Commit 9e6c10bd by 曹润柘

update 16

parent 7ff317f0
......@@ -353,11 +353,11 @@
%----------------------------------------------------------------------------------------
\section{多语言翻译模型}\label{multilingual-translation-model}
\parinterval 低资源机器翻译面临的主要挑战是缺乏大规模高质量的双语数据。这个问题往往伴随着多语言的翻译任务\upcite{dabre2019brief,dabre2020survey}。也就是,要同时开发多个不同语言之间的机器翻译系统,其中少部分语言是富资源语言,而其它语言是低资源语言。针对低资源语言双语数据稀少或者缺失的情况,一种常见的思路是利用富资源语言的数据或者系统帮助低资源机器翻译系统。这也构成了多语言翻译的思想,并延伸出大量的研究工作,其中有三个典型研究方向:
\parinterval 低资源机器翻译面临的主要挑战是缺乏大规模高质量的双语数据。这个问题往往伴随着多语言的翻译任务\upcite{dabre2020survey}。也就是,要同时开发多个不同语言之间的机器翻译系统,其中少部分语言是富资源语言,而其它语言是低资源语言。针对低资源语言双语数据稀少或者缺失的情况,一种常见的思路是利用富资源语言的数据或者系统帮助低资源机器翻译系统。这也构成了多语言翻译的思想,并延伸出大量的研究工作,其中有三个典型研究方向:
\begin{itemize}
\vspace{0.5em}
\item 基于枢轴语言的方法,即以资源丰富的语言(通常为英语、汉语等)为中心,在语言对之间进行翻译\upcite{DBLP:conf/emnlp/KimPPKN19,DBLP:journals/mt/WuW07}
\item 基于枢轴语言的方法,即以资源丰富的语言(通常为英语、汉语等)为中心,在语言对之间进行翻译\upcite{DBLP:journals/mt/WuW07}
\vspace{0.5em}
\item 基于知识蒸馏的方法,即用枢轴语言到目标语言的训练指导源语言到目标语言的训练\upcite{DBLP:conf/acl/ChenLCL17}
\vspace{0.5em}
......@@ -373,9 +373,9 @@
\subsection{基于枢轴语言的方法}
\parinterval 传统的多语言翻译中,广泛使用的是{\small\bfnew{基于枢轴语言的翻译}}(Pivot-based Translation)\upcite{DBLP:conf/emnlp/KimPPKN19,DBLP:journals/mt/WuW07}。这种方法会使用一种数据丰富语言作为{\small\bfnew{中介语言}}\index{中介语言}或者{\small\bfnew{枢轴语言}}\index{枢轴语言}(Pivot Language)\index{Pivot Language},之后让源语言和目标语言向枢轴语言进行翻译。这样,通过资源丰富的枢轴语言将源语言和目标语言桥接在一起,达到解决源语言-目标语言双语数据缺乏的问题。比如,想要得到泰语到波兰语的翻译,可以通过英语做枢轴语言。通过“泰语$\to$英语$\to$波兰语”的翻译过程完成泰语到波兰语的转换。
\parinterval 传统的多语言翻译中,广泛使用的是{\small\bfnew{基于枢轴语言的翻译}}(Pivot-based Translation)\upcite{DBLP:conf/emnlp/KimPPKN19,DBLP:journals/mt/WuW07}。这种方法会使用一种数据丰富的语言作为{\small\bfnew{中介语言}}\index{中介语言}或者{\small\bfnew{枢轴语言}}\index{枢轴语言}(Pivot Language)\index{Pivot Language},之后让源语言向枢轴语言进行翻译,枢轴语言向目标语言进行翻译。这样,通过资源丰富的枢轴语言将源语言和目标语言桥接在一起,达到解决源语言-目标语言双语数据缺乏的问题。比如,想要得到泰语到波兰语的翻译,可以通过英语做枢轴语言。通过“泰语$\to$英语$\to$波兰语”的翻译过程完成泰语到波兰语的转换。
\parinterval 基于枢轴语言的方法很早就出现在基于统计机器翻译中。在基于短语的机器翻译中,已经有很多方法建立了源语言到枢轴语言和枢轴语言到目标语言的短语/单词级别特征,并基于这些特征开发了源语言到目标语言的系统\upcite{DBLP:conf/naacl/UtiyamaI07,DBLP:conf/acl/ZahabiBK13,DBLP:conf/emnlp/ZhuHWZWZ14,DBLP:conf/acl/MiuraNSTN15},这些系统也已经广泛用于翻译低资源语言对\upcite{DBLP:conf/acl/CohnL07,DBLP:journals/mt/WuW07,DBLP:conf/acl/WuW09,de2006catalan}。由于基于枢轴语言的方法与模型结构无关,该方法也快速适用于神经机器翻译,并且取得了不错的效果\upcite{DBLP:conf/emnlp/KimPPKN19,DBLP:journals/corr/ChengLYSX16}
\parinterval 在基于统计的机器翻译中,已经有很多方法建立了源语言到枢轴语言和枢轴语言到目标语言的短语/单词级别特征,并基于这些特征开发了源语言到目标语言的系统\upcite{DBLP:conf/naacl/UtiyamaI07,DBLP:conf/acl/ZahabiBK13,DBLP:conf/emnlp/ZhuHWZWZ14,DBLP:conf/acl/MiuraNSTN15},这些系统也已经广泛用于翻译低资源语言对\upcite{DBLP:conf/acl/CohnL07,DBLP:journals/mt/WuW07,DBLP:conf/acl/WuW09,de2006catalan}。由于基于枢轴语言的方法与模型结构无关,该方法也适用于神经机器翻译,并且取得了不错的效果\upcite{DBLP:conf/emnlp/KimPPKN19,DBLP:journals/corr/ChengLYSX16}
