Commit 92748b33 by 单韦乔

13章格式

parent 2c703976
...@@ -264,7 +264,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -264,7 +264,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\subsection{Dropout} \subsection{Dropout}
\parinterval 神经机器翻译模型是一种典型的多层神经网络模型。每一层都包含若干神经元,负责接收前一层所有神经元的输出,之后进行诸如乘法、加法等变换操作,并有选择地使用非线性的激活函数,最终得到当前层每个神经元的输出。从模型最终预测的角度看,每个神经元都在参与最终的预测。理想的情况下,研究人员希望每个神经元都能相互独立的做出“贡献”。这样的模型会更加健壮,因为即使一部分神经元不能正常工作,其它神经元仍然可以独立做出合理的预测。但是,随着每一层神经元数量的增加以及网络结构的复杂化,神经元之间会出现{\small\bfnew{相互适应}}\index{相互适应}(Co-Adaptation)\index{Co-Adaptation}的现象。所谓相互适应是指,一个神经元对输出的贡献与同一层其它神经元的行为是相关的,也就是说这个神经元已经适应到它周围的“环境”中。 \parinterval 神经机器翻译模型是一种典型的多层神经网络模型。每一层都包含若干神经元,负责接收前一层所有神经元的输出,之后进行诸如乘法、加法等变换操作,并有选择地使用非线性的激活函数,最终得到当前层每个神经元的输出。从模型最终预测的角度看,每个神经元都在参与最终的预测。理想的情况下,研究人员希望每个神经元都能相互独立的做出“贡献”。这样的模型会更加健壮,因为即使一部分神经元不能正常工作,其它神经元仍然可以独立做出合理的预测。但是,随着每一层神经元数量的增加以及网络结构的复杂化,神经元之间会出现{\small\bfnew{相互适应}}\index{相互适应}(Co-adaptation)\index{Co-adaptation}的现象。所谓相互适应是指,一个神经元对输出的贡献与同一层其它神经元的行为是相关的,也就是说这个神经元已经适应到它周围的“环境”中。
\parinterval 相互适应的好处在于神经网络可以处理更加复杂的问题,因为联合使用两个神经元要比单独使用每个神经元的表示能力强。这也类似于传统机器学习任务中往往会设计一些高阶特征,比如自然语言序列标注中对2-gram和3-gram的使用。不过另一方面,相互适应会导致模型变得更加“脆弱”。因为相互适应的神经元可以更好的描述训练数据中的现象,但是在测试数据上,由于很多现象是未见的,细微的扰动会导致神经元无法适应。具体体现出来就是过拟合问题。 \parinterval 相互适应的好处在于神经网络可以处理更加复杂的问题,因为联合使用两个神经元要比单独使用每个神经元的表示能力强。这也类似于传统机器学习任务中往往会设计一些高阶特征,比如自然语言序列标注中对2-gram和3-gram的使用。不过另一方面,相互适应会导致模型变得更加“脆弱”。因为相互适应的神经元可以更好的描述训练数据中的现象,但是在测试数据上,由于很多现象是未见的,细微的扰动会导致神经元无法适应。具体体现出来就是过拟合问题。
...@@ -380,7 +380,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -380,7 +380,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\parinterval 在机器翻译中,常用的回译技术也是生成对抗样本的一种有效方式。回译就是,通过反向模型将目标语言翻译成源语言,并将翻译得到的双语数据用于模型训练(见{\chaptersixteen})。除了翻译模型,语言模型也可以用于生成对抗样本。{\chaptertwo}已经介绍过,语言模型可以用于检测句子的流畅度,它根据上文预测当前位置可能出现的单词。因此,此时可以使用语言模型预测出当前位置最可能出现的多个单词,并用这些词替换序列中原本的单词。在机器翻译任务中,可以通过与神经机器翻译系统联合训练,共享词向量矩阵的方式得到语言模型\upcite{DBLP:conf/acl/GaoZWXQCZL19} \parinterval 在机器翻译中,常用的回译技术也是生成对抗样本的一种有效方式。回译就是,通过反向模型将目标语言翻译成源语言,并将翻译得到的双语数据用于模型训练(见{\chaptersixteen})。除了翻译模型,语言模型也可以用于生成对抗样本。{\chaptertwo}已经介绍过,语言模型可以用于检测句子的流畅度,它根据上文预测当前位置可能出现的单词。因此,此时可以使用语言模型预测出当前位置最可能出现的多个单词,并用这些词替换序列中原本的单词。在机器翻译任务中,可以通过与神经机器翻译系统联合训练,共享词向量矩阵的方式得到语言模型\upcite{DBLP:conf/acl/GaoZWXQCZL19}
\parinterval 此外,{\small\bfnew{生成对抗网络}}\index{生成对抗网络}(Generative Adversarial Networks\index{Generative Adversarial Networks}, GANs)也可以被用来生成对抗样本\upcite{DBLP:conf/iclr/ZhaoDS18}。与回译方法类似,基于生成对抗网络的方法将原始的输入映射为潜在分布$\funp{P}$,并在其中搜索出服从相同分布的文本构成对抗样本。一些研究也对这种方法进行了优化\upcite{DBLP:conf/iclr/ZhaoDS18},在稠密的向量空间中进行搜索,也就是说在定义$\funp{P}$的基础稠密向量空间中找到对抗性表示$\mathbi{z}'$,然后利用生成模型将其映射回$\mathbi{x}'$,使最终生成的对抗样本在语义上接近原始输入。 \parinterval 此外,{\small\bfnew{生成对抗网络}}\index{生成对抗网络}(Generative Adversarial Networks\index{Generative Adversarial Networks}GANs)也可以被用来生成对抗样本\upcite{DBLP:conf/iclr/ZhaoDS18}。与回译方法类似,基于生成对抗网络的方法将原始的输入映射为潜在分布$\funp{P}$,并在其中搜索出服从相同分布的文本构成对抗样本。一些研究也对这种方法进行了优化\upcite{DBLP:conf/iclr/ZhaoDS18},在稠密的向量空间中进行搜索,也就是说在定义$\funp{P}$的基础稠密向量空间中找到对抗性表示$\mathbi{z}'$,然后利用生成模型将其映射回$\mathbi{x}'$,使最终生成的对抗样本在语义上接近原始输入。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论