Commit 9a971ca7 by 曹润柘

更新 chapter8.tex

parent fe7a0a94
......@@ -70,7 +70,7 @@
\parinterval 句法树结构可以赋予机器翻译对语言进一步抽象的能力,这样,可以不需要使用连续词串,而是通过句法结构来对大范围的译文生成和调序进行建模。图\ref{fig:8-3}是一个在翻译中融入源语言(汉语)句法信息的实例。这个例子中,介词短语“在 $...$ 后”包含15个单词,因此,使用短语很难涵盖这样的片段。这时,系统会把“在 $...$ 后”错误地翻译为“In $...$”。通过句法树,可以知道“在 $...$ 后”对应着一个完整的子树结构PP(介词短语)。因此也很容易知道介词短语中“在 $...$ 后”是一个模板(红色),而“在”和“后”之间的部分构成从句部分(蓝色)。最终得到正确的译文“After $...$”。
\parinterval 使用句法信息在机器翻译中不新鲜。在基于规则和模板的翻译模型中,就大量使用了句法等结构信息。只是由于早期句法分析技术不成熟,系统的整体效果并不突出。在数据驱动的方法中,句法可以很好地融合在统计建模中。通过概率化的文法设计,可以对翻译过程进行很好的描述。
\parinterval 使用句法信息在机器翻译中并不新鲜。在基于规则和模板的翻译模型中,就大量使用了句法等结构信息。只是由于早期句法分析技术不成熟,系统的整体效果并不突出。在数据驱动的方法中,句法可以很好地融合在统计建模中。通过概率化的句法设计,可以对翻译过程进行很好的描述。
%----------------------------------------------------------------------------------------
% NEW SECTION
......@@ -1574,7 +1574,7 @@ d_1 = {d'} \circ {r_5}
\textrm{VP}_1\ \ \textrm{NP}_2 &\rightarrow& \textrm{V103(}\ \ \textrm{VP}_1\ \ \textrm{NP}_2 ) \nonumber
\end{eqnarray}
\noindent 可以看到,这两条新的规则源语言端只有两个部分,代表两个分叉。V103是一个新的标签,它没有任何句法含义。不过,为了保证二叉化后规则目标语部分的连续性,需要考虑源语言和目标语二叉化的同步性\upcite{DBLP:conf/naacl/ZhangHGK06,Tong2009Better}。这样的规则与CKY方法一起使用完成解码,具体内容可以参考\ref{section-8.2.4}节的内容。
\noindent 可以看到,这两条新的规则源语言端只有两个部分,代表两个分叉。V103是一个新的标签,它没有任何句法含义。不过,为了保证二叉化后规则目标语部分的连续性,需要考虑源语言和目标语二叉化的同步性\upcite{DBLP:conf/naacl/ZhangHGK06,Tong2009Better}。这样的规则与CKY方法一起使用完成解码,具体内容可以参考\ref{section-8.2.4}节的内容。
\vspace{0.5em}
\end{itemize}
......@@ -1586,7 +1586,7 @@ d_1 = {d'} \circ {r_5}
\sectionnewpage
\section{小结及深入阅读}
\parinterval 自基于规则的方法开始,如何使用句法信息就是机器翻译研究人员关注的热点。在统计机器翻译时代,句法信息与机器翻译的结合成为了最具时特色的研究方向之一。句法结构具有高度的抽象性,因此可以缓解基于词串方法不善于处理句子上层结构的问题。
\parinterval 自基于规则的方法开始,如何使用句法信息就是机器翻译研究人员关注的热点。在统计机器翻译时代,句法信息与机器翻译的结合成为了最具时特色的研究方向之一。句法结构具有高度的抽象性,因此可以缓解基于词串方法不善于处理句子上层结构的问题。
\parinterval 本章对基于句法的机器翻译模型进行了介绍,并重点讨论了相关的建模、翻译规则抽取以及解码问题。从某种意义上说,基于句法的模型与基于短语的模型都同属一类模型,因为二者都假设:两种语言间存在由短语或者规则构成的翻译推导,而机器翻译的目标就是找到最优的翻译推导。但是,由于句法信息有其独特的性质,因此也给机器翻译带来了新的问题。有几方面问题值得关注:
......@@ -1594,7 +1594,7 @@ d_1 = {d'} \circ {r_5}
\vspace{0.5em}
\item 从建模的角度看,早期的统计机器翻译模型已经涉及到了树结构的表示问题\upcite{DBLP:conf/acl/AlshawiBX97,DBLP:conf/acl/WangW98}。不过,基于句法的翻译模型的真正崛起是在同步文法提出之后。初期的工作大多集中在反向转录文法和括号转录文法方面\upcite{DBLP:conf/acl-vlc/Wu95,wu1997stochastic,DBLP:conf/acl/WuW98},这类方法也被用于短语获取\upcite{ja2006obtaining,DBLP:conf/acl/ZhangQMG08}。进一步,研究者提出了更加通用的层次模型来描述翻译过程\upcite{chiang2005a,DBLP:conf/coling/ZollmannVOP08,DBLP:conf/acl/WatanabeTI06},本章介绍的层次短语模型就是其中典型的代表。之后,使用语言学句法的模型也逐渐兴起。