\parinterval 相较于在编码端融入句法信息,在解码端融入句法信息更为困难。由于树结构与单词的生成是一个相互影响的过程,如果先生成树结构,再根据树得到译文单词串,那么一旦树结构有误,翻译结果就会有问题。在统计机器翻译中,句法信息究竟应该使用到什么程度已经有一些讨论\upcite{Tong2016Syntactic}({\color{red} 引用:What Can Syntax-Based MT Learn from Phrase-Based MT?})。而在神经机器翻译中,如何更有效地引入树结构信息以及如何平衡树结构信息与词串的作用还有待确认。如前文所述,基于词串的神经机器翻译模型已经能够捕捉到一些句法结构信息,虽然有些信息是不容易通过人的先验知识进行解释的。这时,使用人工总结的句法结构来约束或者强化翻译模型,是否可以补充模型无法学到的信息,还是需要进一步研究。