\parinterval 感知机是人工神经元的一种实例,在上世纪50-60年代被提出后,对神经网络研究产生了深远的影响。感知机模型如图\ref{fig:9-5}所示,其输入是一个$n$维二值向量${\mathbi{x}}=(x_1,x_2,\dots,x_n)$,其中$ x_i=0$或$1$。权重${\mathbi{w}}=(w_1,w_2,\dots,w_n)$,每个输入变量对应一个权重$ w_i $。偏置$ b $是一个实数变量($-\sigma$)。输出也是一个二值结果,即$ y=0$或$1$。$ y $值的判定由输入的加权和是否大于(或小于)一个阈值$\sigma$决定:
\parinterval 感知机是人工神经元的一种实例,在上世纪50年代被提出,对神经网络研究产生了深远的影响。感知机模型如图\ref{fig:9-5}所示,其输入是一个$n$维二值向量${\mathbi{x}}=(x_1,x_2,\dots,x_n)$,其中$ x_i=0$或$1$。权重${\mathbi{w}}=(w_1,w_2,\dots,w_n)$,每个输入变量对应一个权重$ w_i $。偏置$ b $是一个实数变量($-\sigma$)。输出也是一个二值结果,即$ y=0$或$1$。$ y $值的判定由输入的加权和是否大于(或小于)一个阈值$\sigma$决定: