[1] Chu, Chenhui, and Rui Wang. "A Survey of Domain Adaptation for Neural Machine Translation.." abs/1806.00258 (2018): 1304-1319.
[2] Chu C, Dabre R, Kurohashi S. An Empirical Com-parison of Domain Adaptation Methods for Neural Machine Translation[J]. ACL. 2017: 385-391.
[3] Axelrod A, He X, Gao J. Domain Adaptation via Pseudo In-Domain Data Selection[Z]. Edinburgh(GB): 2011355-362.
[4] Remus R. Domain Adaptation Using Domain Similarity- and Domain Complexity-Based Instance Selection for Cross-Domain Sentiment Analysis[J]. ICDM Workshops. 2012: 717-723.
[5] Wang R, Finch M A, Utiyama M, et al. Sentence Embedding for Neural Machine Translation Domain Adaptation[J]. ACL. 2017: 560-566.
[6] Wees V D M, Bisazza A, Monz C. Dynamic Data Selection for Neural Machine Translation[J]. empirical methods in natural language processing. 2017: 1411-1421.
[7] Zhang X, Shapiro P, Kumar G, et al. Curriculum Learning for Domain Adaptation in Neural Machine Translation[J]. north american chapter of the association for computational linguistics. 2019.
[8] Currey A, Barone V M A, Heafield K. Copied Monolingual Data Improves Low-Resource Neural Machine Translation[J]. WMT. 2017: 148-156.
[9] Domhan T, Hieber F. Using Target-side Monolingual Data for Neural Machine Translation through Multi-task Learning[J]. EMNLP. 2017: 1501-1506.
[10] Zhang J, Zong C. Exploiting Source-side Monolingual Data in Neural Machine Translation[Z]. 2016.
[11] Sennrich R, Haddow B, Birch A. Improving Neural Machine Translation Models with Monolingual Data[J]. Computer ence. 2015.
[12] Park J, Song J, Yoon S. Building a Neural Machine Translation System Using Only Synthetic Parallel Data[J]. arXiv: Computation and Language. 2017.
[13] Kim Y, Gao Y, Ney H. Effective Cross-lingual Transfer of Neural Machine Translation Models without Shared Vocabularies[J]. Meeting of the Association for Computational Linguistics. 2019.
[14] Hu J, Xia M, Neubig G, et al. Domain Adaptation of Neural Machine Translation by Lexicon Induction[J]. ACL (1). 2019: 2989-3001.
[15] Wang R, Utiyama M, Liu L, et al. Instance Weighting for Neural Machine Translation Domain Adaptation[J]. EMNLP. 2017: 1483-1489.
[16] Yan S, Dahlmann L, Petrushkov P, et al. Word-based Domain Adaptation for Neural Machine Translation[J]. CoRR. 2019.
[17] Zeng J, Liu Y, Su J, et al. Iterative Dual Domain Adaptation for Neural Machine Translation[J]. EMNLP/IJCNLP (1). 2019: 845-855.
[18] Britz D, Le V Q, Pryzant R. Effective Domain Mixing for Neural Machine Translation[J]. WMT. 2017: 118-126.
[19] Kobus C, Crego M J, Senellart J. Domain Control for Neural Machine Translation[J]. recent advances in natural language processing. 2017.
[20] Khayrallah H, Kumar G, Duh K, et al. Neural Lattice Search for Domain Adaptation in Machine Translation[J]. IJCNLP. 2017: 20-25.
[21] Gulcehre C, Firat O, Xu K, et al. On Using Monolingual Corpora in Neural Machine Translation[J]. Computer Science. 2015.
[22] Dou Z, Wang X, Hu J, et al. Domain Differential Adaptation for Neural Machine Translation[J]. NGT@EMNLP-IJCNLP. 2019: 59-69.
[23] Freitag M, Al-Onaizan Y. Fast Domain Adaptation for Neural Machine Translation[J]. 2016.
[24] Saunders D, Stahlberg F, Gispert D A A, et al. Domain Adaptive Inference for Neural Machine Translation[J]. Meeting of the Association for Computational Linguistics. 2019.