\parinterval 通常一个典型的{\small\bfnew{基于转换规则的机器翻译}}\index{基于转换规则的机器翻译}(Transfer Based Translation)\index{Transfer Based Translation}过程可以被视为``独立分析-独立生成-相关转换''的过程\cite{jurafsky2000speech}。如图\ref{fig:1-11}所示,完整的机器翻译过程可以分成六个步骤,其中每一个步骤都是通过相应的翻译规则来完成。比如,第一个步骤中需要构建源语词法分析规则,第二个步骤中需要构建源语句法分析规则,第三个和第四个步骤中需要构建转换规则,其中包括源语-目标语词汇和结构转换规则。
\parinterval 通常一个典型的{\small\bfnew{基于转换规则的机器翻译}}\index{基于转换规则的机器翻译}(Transfer Based Translation)\index{Transfer Based Translation}过程可以被视为``独立分析-独立生成-相关转换''的过程\cite{jurafsky2000speech}。如图\ref{fig:1-11}所示,完整的机器翻译过程可以分成六个步骤,其中每一个步骤都是通过相应的翻译规则来完成。比如,第一个步骤中需要构建源语词法分析规则,第二个步骤中需要构建源语句法分析规则,第三个和第四个步骤中需要构建转换规则,其中包括源语-目标语词汇和结构转换规则。
%----------------------------------------------
\begin{figure}[htp]
...
...
@@ -331,7 +331,7 @@
\subsection{基于中间语言的方法}
\parinterval 基于转换的方法可以通过词汇层、句法层和语义层完成从源语到目标语的转换过程,虽然采用了独立分析和独立生成两个子过程,但中间包含一个从源语到目标语的相关转换过程。这就会导致一个实际问题,假设需要实现$N$个语言之间互译的机器翻译系统,采用基于转换的方法,需要构建$N(N-1)$个不同的机器翻译系统,这个构建代价是非常高的。为了解决这个问题,一种有效的解决方案是使用{\small\bfnew{基于中间语言的机器翻译}}\index{基于中间语言的机器翻译}(Interlingua Based Translation)\index{Interlingua Based Translation}方法。
\parinterval 基于转换的方法可以通过词汇层、句法层和语义层完成从源语到目标语的转换过程,虽然采用了独立分析和独立生成两个子过程,但中间包含一个从源语到目标语的相关转换过程。这就会导致一个实际问题,假设需要实现$N$个语言之间互译的机器翻译系统,采用基于转换的方法,需要构建$N(N-1)$个不同的机器翻译系统,这个构建代价是非常高的。为了解决这个问题,一种有效的解决方案是使用{\small\bfnew{基于中间语言的机器翻译}}\index{基于中间语言的机器翻译}(Interlingua Based Translation)\index{Interlingua Based Translation}方法。
\parinterval 首先介绍一下全概率公式:{\small\bfnew{全概率公式}}\index{全概率公式}(Law of Total Probability)\index{Law of Total Probability}是概率论中重要的公式,它可以将一个复杂事件发生的概率分解成不同情况的小事件发生概率的和。这里先介绍一个概念——划分。集合$S$的一个划分事件为$\{B_1,...,B_n\}$是指它们满足$\bigcup_{i=1}^n B_i=S \textrm{且}B_iB_j=\varnothing , i,j=1,...,n,i\neq j$。此时事件$A$的全概率公式可以被描述为:
\parinterval 首先介绍一下全概率公式:{\small\bfnew{全概率公式}}\index{全概率公式}(Law Of Total Probability)\index{Law Of Total Probability}是概率论中重要的公式,它可以将一个复杂事件发生的概率分解成不同情况的小事件发生概率的和。这里先介绍一个概念——划分。集合$S$的一个划分事件为$\{B_1,...,B_n\}$是指它们满足$\bigcup_{i=1}^n B_i=S \textrm{且}B_iB_j=\varnothing , i,j=1,...,n,i\neq j$。此时事件$A$的全概率公式可以被描述为: