Commit a386c2c6 by zengxin

合并分支 'caorunzhe' 到 'zengxin'

Caorunzhe

查看合并请求 !1096
parents f0806975 092aff45
...@@ -20,7 +20,7 @@ ...@@ -20,7 +20,7 @@
\node [modelnode,anchor=north,minimum height=1.7em,minimum width=8em] (t4) at ([yshift=-1.5em]t3.south) {{ \small{目标语句法生成}}}; \node [modelnode,anchor=north,minimum height=1.7em,minimum width=8em] (t4) at ([yshift=-1.5em]t3.south) {{ \small{目标语句法生成}}};
\node [datanode,anchor=north,minimum height=1.7em,minimum width=8em] (t5) at ([yshift=-1.5em]t4.south) {{ \small{译文结构}}}; \node [datanode,anchor=north,minimum height=1.7em,minimum width=8em] (t5) at ([yshift=-1.5em]t4.south) {{ \small{译文结构}}};
\node [decodingnode,anchor=west,minimum height=1.7em,minimum width=13em,inner sep=3pt] (st1) at ([xshift=3.5em,yshift=0.85em]s5.east) {{ \small{源语-目标语词汇转换}}}; \node [decodingnode,anchor=west,minimum height=1.7em,minimum width=13em,inner sep=3pt] (st1) at ([xshift=3.5em,yshift=0.85em]s5.east) {{ \small{源语-目标语单词转换}}};
\node [decodingnode,anchor=north,minimum height=1.7em,minimum width=13em,inner sep=3pt] (st2) at ([yshift=0.05em]st1.south) {{ \small{源语-目标语结构转换}}}; \node [decodingnode,anchor=north,minimum height=1.7em,minimum width=13em,inner sep=3pt] (st2) at ([yshift=0.05em]st1.south) {{ \small{源语-目标语结构转换}}};
\draw [->,very thick] (s1.south) -- (s2.north); \draw [->,very thick] (s1.south) -- (s2.north);
......
...@@ -12,10 +12,11 @@ ...@@ -12,10 +12,11 @@
{\footnotesize {\footnotesize
\node [anchor=north west] (example1) at (0,0) {\textbf{1:} 源=什么\ 时候\ 开始}; \node [anchor=north west] (example1) at (0,0) {\textbf{1:} 源=什么\ 时候\ 开始};
\node [anchor=north west] (example1part2) at ([yshift=0.5em]example1.south west) {\hspace{1em} 译=\ When will it start}; \node [anchor=north west] (example1part2) at ([yshift=0.5em]example1.south west) {\hspace{1em} 译=\ When will it start};
\node [anchor=north west] (example2) at ([yshift=0.1em]example1part2.south west) {\textbf{2:} 源=我\ \ \ 感到\ 高兴}; \node [anchor=north west] (example2) at ([yshift=0.1em]example1part2.south west) {\textbf{2:} 源=我\ \ \ 感到\ 失望};
\node [anchor=north west] (example2part2) at ([yshift=0.5em]example2.south west) {\hspace{1em} 译=\ I am happy with him}; \node [anchor=north west] (example2part2) at ([yshift=0.5em]example2.south west) {\hspace{1em} 译=\ I am disappointed with him};
\node [anchor=north west] (example3) at ([yshift=0.1em]example2part2.south west) {\hspace{1em} ...}; \node [anchor=north west] (example3) at ([yshift=0.1em]example2part2.south west) {\hspace{1em} ...};
\node [anchor=south west] (examplebaselabel) at (example1.north west) {{\color{ublue} 资源1:翻译实例库}}; \node [anchor=south west] (examplebaselabel) at (example1.north west) {{\color{ublue} 资源1:翻译实例库}};
\node [anchor=north east,opacity=0] (empty) at ([yshift=-5em]example2part2.south east) {examplebaselab};
} }
} }
...@@ -40,7 +41,7 @@ ...@@ -40,7 +41,7 @@
\begin{pgfonlayer}{background} \begin{pgfonlayer}{background}
{ {
\node[rectangle,draw=ublue, thick,inner sep=0mm] [fit = (entry1) (entry2) (entry3) (entry4) (dictionarylabel)] {}; \node[rectangle,draw=ublue, thick,inner sep=0mm] [fit = (entry1) (entry2) (entry3) (entry4) (dictionarylabel) (empty)] {};
} }
\end{pgfonlayer} \end{pgfonlayer}
...@@ -49,20 +50,20 @@ ...@@ -49,20 +50,20 @@
\begin{scope}[xshift=2.3in] \begin{scope}[xshift=2.3in]
{\footnotesize {\footnotesize
\node [anchor=north west,inner sep=1mm] (w1) at (0,1.7em) {}; \node [anchor=north west,inner sep=1mm] (w1) at (0,1.7em) {};
\node [anchor=north west,inner sep=1mm] (w2) at ([xshift=0.3em]w1.north east) {}; \node [anchor=north west,inner sep=1mm] (w2) at ([xshift=1.05em]w1.north east) {};
\node [anchor=north west,inner sep=1mm] (w3) at ([xshift=0.3em]w2.north east) {}; \node [anchor=north west,inner sep=1mm] (w3) at ([xshift=1.05em]w2.north east) {};
\node [anchor=north west,inner sep=1mm] (w4) at ([xshift=0.3em]w3.north east) {感到}; \node [anchor=north west,inner sep=1mm] (w4) at ([xshift=1.05em]w3.north east) {感到};
\node [anchor=north west,inner sep=1mm] (w5) at ([xshift=0.3em]w4.north east) {满意}; \node [anchor=north west,inner sep=1mm] (w5) at ([xshift=1.05em]w4.north east) {满意};
} }
\end{scope} \end{scope}
\begin{scope}[xshift=2.3in,yshift=-0.2in] \begin{scope}[xshift=2.3in,yshift=-0.2in]
{\footnotesize {\footnotesize
\node [anchor=north west,inner sep=1mm] (c1) at (0,0) {}; \node [anchor=north west,inner sep=1mm] (c1) at (0,0) {};
\node [anchor=north west,inner sep=1mm] (c2) at ([xshift=0.3em]c1.north east) {}; \node [anchor=north west,inner sep=1mm] (c2) at ([xshift=1.05em]c1.north east) {};
\node [anchor=north west,inner sep=1mm] (c3) at ([xshift=0.3em]c2.north east) {}; \node [anchor=north west,inner sep=1mm] (c3) at ([xshift=1.05em]c2.north east) {};
\node [anchor=north west,inner sep=1mm] (c4) at ([xshift=0.3em]c3.north east) {感到}; \node [anchor=north west,inner sep=1mm] (c4) at ([xshift=1.05em]c3.north east) {感到};
\node [anchor=north west,inner sep=1mm] (c5) at ([xshift=0.3em]c4.north east) {高兴}; \node [anchor=north west,inner sep=1mm] (c5) at ([xshift=1.05em]c4.north east) {失望};
} }
\end{scope} \end{scope}
...@@ -70,7 +71,7 @@ ...@@ -70,7 +71,7 @@
{\footnotesize {\footnotesize
\node [anchor=west,inner sep=1mm] (e1) at (0,0) {I}; \node [anchor=west,inner sep=1mm] (e1) at (0,0) {I};
\node [anchor=west,inner sep=1mm] (e2) at ([xshift=0.3em]e1.east) {am}; \node [anchor=west,inner sep=1mm] (e2) at ([xshift=0.3em]e1.east) {am};