\parinterval 基于枢轴语言的方法可以被描述为如图\ref{fig:16-11}所示的过程。这里,使用虚线表示具有双语平行语料库的语言对,并使用带有箭头的实线表示翻译方向,令$\seq{x}$$\seq{y}$$\seq{p}$ 分别表示源语言、目标语言和枢轴语言,对于输入源语言句子$\seq{x}$和目标语言句子$\seq{y}$,其翻译过程可以被建模为公式\eqref{eq:16-7}
%----------------------------------------------
......@@ -391,9 +391,7 @@
\label{eq:16-7}
\end{eqnarray}
\noindent 其中,$\seq{p}$表示一个枢轴语言句子, $\funp{P(\seq{y}|\seq{x})}$为从源语言句子$\seq{x}$翻译到目标语言句子$\seq{y}$的概率,$\funp{P}(\seq{p}|\seq{x})$为从源语言句子$\seq{x}$翻译到枢轴语言语句子$\seq{p}$的概率,$\funp{P}(\seq{y}|\seq{p})$为从枢轴语言句子$\seq{p}$翻译到目标语言句子$\seq{y}$的概率。
\parinterval $\funp{P}(\seq{p}|\seq{x})$$\funp{P}(\seq{y}|\seq{p})$可以直接复用既有的模型和方法。不过,枚举所有的枢轴语言句子$\seq{p}$是不可行的。因此一部分研究工作也探讨了如何选择有效的路径,从$\seq{x}$经过少量$\seq{p}$到达$\seq{y}$\upcite{DBLP:conf/naacl/PaulYSN09}
\noindent 其中,$\seq{p}$表示一个枢轴语言句子, $\funp{P(\seq{y}|\seq{x})}$为从源语言句子$\seq{x}$翻译到目标语言句子$\seq{y}$的概率,$\funp{P}(\seq{p}|\seq{x})$为从源语言句子$\seq{x}$翻译到枢轴语言语句子$\seq{p}$的概率,$\funp{P}(\seq{y}|\seq{p})$为从枢轴语言句子$\seq{p}$翻译到目标语言句子$\seq{y}$的概率。$\funp{P}(\seq{p}|\seq{x})$$\funp{P}(\seq{y}|\seq{p})$可以直接复用既有的模型和方法。不过,枚举所有的枢轴语言句子$\seq{p}$是不可行的。因此一部分研究工作也探讨了如何选择有效的路径,从$\seq{x}$经过少量$\seq{p}$到达$\seq{y}$\upcite{DBLP:conf/naacl/PaulYSN09}
\parinterval 虽然基于枢轴语言的方法简单且易于实现,但该方法也有一些不足。例如,它需要两次翻译过程,因此增加了翻译时间。而且在两次翻译中,翻译错误会进行累积从而产生错误传播问题,导致模型翻译准确性降低。此外,基于枢轴语言的方法仍然假设源语言和枢轴语言(或者目标语言和枢轴语言)之间存在一定规模的双语平行数据,但是这个假设在很多情况下并不成立。比如,对于一些资源极度稀缺的语言,其到英语或者汉语的双语数据仍然十分匮乏,这时使用基于枢轴语言的方法的效果往往也并不理想。虽然存在以上问题,但是基于枢轴语言的方法仍然受到工业界的青睐,很多在线翻译引擎也在大量使用这种方法进行多语言的翻译。
......@@ -403,7 +401,7 @@
\subsection{基于知识蒸馏的方法}
\parinterval 为了解决基于枢轴语言的方法问题,研究人员提出基于知识蒸馏的方法\upcite{DBLP:conf/acl/ChenLCL17,DBLP:conf/iclr/TanRHQZL19}。知识蒸馏是一种常用的模型压缩方法\upcite{Hinton2015Distilling},基于教师-学生框架,在第十三章已经进行了详细介绍。针对稀缺资源任务,基于教师-学生框架的方法基本思想如图\ref{fig:16-12}所示。其中,虚线表示具有平行语料库的语言对,带有箭头的实线表示翻译方向。这里,将枢轴语言($\seq{p}$)到目标语言($\seq{y}$)的翻译模型$\funp{P}(\seq{y}|\seq{p})$当作教师模型,源语言($\seq{x}$)到目标语言($\seq{y}$)的翻译模型$\funp{P}(\seq{y}|\seq{x})$当作学生模型。然后,用教师模型来指导学生模型的训练,这个过程中学习的目标就是让$\funp{P}(\seq{y}|\seq{x})$尽可能接近$\funp{P}(\seq{y}|\seq{p})$,这样学生模型就可以学习到源语言到目标语言的翻译知识。
\parinterval 为了解决基于枢轴语言的方法中存在的错误传播等问题,研究人员提出基于知识蒸馏的方法\upcite{DBLP:conf/acl/ChenLCL17,DBLP:conf/iclr/TanRHQZL19}。知识蒸馏是一种常用的模型压缩方法\upcite{Hinton2015Distilling},基于教师-学生框架,在第十三章已经进行了详细介绍。针对稀缺资源任务,基于教师-学生框架的方法基本思想如图\ref{fig:16-12}所示。其中,虚线表示具有平行语料库的语言对,带有箭头的实线表示翻译方向。这里,将枢轴语言($\seq{p}$)到目标语言($\seq{y}$)的翻译模型$\funp{P}(\seq{y}|\seq{p})$当作教师模型,源语言($\seq{x}$)到目标语言($\seq{y}$)的翻译模型$\funp{P}(\seq{y}|\seq{x})$当作学生模型。然后,用教师模型来指导学生模型的训练,这个过程中学习的目标就是让$\funp{P}(\seq{y}|\seq{x})$尽可能接近$\funp{P}(\seq{y}|\seq{p})$,这样学生模型就可以学习到源语言到目标语言的翻译知识。
%----------------------------------------------
\begin{figure}[h]
\centering
......@@ -430,7 +428,7 @@
\subsection{基于迁移学习的方法}
\parinterval {\small\bfnew{迁移学习}}\index{迁移学习}(Transfer Learning)\index{Transfer Learning}是一种机器学习的方法,指的是一个预训练的模型被重新用在另一个任务中,而并不是从头训练一个新的模型\upcite{DBLP:conf/ijcnlp/Costa-JussaHB11,DBLP:journals/corr/HintonVD15}。迁移学习的目标是将某个领域或任务上学习到的知识应用到不同但相关的领域或问题中。在机器翻译中,可以用富资源语言的知识来改进低资源语言上的机器翻译性能,即将富资源语言中的知识迁移到低资源语言中。
\parinterval {\small\bfnew{迁移学习}}\index{迁移学习}(Transfer Learning)\index{Transfer Learning}是一种机器学习的方法,指的是一个预训练的模型被重新用在另一个任务中,而并不是从头训练一个新的模型\upcite{DBLP:journals/corr/HintonVD15}。迁移学习的目标是将某个领域或任务上学习到的知识应用到不同但相关的领域或问题中。在机器翻译中,可以用富资源语言的知识来改进低资源语言上的机器翻译性能,即将富资源语言中的知识迁移到低资源语言中。
\parinterval 基于枢轴语言的方法需要显性地建立“源语言$\to$枢轴语言$\to$目标语言”的路径。这时,如果路径中某处出现了问题,就会成为整个路径的瓶颈。如果使用多个枢轴语言,这个问题就会更加严重。不同于基于枢轴语言的方法,迁移学习无需进行两步解码,也就避免了翻译路径中累积错误的问题。
......@@ -469,9 +467,9 @@
%----------------------------------------------------------------------------------------
\subsubsection{2. 多语言单模型系统}
\parinterval 多语言单模型方法也可以被看做是一种迁移学习。多语言单模型方法能够有效地改善低资源神经机器翻译性能\upcite{DBLP:journals/tacl/JohnsonSLKWCTVW17,DBLP:conf/lrec/RiktersPK18,dabre2019brief},尤其适用于翻译方向较多的情况,因为为每一个翻译方向单独训练一个模型是不实际的,不仅因为设备资源和时间上的限制,还因为很多翻译方向都没有双语平行数据。比如,要翻译100个语言之间互译的系统,理论上就需要训练$100 \times 99$个翻译模型,代价是十分巨大的。这时就需要用到{\small\bfnew{多语言单模型方法}}\index{多语言单模型方法}(Multi-lingual Single Model-based Method\index{Multi-lingual Single Model-based Method})。
\parinterval 多语言单模型方法也可以被看做是一种迁移学习。多语言单模型方法能够有效地改善低资源神经机器翻译性能\upcite{DBLP:journals/tacl/JohnsonSLKWCTVW17,DBLP:conf/lrec/RiktersPK18,dabre2020survey},尤其适用于翻译方向较多的情况,因为为每一个翻译方向单独训练一个模型是不实际的,不仅因为设备资源和时间上的限制,还因为很多翻译方向都没有双语平行数据。比如,要翻译100个语言之间互译的系统,理论上就需要训练$100 \times 99$个翻译模型,代价是十分巨大的。这时就需要用到{\small\bfnew{多语言单模型方法}}\index{多语言单模型方法}(Multi-lingual Single Model-based Method\index{Multi-lingual Single Model-based Method})。
\parinterval 多语言单模型系统是指用单个模型训练具有多个语言翻译方向的系统。对于源语言集合$\seq{G}_x$和目标语言集合$\seq{G}_y$,多语言单模型的学习目标是学习一个单一的模型,这个模型可以进行任意源语言到任意目标语言的翻译,即同时支持所有$(x,y) \in (\seq{G}_x,\seq{G}_y)$的翻译。多语言单模型方法又可以进一步分为一对多\upcite{DBLP:conf/acl/DongWHYW15}、多对一\upcite{DBLP:journals/tacl/LeeCH17}和多对多\upcite{DBLP:conf/naacl/FiratCB16}的方法。不过这些方法本质上是相同的,因此这里以多对多翻译为例进行介绍。
\parinterval 多语言单模型系统是指用单个模型训练具有多个语言翻译方向的系统。对于源语言集合$\seq{G}_x$和目标语言集合$\seq{G}_y$,多语言单模型的学习目标是学习一个单一的模型,这个模型可以进行任意源语言到任意目标语言的翻译,即同时支持所有$\{(x,y)|x \in \seq{G}_x,y \in \seq{G}_y)\}$的翻译。多语言单模型方法又可以进一步分为一对多\upcite{DBLP:conf/acl/DongWHYW15}、多对一\upcite{DBLP:journals/tacl/LeeCH17}和多对多\upcite{DBLP:conf/naacl/FiratCB16}的方法。不过这些方法本质上是相同的,因此这里以多对多翻译为例进行介绍。
\parinterval 在模型结构方面,多语言模型与普通的神经机器翻译模型相同,都是标准的编码器-解码器结构。多语言单模型方法的一个假设是:不同语言可以共享同一个表示空间。因此,该方法使用同一个编码器处理所有的源语言句子,使用同一个解码器处理所有的目标语言句子。为了使多个语言共享同一个解码器(或编码器),一种简单的方法是直接在输入句子上加入语言标记,让模型显性地知道当前句子属于哪个语言。如图\ref{fig:16-15}所示,在此示例中,标记“ <spanish>”表示目标句子为西班牙语,标记“ <german>”表示目标句子为德语,则模型在进行翻译时便会将句子开头加有<spanish>标签的句子翻译为西班牙语\upcite{DBLP:journals/tacl/JohnsonSLKWCTVW17}。假设训练时有英语到西班牙语 “<spanish> Hello”$\to$“Hola”和法语到德语“<german> Bonjour”$\to$“Hallo” 的双语句对,则在解码时候输入英语“<german> Hello”时就会得到解码结果“Hallo”。
%----------------------------------------------
