\node[anchor=north,rectangle,inner sep=0mm,minimum height=2.6em,minimum width=11em,rounded corners=5pt,fill=blue!30] (mr1) at ([xshift=0em,yshift=-0.5em]m3.south){};
\node[anchor=north,rectangle,inner sep=0mm,minimum height=2.6em,minimum width=11em,rounded corners=5pt,fill=blue!30,draw,thick,drop shadow] (mr1) at ([xshift=0em,yshift=-0.5em]m3.south){};
\end{pgfonlayer}
...
...
@@ -31,22 +31,22 @@
\node[anchor=north west,wnode,align=left] (w3) at ([xshift=0.3em,yshift=-0.3em]m3.north west){深度学习和网\\络结构搜索};
{%subfigure-left
\node[anchor=north,wnode,font=\footnotesize] (wl1) at ([xshift=0em,yshift=0em]ml1.north){训练数据};
\node[anchor=north,wnode,font=\footnotesize] (wl2) at ([xshift=0em,yshift=0em]ml2.north){特征信息};
\node[anchor=north,wnode,font=\footnotesize] (wl3) at ([xshift=0em,yshift=0em]ml3.north){模型结构};
\node[anchor=south,wnode,font=\tiny] (wl4) at ([xshift=0em,yshift=0em]ml1.south){人工/自动收集};
\node[anchor=south,wnode] (wl5) at ([xshift=0em,yshift=0em]ml2.south){人工设计};
\node[anchor=south,wnode] (wl6) at ([xshift=0em,yshift=0em]ml3.south){人工设计};
\node[anchor=north,wnode,font=\footnotesize] (wl1) at ([xshift=0em,yshift=-0.15em]ml1.north){训练数据};
\node[anchor=north,wnode,font=\footnotesize] (wl2) at ([xshift=0em,yshift=-0.15em]ml2.north){特征信息};
\node[anchor=north,wnode,font=\footnotesize] (wl3) at ([xshift=0em,yshift=-0.15em]ml3.north){模型结构};
\node[anchor=south,wnode,font=\tiny] (wl4) at ([xshift=0em,yshift=0.15em]ml1.south){人工/自动收集};
\node[anchor=south,wnode] (wl5) at ([xshift=0em,yshift=0.15em]ml2.south){人工设计};
\node[anchor=south,wnode] (wl6) at ([xshift=0em,yshift=0.15em]ml3.south){人工设计};
\node[anchor=south,cnode,fill=white] (cl1) at ([xshift=-4em,yshift=1.5em]m1.south){};
\node[anchor=north,cnode,fill=white] (cl2) at ([xshift=0em,yshift=-1em]m1.north){};
\node[anchor=south west,wnode,align=left,font=\tiny] (wl7) at ([xshift=0.5em,yshift=0em]cl1.east){使用{\color{ugreen!60}特征}对{\color{blue!60}数据}\\中信息进行提取};
\node[anchor=west,wnode,align=right,font=\tiny] (wl8) at ([xshift=0.5em,yshift=0em]cl2.east){使用提取的信息对\\{\color{red!50}模型}中的参数\\进行训练};
\node[anchor=south west,wnode,align=left,font=\tiny] (wl7) at ([xshift=0.5em,yshift=0em]cl1.east){使用{\color{ugreen}\bfnew{特征}}对{\color{blue}\bfnew{数据}}\\中信息进行提取};
\node[anchor=west,wnode,align=right,font=\tiny] (wl8) at ([xshift=0.5em,yshift=0em]cl2.east){使用提取的信息对\\{\color{red!50}\bfnew{模型}}中的参数\\进行训练};
\draw[->,thick] ([xshift=-1.5em,yshift=-0em]ml1.north)..controls +(north:3em) and +(west:0em)..([xshift=-0em,yshift=-0em]cl1.west) ;
\draw[->,thick] ([xshift=0em,yshift=-0em]ml2.north)..controls +(north:3em) and +(west:0em)..([xshift=-0em,yshift=-0em]cl1.east) ;
...
...
