\parinterval 除了领域差异,训练集偏差的另外一种常见表现形式是标签噪声。机器翻译的训练数据大多来源于网页爬取,这不可避免的会引入噪声,比如句子未对齐、多种语言单词混合、单词丢失等,相关研究表明神经机器翻译对于噪声数据很敏感,当噪声过多时就会使得模型的性能显著下降(On the impact of various types of noise on neural machine translation),因此无论是从模型鲁棒性还是训练效率出发,数据降噪都是很有意义的。事实上,数据降噪从统计机器翻译时代就已经有许多相关工作(Dealing with Input Noise in Statistical Machine Translation;Bilingual Data Cleaning for SMT using Graph-based Random Walk;Learning from Noisy Data in Statistical Machine Translation),2018年WMT也开放了关于平行语料过滤的任务,这说明数据降噪工作正在逐步引起人们的注意。
\parinterval 除了领域差异,训练集偏差的另外一种常见表现形式是标签噪声。机器翻译的训练数据大多来源于网页爬取,这不可避免的会引入噪声,比如句子未对齐、多种语言单词混合、单词丢失等,相关研究表明神经机器翻译对于噪声数据很敏感,当噪声过多时就会使得模型的性能显著下降(On the impact of various types of noise on neural machine translation),因此无论是从模型健壮性还是训练效率出发,数据降噪都是很有意义的。事实上,数据降噪从统计机器翻译时代就已经有许多相关工作(Dealing with Input Noise in Statistical Machine Translation;Bilingual Data Cleaning for SMT using Graph-based Random Walk;Learning from Noisy Data in Statistical Machine Translation),2018年WMT也开放了关于平行语料过滤的任务,这说明数据降噪工作正在逐步引起人们的注意。
\parinterval 由于含有噪声的翻译数据通常都具有较为明显的特征,因此可以用比如:句子长度比、词对齐率、最长连续未对齐序列长度等一些启发式的特征来进行综合评分(MT Detection in Web-Scraped Parallel Corpora;Parallel Corpus Refinement as an Outlier Detection Algorithm;Zipporah: a Fast and Scalable Data Cleaning System for NoisyWeb-Crawled Parallel Corpora);也可以将该问题转化为文本分类或跨语言文本蕴含任务来进行筛选(Detecting Cross-Lingual Semantic Divergence for Neural Machine Translation;Identifying Semantic Divergences in Parallel Text without Annotations);此外,从某种意义上来说,数据降噪其实也可以算是一种领域数据选择,因为它的目标是选择可信度高的样本,因此我们可以人工构建一个可信度高的小型数据集,然后利用该数据集和通用数据集之间的差异性进行选择(Denoising Neural Machine Translation Training with Trusted Data and Online Data Selection)。
\parinterval 早期的工作大多在关注过滤的方法,对于噪声数据中模型的鲁棒性训练和噪声样本的利用探讨较少。事实上,噪声是有强度的,有些噪声数据对于模型可能是有价值的,而且它们的价值可能会随着模型的状态而改变(Denoising Neural Machine Translation Training with Trusted Data and Online Data Selection)。一个例子如图\ref{fig:13-51}所示(画图的时候zh-gloss那行不要了,zh翻译为中文),
\parinterval 早期的工作大多在关注过滤的方法,对于噪声数据中模型的健壮性训练和噪声样本的利用探讨较少。事实上,噪声是有强度的,有些噪声数据对于模型可能是有价值的,而且它们的价值可能会随着模型的状态而改变(Denoising Neural Machine Translation Training with Trusted Data and Online Data Selection)。一个例子如图\ref{fig:13-51}所示(画图的时候zh-gloss那行不要了,zh翻译为汉语),
\parinterval 图中的中文句子中缺少了一部分翻译,但这两个句子都很流利,简单的基于长度或双语词典的方法可以很容易地对其进行过滤,但直观地看,这条训练数据对于训练NMT模型仍然有用,特别是在数据稀缺的情况下,因为中文句子和英文句子的前半部分仍然是翻译对。这表明了噪声数据的微妙之处,它不是一个简单的二元分类问题:一些训练样本可能部分有用,而它们的有用性也可能随着训练的进展而改变。因此简单的过滤并不一种很好的办法,一种合理的学习策略应该是既可以合理的利用这些数据,又不让其对模型产生负面影响。直觉上,这是一个动态的过程,当模型能力较弱时(比如在训练初期),这些数据就能对模型起到正面作用,反之亦然。受课程学习(Curriculum Learning,更详细内容见下节)、微调(fine-tune)等启发,研究学者们也提出了类似的学习策略,它的主要思想是:在训练过程中对批量数据的噪声水平进退火(anneal),使得模型在越来越干净的批量数据上进行训练(Denoising Neural Machine Translation Training with Trusted Data and Online Data Selection;Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation)。从宏观上看,整个训练过程其实是一个持续微调的过程,这和微调的思想基本一致。这种学习策略一方面充分利用了训练数据,一方面又避免了噪声数据对模型的负面影响,因此取得了不错的效果。