......@@ -521,7 +519,7 @@
\subsection{无监督词典归纳}\label{unsupervised-dictionary-induction}
\parinterval {\small\bfnew{词典归纳}}\index{词典归纳}(Bilingual Dictionary Induction,BDI\index{Bilingual Dictionary Induction}),也叫{\small\bfnew{词典推断}},是实现语种间单词级别翻译的任务。在统计机器翻译中,词典归纳是一项核心的任务,它从双语平行语料中发掘互为翻译的单词,是翻译知识的主要来源\upcite{黄书剑0统计机器翻译中的词对齐研究}。在端到端神经机器翻译中,词典归纳通常被用到无监督机器翻译、多语言机器翻译等任务中。在神经机器翻译中,单词通过实数向量来表示,即词嵌入。所有单词分布在一个多维空间中,而且研究人员发现:词嵌入空间在各种语言中显示出类似的结构,这使得直接利用词嵌入来构建双语词典成为可能\upcite{DBLP:journals/corr/MikolovLS13}。其基本想法是先将来自不同语言的词嵌入投影到共享嵌入空间中,然后在这个共享空间中归纳出双语词典,原理如图\ref{fig:16-16}所示。较早的尝试是使用一个包含数千词对的种子词典作为锚点来学习从源语言到目标语词言嵌入空间的线性映射,将两个语言的单词投影到共享的嵌入空间之后,执行一些对齐算法即可得到双语词典\upcite{DBLP:journals/corr/MikolovLS13}。最近的研究表明,词典归纳可以在更弱的监督信号下完成,这些监督信号来自更小的种子词典\upcite{DBLP:conf/acl/VulicK16}、 相同的字符串\upcite{DBLP:conf/iclr/SmithTHH17},甚至仅仅是共享的数字\upcite{DBLP:conf/acl/ArtetxeLA17}
\parinterval {\small\bfnew{词典归纳}}\index{词典归纳}(Bilingual Dictionary Induction,BDI\index{Bilingual Dictionary Induction}),也叫{\small\bfnew{词典推断}},是实现语种间单词级别翻译的任务。在统计机器翻译中,词典归纳是一项核心的任务,它从双语平行语料中发掘互为翻译的单词,是翻译知识的主要来源\upcite{黄书剑0统计机器翻译中的词对齐研究}。在端到端神经机器翻译中,词典归纳通常被用到无监督机器翻译、多语言机器翻译等任务中。在神经机器翻译中,单词通过实数向量来表示,即词嵌入。所有单词分布在一个多维空间中,而且研究人员发现:词嵌入空间在各种语言中显示出类似的结构,这使得直接利用词嵌入来构建双语词典成为可能\upcite{DBLP:journals/corr/MikolovLS13}。其基本想法是先将来自不同语言的词嵌入投影到共享嵌入空间中,然后在这个共享空间中归纳出双语词典,原理如图\ref{fig:16-16}所示。较早的尝试是使用一个包含数千词对的种子词典作为锚点来学习从源语言到目标语词言嵌入空间的线性映射,将两个语言的单词投影到共享的嵌入空间之后,执行一些对齐算法即可得到双语词典\upcite{DBLP:journals/corr/MikolovLS13}。最近的研究表明,词典归纳可以在更弱的监督信号下完成,这些监督信号来自更小的种子词典\upcite{DBLP:conf/acl/VulicK16}、 相同的字符串\upcite{DBLP:conf/iclr/SmithTHH17},甚至仅仅是共享的数字\upcite{DBLP:conf/acl/ArtetxeLA17}
%----------------------------------------------
\begin{figure}[h]
\centering
......@@ -589,7 +587,7 @@
\label{eq:16-10}
\end{eqnarray}
\noindent 其中, $\operatorname{SVD}(\cdot)$表示奇异值分解,$\mathbi{Y}'$$\mathbi{X}'$中的单词来自$D$且行对齐。利用上式可以获得新的$\mathbi{W}$,通过$\mathbi{W}$可以归纳出新的$D$,如此迭代进行微调最后即可以得到收敛的$D$
\noindent 其中, $\rm{F}$表示矩阵的Frobenius范数,即矩阵元素绝对值的平方和再开方,$d$是embedding的维度,$\mathbb{R}$是实数,$O_d(\mathbb{R})$表示$d\times d$的实数空间,$\operatorname{SVD}(\cdot)$表示奇异值分解,$\mathbi{Y}'$$\mathbi{X}'$中的单词来自$D$且行对齐。利用上式可以获得新的$\mathbi{W}$,通过$\mathbi{W}$可以归纳出新的$D$,如此迭代进行微调最后即可以得到收敛的$D$
\parinterval 较早的无监督方法是基于GAN的方法\upcite{DBLP:conf/acl/ZhangLLS17,DBLP:conf/emnlp/ZhangLLS17,DBLP:conf/iclr/LampleCRDJ18},这是一个很自然的想法,利用生成器产生映射然后用判别器来区别两个空间。然而研究表明GAN缺乏稳定性,容易在低资源语言对上失败\upcite{hartmann2018empirical},因此有不少改进的工作,比如:利用{\small\bfnew{变分自编码器}}\index{变分自编码器}(Variational Autoencoders,VAEs)\index{Variational Autoencoders}来捕获更深层次的语义信息并结合对抗训练的方法\upcite{DBLP:conf/emnlp/DouZH18,DBLP:conf/naacl/MohiuddinJ19};通过改进最近邻点的度量函数来提升性能的方法\upcite{DBLP:conf/acl/HuangQC19,DBLP:conf/emnlp/JoulinBMJG18};利用多语言信号来提升性能的方法\upcite{DBLP:conf/emnlp/ChenC18,DBLP:conf/emnlp/TaitelbaumCG19,DBLP:journals/corr/abs-1811-01124,DBLP:conf/naacl/HeymanVVM19};也有一些工作舍弃GAN,通过直接优化空间距离来进行单词的匹配\upcite{DBLP:conf/emnlp/HoshenW18,DBLP:conf/emnlp/XuYOW18,DBLP:conf/emnlp/Alvarez-MelisJ18,DBLP:conf/emnlp/MukherjeeYH18}。