\node [anchor=west,inner sep=1mm] (e3) at ([xshift=0.3em]e2.east) {happy}; \node [anchor=west,inner sep=1mm] (e3) at ([xshift=0.3em]e2.east) {disappointed};
\node [anchor=west,inner sep=1mm] (e4) at ([xshift=0.3em]e3.east) {with}; \node [anchor=west,inner sep=1mm] (e4) at ([xshift=0.3em]e3.east) {with};
\node [anchor=west,inner sep=1mm] (e5) at ([xshift=0.3em]e4.east) {him}; \node [anchor=west,inner sep=1mm] (e5) at ([xshift=0.3em]e4.east) {him};
} }
...@@ -94,16 +95,16 @@ ...@@ -94,16 +95,16 @@
{ {
\draw[double,->,thick,ublue] (e3.south)--([yshift=-1.2em]e3.south) node[pos=0.5,right,xshift=0.2em,yshift=0.2em] (step1) {\color{red}{\tiny{用“你”替换“他”}}}; \draw[double,->,thick,ublue] (e3.south)--([yshift=-1.2em]e3.south) node[pos=0.5,right,xshift=0.2em,yshift=0.2em] (step1) {\color{red}{\tiny{用“你”替换“他”}}};
\draw[->,dotted,thick,red] ([xshift=-0.1em]entry2.east)..controls +(east:4) and +(west:4)..([yshift=-0.6em,xshift=-0.5em]e3.south) ; \draw[->,dotted,thick,red] ([xshift=0.2em]entry2.east)..controls +(east:4) and +(west:4)..([yshift=-0.6em,xshift=-0.5em]e3.south) ;
} }
\begin{scope}[xshift=2.3in,yshift=-0.9in] \begin{scope}[xshift=2.3in,yshift=-0.9in]
{\footnotesize {\footnotesize
\node [anchor=north west,inner sep=1mm] (c1) at (0,0) {}; \node [anchor=north west,inner sep=1mm] (c1) at (0,0) {};
\node [anchor=north west,inner sep=1mm] (c2) at ([xshift=0.3em]c1.north east) {}; \node [anchor=north west,inner sep=1mm] (c2) at ([xshift=1.05em]c1.north east) {};
\node [anchor=north west,inner sep=1mm] (c3) at ([xshift=0.3em]c2.north east) {\footnotesize{{\color{ublue}}}}; \node [anchor=north west,inner sep=1mm] (c3) at ([xshift=1.05em]c2.north east) {\footnotesize{{\color{ublue}}}};
\node [anchor=north west,inner sep=1mm] (c4) at ([xshift=0.3em]c3.north east) {感到}; \node [anchor=north west,inner sep=1mm] (c4) at ([xshift=1.05em]c3.north east) {感到};
\node [anchor=north west,inner sep=1mm] (c5) at ([xshift=0.3em]c4.north east) {高兴}; \node [anchor=north west,inner sep=1mm] (c5) at ([xshift=1.05em]c4.north east) {失望};
} }
\end{scope} \end{scope}
...@@ -111,7 +112,7 @@ ...@@ -111,7 +112,7 @@
{\footnotesize {\footnotesize
\node [anchor=west,inner sep=1mm] (e1) at (0,0) {I}; \node [anchor=west,inner sep=1mm] (e1) at (0,0) {I};
\node [anchor=west,inner sep=1mm] (e2) at ([xshift=0.3em]e1.east) {am}; \node [anchor=west,inner sep=1mm] (e2) at ([xshift=0.3em]e1.east) {am};
\node [anchor=west,inner sep=1mm] (e3) at ([xshift=0.3em]e2.east) {happy}; \node [anchor=west,inner sep=1mm] (e3) at ([xshift=0.3em]e2.east) {disappointed};
\node [anchor=west,inner sep=1mm] (e4) at ([xshift=0.3em]e3.east) {with}; \node [anchor=west,inner sep=1mm] (e4) at ([xshift=0.3em]e3.east) {with};
\node [anchor=west,inner sep=1mm] (e5) at ([xshift=0.3em,yshift=-0.2em]e4.east) {\textbf{{\color{ublue} you}}}; \node [anchor=west,inner sep=1mm] (e5) at ([xshift=0.3em,yshift=-0.2em]e4.east) {\textbf{{\color{ublue} you}}};
} }
...@@ -122,28 +123,28 @@ ...@@ -122,28 +123,28 @@
} }
{ {
\draw[double,->,thick,ublue] (e3.south)--([yshift=-1.2em]e3.south) node[pos=0.5,right,xshift=0.2em,yshift=0.2em] (step1) {\color{red}{\tiny{用“满意”替换“高兴}}}; \draw[double,->,thick,ublue] (e3.south)--([yshift=-1.2em]e3.south) node[pos=0.5,right,xshift=0.2em,yshift=0.2em] (step1) {\color{red}{\tiny{用“满意”替换“失望}}};
\draw[->,dotted,thick,red] ([xshift=-1.2em,yshift=-0.6em]entry3.north east)..controls +(east:2) and +(west:3)..([yshift=-0.6em,xshift=-0.5em]e3.south) ; \draw[->,dotted,thick,red] ([xshift=0.2em,yshift=-0em]entry3.east)..controls +(east:2) and +(west:3)..([yshift=-0.6em,xshift=-0.5em]e3.south) ;
} }
\begin{scope}[xshift=2.3in,yshift=-1.6in] \begin{scope}[xshift=2.3in,yshift=-1.6in]
{\footnotesize {\footnotesize
\node [anchor=north west,inner sep=1mm] (c1) at (0,0) {}; \node [anchor=north west,inner sep=1mm] (c1) at (0,0) {};
\node [anchor=north west,inner sep=1mm] (c2) at ([xshift=0.3em]c1.north east) {}; \node [anchor=north west,inner sep=1mm] (c2) at ([xshift=1.05em]c1.north east) {};
\node [anchor=north west,inner sep=1mm] (c3) at ([xshift=0.3em]c2.north east) {}; \node [anchor=north west,inner sep=1mm] (c3) at ([xshift=1.05em]c2.north east) {};
\node [anchor=north west,inner sep=1mm] (c4) at ([xshift=0.3em]c3.north east) {感到}; \node [anchor=north west,inner sep=1mm] (c4) at ([xshift=1.05em]c3.north east) {感到};
\node [anchor=north west,inner sep=1mm] (c5) at ([xshift=0.3em]c4.north east) {\footnotesize{{\color{ublue} 满意}}}; \node [anchor=north west,inner sep=1mm] (c5) at ([xshift=1.05em]c4.north east) {\footnotesize{{\color{ublue} 满意}}};
} }
\end{scope} \end{scope}
\begin{scope}[xshift=2.3in,yshift=-2.0in] \begin{scope}[xshift=2.3in,yshift=-2.0in]
{\footnotesize {\footnotesize
\node [anchor=west,inner sep=1mm] (e1) at (0,0) {I}; \node [anchor=west,inner sep=1mm] (e1) at (0,0) {I};
\node [anchor=west,inner sep=1mm] (e2) at ([xshift=0.3em]e1.east) {am}; \node [anchor=west,inner sep=1mm] (e2) at ([xshift=0.7em]e1.east) {am};
\node [anchor=west,inner sep=1mm] (e3) at ([xshift=0.3em]e2.east) {\textbf{{\color{ublue} satisfied}}}; \node [anchor=west,inner sep=1mm] (e3) at ([xshift=0.7em]e2.east) {\textbf{{\color{ublue} satisfied}}};
\node [anchor=west,inner sep=1mm] (e4) at ([xshift=0.3em]e3.east) {with}; \node [anchor=west,inner sep=1mm] (e4) at ([xshift=0.7em]e3.east) {with};
