讨论第四代机器翻译技术这个问题之前,我们先思考一个问题:在翻译品质上,新一代机器翻译技术是否应该比目前的好?现在的实验结果显示,
商用的英汉汉英新闻机器翻译系统
,经过几亿双语句对的训练学习,机器翻译译文准确率的人工评估得分可以达到
$
80
\%
-
90
\%
$
(
$
100
\%
$
为满分,值越高说明译文准确率越高),那我们需要回答的一个简单问题是:所谓的第四代机器翻译技术准备在新闻领域翻译达到怎样的准确率呢?只比现在高
$
2
$
或
$
3
$
个百分点,达到
$
92
\%
$
或者
$
93
\%
$
这一结果,估计无法获得新一代机器翻译技术这一称谓。
\parinterval
从历史发展观的维度考虑,新一代的技术必然存在,换句话说,第四代机器翻译技术一定会出现,只是不知道在什么时候而已。神经机器翻译的红利还没有被挖尽,还存在很好的发展空间,在可预期的将来,神经机器翻译技术还属于主流技术,但会产生大量变种。我们愿意把新一代机器翻译技术称为面向具体应用场景的第四代机器翻译技术,它在本质上是针对不同应用条件、不同应用场景提出的能力更强的机器翻译技术。它将不是一个简单的技术,而是一个技术集合,这是完全可能的。从另一方面讲,当前的机器翻译不具有很好的解释性,其与语言学的关系并不明确。那么在第四代机器翻译技术中,是否能让研究人员或使用者更方便地了解它的工作原理,并可以根据其原理对其进行干预。甚至,我们还可以研究更合理的面向机器翻译解释性的方法,笔者相信这也是未来需要突破的点。
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论