此外,也有一些工作旨在分析或提升无监督词典归纳的健壮性,例如,通过大量实验来分析无监督词典归纳任务的局限性、难点以及挑战\upcite{DBLP:conf/acl/SogaardVR18,DBLP:conf/acl/OrmazabalALSA19,DBLP:conf/emnlp/VulicGRK19,DBLP:conf/emnlp/HartmannKS18};分析和对比目前各种无监督方法的性能\upcite{DBLP:conf/nips/HartmannKS19};通过实验分析目前所用的数据集存在的问题\upcite{DBLP:conf/emnlp/Kementchedjhieva19}
......@@ -613,7 +611,7 @@
\vspace{0.5em}
\end{itemize}
\parinterval 无监督方法的健壮性是一个很难解决的问题。对于词典推断这个任务来说,是否有必要无监督仍然值得商榷。因为其作为一个底层任务,不仅可以利用词嵌入,还可以利用单语、甚至是双语信息。此外,基于弱监督的方法代价也不是很大,只需要数千个词即可。有了监督信号的引导,健壮性问题就能得到一定的缓解。
\parinterval 无监督方法的健壮性是一个很难解决的问题。对于词典推断这个任务来说,是否有必要无监督仍然值得商榷。因为其作为一个底层任务,不仅可以利用词嵌入,还可以利用单语、甚至是双语信息。此外,基于弱监督的方法代价也不是很大,只需要数千个词即可。有了监督信号的引导,健壮性问题就能得到一定的缓解。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION 16.4.2
......@@ -630,7 +628,7 @@
\parinterval 回顾统计机器翻译中的短语表,它类似于一个词典,对一个源语言短语给出相应的短语翻译\upcite{DBLP:conf/ki/ZensON02}。只不过词典的基本单元是词,而短语表的基本单元是短语(或$n$-gram)。此外短语表还提供短语翻译的得分。既然短语表跟词典如此相似,那么很容易就可以把无监督词典归纳的方法移植到处理短语上,也就是把里面的词替换成短语,就可以无监督地得到短语表。
\parinterval\ref{unsupervised-dictionary-induction}节所述,无监督词典归纳的方法依赖于词的分布式表示,也就是词嵌入。因此当把无监督词典归纳拓展到短语上时,首先需要获得短语的分布式表示。比较简单的方法是把词换成短语,然后借助无监督词典归纳相同的算法得到短语的分布式表示。最后直接应用无监督词典归纳方法,得到源语言短语与目标语言短语之间的对应。
\parinterval\ref{unsupervised-dictionary-induction}节所述,无监督词典归纳的方法依赖于词的分布式表示,也就是词嵌入。因此当把无监督词典归纳拓展到短语上时,首先需要获得短语的分布式表示。比较简单的方法是把词换成短语,然后借助无监督词典归纳相同的算法得到短语的分布式表示。最后直接应用无监督词典归纳方法,得到源语言短语与目标语言短语之间的对应。
\parinterval 尽管已经得到了短语的翻译,短语表的另外一个重要的组成部分,也就是短语对的得分(概率)无法由词典归纳方法直接给出,而这些得分在统计机器翻译模型中非常重要。在无监督词典归纳中,在推断词典的时候会为一对源语言单词和目标语言单词打分(词嵌入之间的相似度),再根据打分来决定哪一个目标语言单词更有可能是当前源语言单词的翻译。在无监督短语归纳中,这样一个打分已经提供了对短语对质量的度量,因此经过适当的归一化处理后就可以得到短语对的得分:
......@@ -734,13 +732,13 @@ P(\mathbi{y}|\mathbi{x}) & = & \frac{\mathrm{cos}(\mathbi{x},\mathbi{y})/\tau}{\
\parinterval 无监督神经机器翻译的关键在于如何提供最开始的监督信号,从而启动后续的迭代流程。无监督词典归纳已经可以提供一些可靠的监督信号,那么如何在模型初始化中融入这些信息?既然神经机器翻译模型都使用词嵌入层作为输入,而无监督词典归纳总是先把两个语言各自的单语词嵌入映射到一个空间后才归纳双语词典,那么可以使用这些映射后的词嵌入来初始化模型的词嵌入层,然后在这个基础上训练模型,因为这些映射后的词嵌入天然就包含了大量的监督信号,比如,两个语言里意思相近的词对应的词嵌入会比其他词更靠近对方\upcite{DBLP:journals/ipm/FarhanTAJATT20}。 为了防止训练过程中模型参数的更新会破坏词嵌入当中的词对齐信息,通常初始化后会固定模型的词嵌入层不让其更新\upcite{DBLP:conf/emnlp/ArtetxeLA18}
\parinterval 进一步,无监督神经机器翻译能在提供更少监督信号的情况下启动,也就是可以去除无监督词典归纳这一步骤\upcite{DBLP:conf/nips/ConneauL19}。这时候模型的初始化直接使用共享词表的预训练模型的参数作为起始点。这个预训练模型直接使用前面提到的预训练方法(如MASS)进行训练,区别在于模型的大小如宽度和深度需要严格匹配翻译模型。此外,这个模型不仅仅只在一个语言的单语数据上进行训练,而是同时在两个语言的单语数据上进行训练,并且两个语言的词表进行共享。前面提到,在共享词表特别是共享子词词表的情况下,已经隐式地告诉模型源语言和目标语言里一样的(子)词互为翻译,相当于模型使用了少量的监督信号。在这基础上使用两个语言的单语数据进行预训练,通过模型共享进一步挖掘了语言之间共通的部分。因此,使用预训练模型进行初始化后,无监督神经机器翻译模型已经得到大量的监督信号,从而得以不断通过优化来提升模型性能。
\parinterval 进一步,无监督神经机器翻译能在提供更少监督信号的情况下启动,也就是可以去除无监督词典归纳这一步骤\upcite{DBLP:conf/nips/ConneauL19}。这时候模型的初始化直接使用共享词表的预训练模型的参数作为起始点。这个预训练模型直接使用前面提到的预训练方法(如MASS)进行训练,区别在于模型的结构需要严格匹配翻译模型。此外,这个模型不仅仅只在一个语言的单语数据上进行训练,而是同时在两个语言的单语数据上进行训练,并且两个语言的词表进行共享。前面提到,在共享词表特别是共享子词词表的情况下,已经隐式地告诉模型源语言和目标语言里一样的(子)词互为翻译,相当于模型使用了少量的监督信号。在这基础上使用两个语言的单语数据进行预训练,通过模型共享进一步挖掘了语言之间共通的部分。因此,使用预训练模型进行初始化后,无监督神经机器翻译模型已经得到大量的监督信号,从而得以不断通过优化来提升模型性能。
\noindent{\small\bfnew{2)语言模型的使用}}
\parinterval 无监督神经机器翻译的一个重要部分就是来自语言模型的目标函数。因为翻译模型本质上是在完成文本生成任务,所以只有文本生成类型的语言模型建模方法才可以应用到无监督神经机器翻译里。比如,经典的给定前文预测下一词就是一个典型的自回归生成任务(见{\chaptertwo}),因此可以运用到无监督神经机器翻译里。但是,目前在预训练里流行的BERT等模型是掩码语言模型\upcite{devlin2019bert},不能直接在无监督神经机器翻译里使用。
\parinterval 无监督神经机器翻译的一个重要部分就是来自语言模型的目标函数。因为翻译模型本质上是在完成文本生成任务,所以只有文本生成类型的语言模型建模方法才可以应用到无监督神经机器翻译里。比如,给定前文预测下一词就是一个典型的自回归生成任务(见{\chaptertwo}),因此可以运用到无监督神经机器翻译里。但是,目前在预训练里流行的BERT等模型是掩码语言模型\upcite{devlin2019bert},不能直接在无监督神经机器翻译里使用。
\parinterval 另外一个在无监督神经机器翻译中比较常见的语言模型目标函数则是降噪自编码器。它也是文本生成类型的语言模型建模方法。对于一个句子$\seq{x}$,首先使用一个噪声函数$\seq{x}^{'}=\mathrm{noise}(\seq{x})$ 来对$\seq{x}$注入噪声,产生一个质量较差的句子$\seq{x}^{'}$。然后,让模型学习如何从$\seq{x}^{'}$还原出$\seq{x}$。这样目标函数比预测下一词更贴近翻译任务,因为它是一个序列到序列的映射,并且输入、输出两个序列在语义上是等价的。这里之所以采用$\seq{x}^{'}$而不是$\seq{x}$自己来预测$\seq{x}$,是因为模型可以通过简单的复制输入作为输出来完成从$\seq{x}$预测$\seq{x}$的任务,并且在输入中注入噪声会让模型更加健壮,因此模型可以通过训练集数据学会如何利用句子中噪声以外的信息来忽略其中噪声并得到正确的输出。通常来说,噪声函数$\mathrm{noise}$有三种形式,如表\ref{tab:16-1}所示。
\parinterval 另外一个在无监督神经机器翻译中比较常见的语言模型目标函数则是降噪自编码器。它也是文本生成类型的语言模型建模方法。对于一个句子$\seq{x}$,首先使用一个噪声函数$\seq{x}^{'}=\mathrm{noise}(\seq{x})$ 来对$\seq{x}$注入噪声,产生一个质量较差的句子$\seq{x}^{'}$。然后,让模型学习如何从$\seq{x}^{'}$还原出$\seq{x}$。这样目标函数比预测下一词更贴近翻译任务,因为它是一个序列到序列的映射,并且输入、输出两个序列在语义上是等价的。这里之所以采用$\seq{x}^{'}$而不是$\seq{x}$自己来预测$\seq{x}$,是因为模型可以通过简单的复制输入作为输出来完成从$\seq{x}$预测$\seq{x}$的任务,并且在输入中注入噪声会让模型更加健壮,因此模型可以通过训练集数据学会如何利用句子中噪声以外的信息来屏蔽其中噪声并得到正确的输出。通常来说,噪声函数有三种形式,如表\ref{tab:16-1}所示。
%----------------------------------------------
\begin{table}[h]
\centering
......@@ -756,7 +754,7 @@ P(\mathbi{y}|\mathbi{x}) & = & \frac{\mathrm{cos}(\mathbi{x},\mathbi{y})/\tau}{\
\end{table}
%----------------------------------------------
\parinterval 实际当中三种形式的噪声函数都会被使用到,其中在交换方法中越相近的词越容易被交换,并且保证被交换的词的对数有限,而删除和空白方法里词的删除和替换概率通常都非常低,如$0.1$等。
\parinterval 实际当中三种形式的噪声函数都会被使用到,其中在交换方法中距离越相近的词越容易被交换,并且保证被交换的词的对数有限,而删除和空白方法里词的删除和替换概率通常都会设置的非常低,如$0.1$等。
%----------------------------------------------------------------------------------------
% NEW SECTION 16.5
......@@ -784,7 +782,7 @@ P(\mathbi{y}|\mathbi{x}) & = & \frac{\mathrm{cos}(\mathbi{x},\mathbi{y})/\tau}{\
\end{example}
%----------------------------------------------
\parinterval 在机器翻译任务中,像新闻等领域的双语数据相对容易获取,所以机器翻译在这些领域上表现较佳。然而,即使在富资源语种上,化学、医学等专业领域的双语数据依然十分有限。如果直接使用低资源领域的数据来训练机器翻译模型,由于数据稀缺问题,会导致模型的性能较差\upcite{DBLP:conf/iccv/SunSSG17}。而混合多个领域的数据进行训练,不同领域的数据量不平衡会导致数据较少的领域训练不充分,模型容易忽略低资源领域的知识,使得在低资源领域上的翻译结果差强人意\upcite{DBLP:conf/acl/DuhNST13}