最具代表性的是在单语言端使用语言学句法信息的模型\upcite{DBLP:conf/naacl/GalleyHKM04,galley2006scalable,marcu2006spmt,DBLP:conf/naacl/HuangK06,DBLP:conf/emnlp/DeNeefeKWM07,DBLP:conf/wmt/LiuG08,liu2006tree},即:树到串翻译模型和串到树翻译模型。值得注意的是,除了直接用句法信息定义翻译规则,也有研究者将句法信息作为软约束改进层次短语模型\upcite{DBLP:conf/wmt/ZollmannV06,DBLP:conf/acl/MartonR08}。这类方法具有很大的灵活性,既保留了层次短语模型比较健壮的特点,同时也兼顾了语言学句法对翻译的指导作用。在同一时期,也有研究者提出同时使用双语两端的语言学句法树对翻译进行建模,比较有代表性的工作是使用同步树插入文法(Synchronous Tree-Insertion Grammars)和同步树替换文法(Synchronous Tree-Substitution Grammars)进行树到树翻译的建模\upcite{Nesson06inductionof,Zhang07atree-to-tree,liu2009improving}。不过,树到树翻译假设两种语言间的句法结构能够相互转换,而这个假设并不总是成立。因此树到树翻译系统往往要配合一些技术,如树二叉化,来提升系统的健壮性。
\vspace{0.5em}
\item 在基于句法的模型中,常常会使用句法分析器完成句法分析树的生成。由于句法分析器会产生错误,因此这些错误会对机器翻译系统产生影响。对于这个问题,一种解决办法是同时考虑更多的句法树,这样增加正确句法分析结果被使用到的概率。其中,比较典型的方式基于句法森林的方法\upcite{DBLP:conf/acl/MiHL08,DBLP:conf/emnlp/MiH08},比如,在规则抽取或者解码阶段使用句法森林,而不是仅仅使用一棵单独的句法树。另一种思路是,对句法结构进行松弛操作,即在翻译的过程中并不严格遵循句法结构\upcite{zhu2011improving,DBLP:conf/emnlp/ZhangZZ11}。实际上,前面提到的基于句法软约束的模型也是这类方法的一种体现\upcite{DBLP:conf/wmt/ZollmannV06,DBLP:conf/acl/MartonR08}。事实上,机器翻译领域的长期存在一个问题:使用什么样的句法结构是最适合机器翻译?因此,有研究者尝试对比不同的句法分析结果对机器翻译系统的影响\upcite{DBLP:conf/wmt/PopelMGZ11,DBLP:conf/coling/XiaoZZZ10}。也有研究者面向机器翻译任务自动归纳句法结构\upcite{DBLP:journals/tacl/ZhaiZZZ13},而不是直接使用从单语小规模树库学习到的句法分析器,这样可以提高系统的健壮性。
\item 在基于句法的模型中,常常会使用句法分析器完成句法分析树的生成。由于句法分析器会产生错误,因此这些错误会对机器翻译系统产生影响。对于这个问题,一种解决办法是同时考虑更多的句法树,从而增加正确句法分析结果被使用到的概率。其中,比较典型的方式基于句法森林的方法\upcite{DBLP:conf/acl/MiHL08,DBLP:conf/emnlp/MiH08},比如,在规则抽取或者解码阶段使用句法森林,而不是仅仅使用一棵单独的句法树。另一种思路是,对句法结构进行松弛操作,即在翻译的过程中并不严格遵循句法结构\upcite{zhu2011improving,DBLP:conf/emnlp/ZhangZZ11}。实际上,前面提到的基于句法软约束的模型也是这类方法的一种体现\upcite{DBLP:conf/wmt/ZollmannV06,DBLP:conf/acl/MartonR08}。事实上,机器翻译领域长期存在一个问题:使用什么样的句法结构最适合机器翻译?因此,有研究者尝试对比不同的句法分析结果对机器翻译系统的影响\upcite{DBLP:conf/wmt/PopelMGZ11,DBLP:conf/coling/XiaoZZZ10}。也有研究者面向机器翻译任务自动归纳句法结构\upcite{DBLP:journals/tacl/ZhaiZZZ13},而不是直接使用从单语小规模树库学习到的句法分析器,这样可以提高系统的健壮性。
\vspace{0.5em}
\item 本章所讨论的模型大多基于短语结构树。另一个重要的方向是使用依存树进行翻译建模\upcite{DBLP:journals/mt/QuirkM06,DBLP:conf/wmt/XiongLL07,DBLP:conf/coling/Lin04}。依存树比短语结构树有更简单的结构,而且依存关系本身也是对“语义”的表征,因此也可以扑捉到短语结构树所无法涵盖的信息。同其它基于句法的模型类似,基于依存树的模型大多也需要进行规则抽取、解码等步骤,因此这方面的研究工作大多涉及翻译规则的抽取、基于依存树的解码等\upcite{DBLP:conf/acl/DingP05,DBLP:conf/coling/ChenXMJL14,DBLP:conf/coling/SuLMZLL10,DBLP:conf/coling/XieXL14,DBLP:conf/emnlp/LiWL15}。此外,基于依存树的模型也可以与句法森林结构相结合,对系统性能进行进一步提升\upcite{DBLP:conf/acl/MiL10,DBLP:conf/coling/TuLHLL10}
\vspace{0.5em}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论