\parinterval 图中的汉语句子中缺少了一部分翻译,但这两个句子都很流利,简单的基于长度或双语词典的方法可以很容易地对其进行过滤,但直观地看,这条训练数据对于训练NMT模型仍然有用,特别是在数据稀缺的情况下,因为汉语句子和英语句子的前半部分仍然是翻译对。这表明了噪声数据的微妙之处,它不是一个简单的二元分类问题:一些训练样本可能部分有用,而它们的有用性也可能随着训练的进展而改变。因此简单的过滤并不一种很好的办法,一种合理的学习策略应该是既可以合理的利用这些数据,又不让其对模型产生负面影响。直觉上,这是一个动态的过程,当模型能力较弱时(比如在训练初期),这些数据就能对模型起到正面作用,反之亦然。受课程学习(Curriculum Learning,更详细内容见下节)、微调(fine-tune)等启发,研究学者们也提出了类似的学习策略,它的主要思想是:在训练过程中对批量数据的噪声水平进退火(anneal),使得模型在越来越干净的批量数据上进行训练(Denoising Neural Machine Translation Training with Trusted Data and Online Data Selection;Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation)。从宏观上看,整个训练过程其实是一个持续微调的过程,这和微调的思想基本一致。这种学习策略一方面充分利用了训练数据,一方面又避免了噪声数据对模型的负面影响,因此取得了不错的效果。
\parinterval 尽管预定义的方法简单有效,但存在的一个最大限制是,预定义的难度评估器和训练规划在训练过程中都是固定的,不够灵活,这可能会导致数据块的划分不合理,而且在一定程度上也忽略了当前模型的反馈,因此研究人员也提出了自动的方法,这种方法会根据模型的反馈来动态调整样本的难度或调度策略,模型的反馈可以是模型的不确定性(Uncertainty-Aware Curriculum Learning for Neural Machine Translation)、模型的能力(Competence-based Curriculum Learning for Neural Machine Translation;Dynamic Curriculum Learning for Low-Resource Neural Machine Translation)等,然后将模型的反馈和训练的轮次或者是数据的采样相挂钩,从而达到控制的目的,根据这种思想,还有直接利用强化学习的方法(Reinforced Curriculum Learning on Pre-trained Neural Machine Translation Models),这些方法在一定程度上使得整个训练过程和模型的状态相匹配,使得样本的选择过渡得更加平滑,因此在实践中取得了不错的效果。
\parinterval 从广义上说,大多数课程学习方法都是遵循由易到难的原则,然而在实践过程中人们逐渐赋予了课程学习更多的内涵,课程学习的含义早已超越了最原始的定义。一方面,课程学习可以与许多任务相结合,此时,评估准则并不一定总是样本的困难度,这取决于具体的任务,比如在多任务学习中(multi-task learning)(Curriculum learning of multiple tasks;Curriculum learning for multi-task classification of visual attributes),指的任务的难易程度或相关性;在领域适应任务中(Curriculum Learning for Domain Adaptation in Neural Machine Translation),指的是数据与领域的相似性;在噪声数据场景中,指的是样本的可信度(Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation)。另一方面,在一些任务或数据中,由易到难并不总是有效,有时困难优先反而会取得更好的效果(Curriculum learning with deep convolutional neural networks;An empirical exploration of curriculum learning for neural machine translation),实际上这和我们的直觉不太符合,一种合理的解释是课程学习更适合标签噪声、离群值较多或者是目标任务困难的场景,能提高模型的鲁棒性和收敛速度,而困难优先则更适合数据集干净的场景,能使随机梯度下降(stochastic gradient descent,SGD)更快更稳定(Active bias: Training more accurate neural networks by emphasizing high variance samples)。课程学习不断丰富的内涵使得它有了越来越广泛的应用。
\parinterval 从广义上说,大多数课程学习方法都是遵循由易到难的原则,然而在实践过程中人们逐渐赋予了课程学习更多的内涵,课程学习的含义早已超越了最原始的定义。一方面,课程学习可以与许多任务相结合,此时,评估准则并不一定总是样本的困难度,这取决于具体的任务,比如在多任务学习中(multi-task learning)(Curriculum learning of multiple tasks;Curriculum learning for multi-task classification of visual attributes),指的任务的难易程度或相关性;在领域适应任务中(Curriculum Learning for Domain Adaptation in Neural Machine Translation),指的是数据与领域的相似性;在噪声数据场景中,指的是样本的可信度(Dynamically Composing Domain-Data Selection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine Translation)。另一方面,在一些任务或数据中,由易到难并不总是有效,有时困难优先反而会取得更好的效果(Curriculum learning with deep convolutional neural networks;An empirical exploration of curriculum learning for neural machine translation),实际上这和我们的直觉不太符合,一种合理的解释是课程学习更适合标签噪声、离群值较多或者是目标任务困难的场景,能提高模型的健壮性和收敛速度,而困难优先则更适合数据集干净的场景,能使随机梯度下降(stochastic gradient descent,SGD)更快更稳定(Active bias: Training more accurate neural networks by emphasizing high variance samples)。课程学习不断丰富的内涵使得它有了越来越广泛的应用。