@@ -57,19 +57,19 @@
}
{%subfigure-center
\node[anchor=north,wnode,font=\footnotesize] (wc1) at ([xshift=0em,yshift=0em]mc1.north){训练数据};
\node[anchor=north,wnode,font=\footnotesize] (wc2) at ([xshift=0em,yshift=0em]mc2.north){模型结构};
\node[anchor=south,wnode] (wc3) at ([xshift=0em,yshift=0em]mc1.south){人工/自动收集};
\node[anchor=south,wnode] (wc4) at ([xshift=0em,yshift=0em]mc2.south){人工设计};
\node[anchor=north,wnode,font=\footnotesize] (wc1) at ([xshift=0em,yshift=-0.15em]mc1.north){训练数据};
\node[anchor=north,wnode,font=\footnotesize] (wc2) at ([xshift=0em,yshift=-0.15em]mc2.north){模型结构};
\node[anchor=south,wnode] (wc3) at ([xshift=0em,yshift=0.15em]mc1.south){人工/自动收集};
\node[anchor=south,wnode] (wc4) at ([xshift=0em,yshift=0.15em]mc2.south){人工设计};
\node[anchor=south,cnode,fill=white] (cc1) at ([xshift=-4em,yshift=1.5em]m2.south){};
\node[anchor=north,cnode,fill=white] (cc2) at ([xshift=0em,yshift=-1em]m2.north){};
\node[anchor=south west,wnode,align=left,font=\tiny] (wl7) at ([xshift=0.5em,yshift=0em]cc1.east){使用{\color{red!60}模型}对{\color{blue!60}数据}\\中信息进行提取};
\node[anchor=west,wnode,align=right,font=\tiny] (wl8) at ([xshift=0.5em,yshift=0em]cc2.east){使用提取的信息对\\{\color{red!60}模型}中的参数\\进行训练};
\node[anchor=south west,wnode,align=left,font=\tiny] (wl7) at ([xshift=0.5em,yshift=0em]cc1.east){使用{\color{red!50}\bfnew{模型}}对{\color{blue}\bfnew{数据}}\\中信息进行提取};
\node[anchor=west,wnode,align=right,font=\tiny] (wl8) at ([xshift=0.5em,yshift=0em]cc2.east){使用提取的信息对\\{\color{red!50}\bfnew{模型}}中的参数\\进行训练};
\draw[->,thick] ([xshift=-2em,yshift=-0em]mc1.north)..controls +(north:3em) and +(west:0em)..([xshift=-0em,yshift=-0em]cc1.west) ;
\draw[->,thick] ([xshift=0em,yshift=-0em]mc2.north)..controls +(north:2em) and +(west:0em)..([xshift=-0em,yshift=-0em]cc1.east) ;
...
...
@@ -80,21 +80,21 @@
}
{%subfigure-right
\node[anchor=north,wnode,font=\footnotesize] (wr1) at ([xshift=0em,yshift=0em]mr1.north){训练数据};
\node[anchor=south,wnode] (wr2) at ([xshift=0em,yshift=0em]mr1.south){人工/自动收集};
\node[anchor=north,wnode,font=\footnotesize] (wr1) at ([xshift=0em,yshift=-0.15em]mr1.north){训练数据};
\node[anchor=south,wnode] (wr2) at ([xshift=0em,yshift=0.15em]mr1.south){人工/自动收集};
\node[anchor=south,cnode,fill=white] (cr1) at ([xshift=-2.5em,yshift=2.8em]m3.south){};
\node[anchor=north,cnode,fill=white] (cr2) at ([xshift=0em,yshift=-1em]m3.north){};
\node[anchor=south,cnode,fill=white] (cr3) at ([xshift=-5.8em,yshift=0.7em]m3.south){};
\node[anchor=south,cnode,fill=white] (cr3) at ([xshift=-6.2em,yshift=0.7em]m3.south){};
\node[anchor=north,wnode,align=right,font=\tiny] (wr3) at ([xshift=1em,yshift=-0.5em]cr2.south){使用{\color{red!60}模型}提\\取{\color{blue!60}数据}\\中的\\信息};
\node[anchor=west,wnode,align=right,font=\tiny] (wr4) at ([xshift=0.5em,yshift=0em]cr2.east){使用提取的信息对\\{\color{red!60}模型}中的参数\\进行训练};
\node[anchor=west,wnode,align=left,font=\tiny] (wr5) at ([xshift=0.2em,yshift=0em]cr3.east){使用{\color{blue!60}数据}对{\color{red!60}模型}\\的结构进行搜索};
\node[anchor=north,wnode,align=right,font=\tiny] (wr3) at ([xshift=1em,yshift=-0.5em]cr2.south){使用{\color{red!50}\bfnew{模型}}提\\取{\color{blue}\bfnew{数据}}\\中的\\信息};
\node[anchor=west,wnode,align=right,font=\tiny] (wr4) at ([xshift=0.5em,yshift=0em]cr2.east){使用提取的信息对\\{\color{red!50}\bfnew{模型}}中的参数\\进行训练};
\node[anchor=west,wnode,align=left,font=\tiny] (wr5) at ([xshift=0.2em,yshift=0em]cr3.east){使用{\color{blue}\bfnew{数据}}对{\color{red!50}\bfnew{模型}}\\的结构进行搜索};
\item{\small\bfnew{结构化位置编码}}\index{基于结构化位置编码}(Structural Position Representations)\index{Structural Position Representations}\upcite{DBLP:conf/emnlp/WangTWS19a}。 例如,可以通过对输入句子进行依存句法分析得到句法树,根据叶子结点在句法树中的深度来表示其绝对位置,并在此基础上利用相对位置编码的思想计算节点之间的相对位置信息。
\parinterval 在得到${\bm\pi}^K=\frac{\partial L}{\partial{\mathbi{s}}^K}$之后,下一步的目标是:1)计算损失函数$ L $相对于第$ K-1$层与输出层之间连接权重${\mathbi{W}}^K $的梯度;2)计算损失函数$ L $相对于神经网络网络第$ K-1$层输出结果${\mathbi{h}}^{K-1}$的梯度。这部分内容如图\ref{fig:9-55}所示。
\parinterval 在得到${\bm\pi}^K=\frac{\partial L}{\partial{\mathbi{s}}^K}$之后,下一步的目标是:1)计算损失函数$ L $相对于第$ K-1$层与输出层之间连接权重${\mathbi{W}}^K $的梯度;2)计算损失函数$ L $相对于神经网络第$ K-1$层输出结果${\mathbi{h}}^{K-1}$的梯度。这部分内容如图\ref{fig:9-55}所示。