Commit a0cc50ed by 孟霞

更新 chapter14.tex

parent cbeea749
...@@ -105,7 +105,7 @@ ...@@ -105,7 +105,7 @@
\parinterval 机器翻译有两种常用的推断方式\ \dash \ 自左向右推断和自右向左推断。自左向右推断符合现实世界中人类的语言使用规律,因为在人为翻译一个句子时,人们总是习惯从句子开始的部分往后生成\footnote{有些语言中,文字是自右向左书写,这时自右向左推断更符合人类使用这种语言的习惯。}。不过,有时候人也会使用当前单词后面的译文信息。也就是说,翻译也需要“未来” 的文字信息。于是很容易想到使用自右向左的方法对译文进行生成。 \parinterval 机器翻译有两种常用的推断方式\ \dash \ 自左向右推断和自右向左推断。自左向右推断符合现实世界中人类的语言使用规律,因为在人为翻译一个句子时,人们总是习惯从句子开始的部分往后生成\footnote{有些语言中,文字是自右向左书写,这时自右向左推断更符合人类使用这种语言的习惯。}。不过,有时候人也会使用当前单词后面的译文信息。也就是说,翻译也需要“未来” 的文字信息。于是很容易想到使用自右向左的方法对译文进行生成。
\parinterval 以上两种推断方式在神经机器翻译中都有应用,对于源语言句子$\seq{x}=\{x_1,x_2,\dots,x_m\}$和目标语句子$\seq{y}=\{y_1,y_2,\dots,y_n\}$,用自左向右的方式可以将翻译概率$\funp{P}(\seq{y}\vert\seq{x})$描述为公式\eqref{eq:14-1} \parinterval 以上两种推断方式在神经机器翻译中都有应用,对于源语言句子$\seq{x}=\{x_1,x_2,\dots,x_m\}$和目标语句子$\seq{y}=\{y_1,y_2,\dots,y_n\}$,用自左向右的方式可以将翻译概率$\funp{P}(\seq{y}\vert\seq{x})$描述为公式\eqref{eq:14-1}
\begin{eqnarray} \begin{eqnarray}
\funp{P}(\seq{y}\vert\seq{x}) &=& \prod_{j=1}^n \funp{P}(y_j\vert\seq{y}_{<j},\seq{x}) \funp{P}(\seq{y}\vert\seq{x}) &=& \prod_{j=1}^n \funp{P}(y_j\vert\seq{y}_{<j},\seq{x})
...@@ -119,7 +119,7 @@ ...@@ -119,7 +119,7 @@
\end{eqnarray} \end{eqnarray}
\parinterval 其中,$\seq{y}_{<j}=\{y_1,y_2,\dots,y_{j-1}\}$$\seq{y}_{>j}=\{y_{j+1},y_{j+2},\dots,y_n\}$ \parinterval 其中,$\seq{y}_{<j}=\{y_1,y_2,\dots,y_{j-1}\}$$\seq{y}_{>j}=\{y_{j+1},y_{j+2},\dots,y_n\}$
\parinterval 可以看到,自左向右推断和自右向左推断本质上是一样的。{\chapterten} $\sim$ {\chaptertwelve}均使用了自左向右的推断方法。自右向左推断比较简单的实现方式是:在训练过程中直接将双语数据中的目标语句子进行反向,之后仍然使用原始的模型进行训练即可。在推断的时候,生成的目标语词串也需要进行反向得到最终的译文。有时候,使用自右向左的推断方式会取得更好的效果\upcite{DBLP:conf/wmt/SennrichHB16}。不过更多情况下需要同时使用词串左端(历史)和右端(未来)的信息。有多种思路可以融合左右两端信息: \parinterval 可以看到,自左向右推断和自右向左推断本质上是一样的。{\chapterten} $\sim$ {\chaptertwelve}均使用了自左向右的推断方法。自右向左推断比较简单的实现方式是:在训练过程中直接将双语数据中的目标语句子进行反向,之后仍然使用原始的模型进行训练即可。在推断的时候,生成的目标语词串也需要进行反向得到最终的译文。有时候,使用自右向左的推断方式会取得更好的效果\upcite{DBLP:conf/wmt/SennrichHB16}。不过更多情况下需要同时使用词串左端(历史)和右端(未来)的信息。有多种思路可以融合左右两端信息:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -589,7 +589,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -589,7 +589,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\parinterval 除了使用上一个步骤的输出,当前解码器的输入还使用了添加噪声的正确目标语句子,两种使用情况之间使用一个超参数控制\upcite{Lee2018DeterministicNN}。另外,对于目标语长度的预测,本文使用编码端的输出单独训练了一个独立的长度预测模块,这种方法也推广到了目前大多数模型上。 \parinterval 除了使用上一个步骤的输出,当前解码器的输入还使用了添加噪声的正确目标语句子,两种使用情况之间使用一个超参数控制\upcite{Lee2018DeterministicNN}。另外,对于目标语长度的预测,本文使用编码端的输出单独训练了一个独立的长度预测模块,这种方法也推广到了目前大多数模型上。
\parinterval 另一种方法借鉴了BERT的思想\upcite{devlin2019bert},提出了一种新的解码方法:Mask-Predict\upcite{Ghazvininejad2019MaskPredictPD} \parinterval 另一种方法借鉴了BERT的思想\upcite{devlin2019bert},提出了一种新的解码方法:Mask-Predict\upcite{Ghazvininejad2019MaskPredictPD}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论