\parinterval 在机器翻译任务中,像新闻等领域的双语数据相对容易获取,所以机器翻译在这些领域上表现较佳。然而,即使在富资源语种上,化学、医学等专业领域的双语数据依然十分有限。如果直接使用低资源领域的数据来训练机器翻译模型,由于数据稀缺问题,会导致模型的性能较差\upcite{DBLP:conf/iccv/SunSSG17}。而混合多个领域的数据进行训练,不同领域的数据量不平衡会导致数据较少的领域训练不充分,模型容易忽略低资源领域的知识,使得在低资源领域上的翻译结果不尽人意\upcite{DBLP:conf/acl/DuhNST13}
\parinterval {\small\bfnew{领域适应}}(Domain Adaptation)方法是利用其他领域(Source Domain\index{Source Domain}, 又称{\small\bfnew{源领域}}\index{源领域})的知识来改进特定领域(Target Domain\index{Target Domain}, 又称{\small\bfnew{目标领域}}\index{目标领域})翻译效果的方法,该方法可以有效地减少模型对目标领域数据的依赖。领域适应的研究方向主要有以下两点:
......@@ -801,9 +799,7 @@ P(\mathbi{y}|\mathbi{x}) & = & \frac{\mathrm{cos}(\mathbi{x},\mathbi{y})/\tau}{\
%----------------------------------------------------------------------------------------
\subsection{统计机器翻译中的领域适应}
\parinterval 在统计机器翻译时代,使用基于数据或模型的方法来提升机器翻译模型在特定领域上的翻译性能就已经备受关注,而这些技术和思想也为神经机器翻译中的领域适应技术提供了参考。
\parinterval 统计机器翻译中,领域适应可以分为基于混合模型的方法\upcite{DBLP:conf/iwslt/BisazzaRF11,niehues2012detailed,DBLP:conf/acl/SennrichSA13}、基于数据加权的方法\upcite{DBLP:conf/emnlp/MatsoukasRZ09,DBLP:conf/emnlp/FosterGK10,shah2012general}、基于数据选择的方法\upcite{DBLP:conf/lrec/EckVW04,DBLP:conf/acl/MooreL10,DBLP:conf/acl/DuhNST13,DBLP:conf/coling/HoangS14}和基于伪数据的方法\upcite{DBLP:conf/iwslt/Ueffing06,DBLP:conf/coling/WuWZ08,DBLP:conf/iwslt/Schwenk08,DBLP:conf/wmt/BertoldiF09},本节将对这四种方法进行简单介绍。
\parinterval 在统计机器翻译时代,使用基于数据或模型的方法来提升机器翻译模型在特定领域上的翻译性能就已经备受关注,而这些技术和思想也为神经机器翻译中的领域适应技术提供了参考。统计机器翻译中,领域适应可以分为基于混合模型的方法\upcite{DBLP:conf/iwslt/BisazzaRF11,niehues2012detailed,DBLP:conf/acl/SennrichSA13}、基于数据加权的方法\upcite{DBLP:conf/emnlp/MatsoukasRZ09,DBLP:conf/emnlp/FosterGK10,shah2012general}、基于数据选择的方法\upcite{DBLP:conf/lrec/EckVW04,DBLP:conf/acl/MooreL10,DBLP:conf/acl/DuhNST13,DBLP:conf/coling/HoangS14}和基于伪数据的方法\upcite{DBLP:conf/iwslt/Ueffing06,DBLP:conf/coling/WuWZ08,DBLP:conf/iwslt/Schwenk08,DBLP:conf/wmt/BertoldiF09},本节将对这四种方法进行简单介绍。
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
......@@ -893,16 +889,14 @@ P(\mathbi{y}|\mathbi{x}) & = & \frac{\mathrm{cos}(\mathbi{x},\mathbi{y})/\tau}{\
\parinterval 既然多领域数据的方法会对模型产生一些干扰,那么能否从其他领域数据中选择与目标领域比较相近的数据来提升数据量呢?与统计机器翻译相似,可以通过使用困惑度\upcite{DBLP:conf/emnlp/AxelrodHG11}或JS散度\upcite{DBLP:conf/icdm/Remus12}等方法计算源领域数据与目标领域数据的相似度,从而选择较为相似的数据以增加目标领域的数据量,提升模型能力。
\parinterval 一种相似度衡量方法是根据句子的词嵌入来计算\upcite{DBLP:conf/acl/WangFUS17},即把其他领域的双语数据根据与目标领域句子的词嵌入相似度进行排序,设定一个阈值来选择与目标领域比较相似的句子,将其与目标领域的数据混合用于模型训练。除了直接混合两部分数据,还可以修改数据的训练方式,从而更有效地利用训练数据,具体方法可以参考\ref{modeling-methods-in neural-machine-translation}节的内容。
\parinterval 数据选择充分地利用了其他领域的双语数据,使低资源问题得到了一定程度的缓解,模型可以学到更多目标领域相关的语言学知识,是目前比较常用的一个方法。
\parinterval 一种相似度衡量方法是根据句子的句嵌入来计算\upcite{DBLP:conf/acl/WangFUS17},即把其他领域的双语数据根据与目标领域句子的词嵌入相似度进行排序,设定一个阈值来选择与目标领域比较相似的句子,将其与目标领域的数据混合用于模型训练。除了直接混合两部分数据,还可以修改数据的训练方式,从而更有效地利用训练数据,具体方法可以参考\ref{modeling-methods-in neural-machine-translation}节的内容。数据选择充分地利用了其他领域的双语数据,使低资源问题得到了一定程度的缓解,模型可以学到更多目标领域相关的语言学知识,是目前比较常用的一个方法。
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
%----------------------------------------------------------------------------------------
\subsubsection{3. 基于单语数据的方法}
\parinterval 虽然目标领域的双语数据十分有限,但通常存在大量可用的单语数据。例如在网络小说翻译任务中,只有少量的双语数据可用,但是网络上有丰富的小说单语数据可以使用。本章\ref{effective-use-of-data}节中提到了很多在低资源场景下利用单语数据的模型方法,比如进行数据增强或利用语言模型等,这些方法均可以直接应用在领域适应任务上。有效地利用领域内的单语数据可以显著提高机器翻译性能。
\parinterval 虽然目标领域的双语数据十分有限,但通常存在大量可用的单语数据。例如在网络小说翻译任务中,只有少量的双语数据可用,但是网络上有丰富的小说单语数据可以使用。本章\ref{effective-use-of-data}节中提到了很多在低资源场景下利用单语数据的方法,比如进行数据增强或利用语言模型等,这些方法均可以直接应用在领域适应任务上。有效地利用领域内的单语数据可以显著提高机器翻译性能。
\parinterval 此外,如果目标领域的双语数据极度稀缺,甚至没有任何双语数据,这时可以使用\ref{unsupervised-dictionary-induction}节中提到的无监督词典归纳方法从目标领域中归纳出双语词典,然后将目标领域的目标端单语数据通过逐词翻译的方法生成伪数据\upcite{DBLP:conf/acl/HuXNC19},即对每个单词根据双语词典进行对应翻译,构建伪平行语料,用来训练目标领域的神经机器翻译模型。
......@@ -930,14 +924,14 @@ P(\mathbi{y}|\mathbi{x}) & = & \frac{\mathrm{cos}(\mathbi{x},\mathbi{y})/\tau}{\
%----------------------------------------------------------------------------------------
\subsubsection{1. 基于模型结构的方法}
\parinterval 在使用多领域数据时,混合多个相差较大的领域数据进行训练会使单个领域的翻译性能下降\upcite{DBLP:conf/eacl/NegriTFBF17}。 为了解决这一问题,一个比较典型的做法是在使用多领域数据训练时,如图\ref{fig:16-20}所示,在神经机器翻译模型的编码器中添加一个判别器,使用判别器预测输入句子的领域\upcite{DBLP:conf/wmt/BritzLP17}。具体的做法为:在编码器的顶部添加一个判别器网络,这个判别器使用源语言句子$x$的编码器表示$\mathbi{x}'$作为输入,预测句子所属的领域标签$d$。为了使预测领域标签$d$的正确概率$\funp{P(d|H)}$最大,模型在训练过程中最小化如下损失函数$\funp{L}_{\rm{disc}}$
\parinterval 在使用多领域数据时,混合多个相差较大的领域数据进行训练会使单个领域的翻译性能下降\upcite{DBLP:conf/eacl/NegriTFBF17}。 为了解决这一问题,一个比较典型的做法是在使用多领域数据训练时,如图\ref{fig:16-20}所示,在神经机器翻译模型的编码器中添加一个判别器,使用判别器预测输入句子的领域\upcite{DBLP:conf/wmt/BritzLP17}。具体的做法为:在编码器的顶部添加一个判别器网络,这个判别器使用源语言句子$x$的编码器表示作为输入,预测句子所属的领域标签$d$。为了使预测领域标签$d$的正确概率$\funp{P(d|\mathbi{H})}$最大,模型在训练过程中最小化如下损失函数$\funp{L}_{\rm{disc}}$
\begin{eqnarray}
\funp{L}_{\rm{disc}}& = &-\log\funp{P}(d|H)
\funp{L}_{\rm{disc}}& = &-\log\funp{P}(d|\mathbi{H})
\label{eq:16-12}
\end{eqnarray}
\noindent 其中,$H$是编码器的隐藏状态。同时,原始的翻译模型损失为$\funp{L}_{\rm{gen}}$
\noindent 其中,$\mathbi{H}$是编码器的隐藏状态。同时,原始的翻译模型损失为$\funp{L}_{\rm{gen}}$
\begin{eqnarray}
\funp{L}_{\rm{gen}}& = & -\log\funp{P}(y|x)\label{eq:16-13}
......
......@@ -11973,12 +11973,6 @@ author = {Zhuang Liu and
publisher = {Annual Meeting of the Association for Computational Linguistics},
year = {2009}
}
@inproceedings{dabre2019brief,
title={A Brief Survey of Multilingual Neural Machine Translation},
author={Dabre, Raj and Chu, Chenhui and Kunchukuttan, Anoop},
publisher={arXiv preprint arXiv:1905.05395},
year={2019}
}
@inproceedings{dabre2020survey,
title={A survey of multilingual neural machine translation},
author={Dabre, Raj and Chu, Chenhui and Kunchukuttan, Anoop},
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论