\node [anchor=west,inner sep=1mm] (e5) at ([xshift=0.3em,yshift=-0.2em]e4.east) {you}; \node [anchor=west,inner sep=1mm] (e5) at ([xshift=0.7em,yshift=-0.2em]e4.east) {you};
} }
\end{scope} \end{scope}
......
...@@ -46,7 +46,7 @@ ...@@ -46,7 +46,7 @@
\parinterval 一直以来,文字的翻译往往是由人完成。让计算机像人一样进行翻译似乎还是电影中的桥段,因为很难想象语言的多样性和复杂性可以用计算机语言进行描述。但是时至今日,人工智能技术的发展已经大大超越了人类传统的认知,用计算机进行自动翻译也不再是一种梦想,它已经深入到人们生活的很多方面,并发挥着重要作用。而这种由计算机进行自动翻译的过程也被称作{\small\bfnew{机器翻译}}\index{机器翻译}(Machine Translation)\index{Machine Translation}。类似地,自动翻译、智能翻译、多语言自动转换等概念也是指同样的事情。如果将今天的机器翻译和人工翻译进行对比,可以发现机器翻译系统所生成的译文还不够完美,甚至有时翻译质量非常差,但是它的生成速度快且成本低廉,更为重要的是机器翻译系统可以从大量数据中不断学习和进化。 \parinterval 一直以来,文字的翻译往往是由人完成。让计算机像人一样进行翻译似乎还是电影中的桥段,因为很难想象语言的多样性和复杂性可以用计算机语言进行描述。但是时至今日,人工智能技术的发展已经大大超越了人类传统的认知,用计算机进行自动翻译也不再是一种梦想,它已经深入到人们生活的很多方面,并发挥着重要作用。而这种由计算机进行自动翻译的过程也被称作{\small\bfnew{机器翻译}}\index{机器翻译}(Machine Translation)\index{Machine Translation}。类似地,自动翻译、智能翻译、多语言自动转换等概念也是指同样的事情。如果将今天的机器翻译和人工翻译进行对比,可以发现机器翻译系统所生成的译文还不够完美,甚至有时翻译质量非常差,但是它的生成速度快且成本低廉,更为重要的是机器翻译系统可以从大量数据中不断学习和进化。
\parinterval 人工翻译尽管精度很高,但是费时费力。当需要翻译大量的文本且精度要求不那么高时,比如海量数据的浏览型任务,机器翻译的优势就体现出来了。对于人工作业无法完成的事情,使用机器翻译可能只需花费几个小时甚至几分钟就能完成。这就类似于拿着锄头耕地种庄稼和使用现代化机器作业之间的区别。 \parinterval 人工翻译尽管精度很高,但是费时费力。当需要翻译大量的文本且精度要求不那么高时,比如海量数据的浏览型任务,机器翻译的优势就体现出来了。对于那些使用人工翻译无法完成的事情,使用机器翻译可能只需花费几个小时甚至几分钟就能完成。这就类似于拿着锄头耕地种庄稼和使用现代化机器作业之间的区别。
\parinterval 实现机器翻译往往需要多个学科知识的融合,如数学、语言学、计算机科学、心理学等等。而最终呈现给使用者的是一套软件系统\ \dash\ 机器翻译系统。通俗来讲,机器翻译系统就是一个可以在计算机上运行的软件工具,与人们使用的其他软件一样,只不过机器翻译系统是由“不可见的程序”组成。虽然这个系统非常复杂,但是呈现出来的形式却很简单,比如输入是待翻译的句子或文本,输出是译文句子或文本。 \parinterval 实现机器翻译往往需要多个学科知识的融合,如数学、语言学、计算机科学、心理学等等。而最终呈现给使用者的是一套软件系统\ \dash\ 机器翻译系统。通俗来讲,机器翻译系统就是一个可以在计算机上运行的软件工具,与人们使用的其他软件一样,只不过机器翻译系统是由“不可见的程序”组成。虽然这个系统非常复杂,但是呈现出来的形式却很简单,比如输入是待翻译的句子或文本,输出是译文句子或文本。
...@@ -71,7 +71,7 @@ ...@@ -71,7 +71,7 @@
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
\parinterval 构建一个强大的机器翻译系统需要“资源”和“系统”两方面共同作用。在资源方面,随着语料库语言学的发展,已经有大量的高质量的双语和单语数据(称为语料)被整理并且被电子化存储,因此可以说具备了研发机器翻译系统所需要的语料基础。特别是像英语、汉语等世界主流语种,相关语料资源已经非常丰富,这也大大加速了相关研究的进展。当然,对于一些稀缺资源语种或者特殊的领域,语料库中的语料仍然匮乏,但是这些并不影响机器翻译领域整体的发展速度。因此在现有语料库的基础上,很多研究者把精力集中在“系统”研发上。 \parinterval 构建一个强大的机器翻译系统需要“资源”和“系统”两方面共同作用。在资源方面,随着语料库语言学的发展,已经有大量的高质量的双语和单语数据(称为语料)被整理并且被数字化存储,因此可以说具备了研发机器翻译系统所需要的语料基础。特别是像英语、汉语等世界主流语种,相关语料资源已经非常丰富,这也大大加速了相关研究的进展。当然,对于一些稀缺资源语种或者特殊的领域,语料库中的语料仍然匮乏,但是这些并不影响机器翻译领域整体的发展速度。因此在现有语料库的基础上,很多研究者把精力集中在“系统”研发上。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SECTION % NEW SECTION
...@@ -125,7 +125,7 @@ ...@@ -125,7 +125,7 @@
\subsection{机器翻译的受挫} \subsection{机器翻译的受挫}
\parinterval 随着电子计算机的发展,研究者开始尝试使用计算机来进行自动翻译。1954年,美国乔治敦大学在IBM公司支持下,启动了第一次真正的机器翻译实验。翻译的目标是将几个简单的俄语句子翻译成为英语,翻译系统包含6条翻译规则和250词汇。这次翻译实验中测试了50个化学文本句子,取得了初步成功。在某种意义上来说,这个实验显示了采用基于词典和翻译规则的方法可以实现机器翻译过程。虽然只是取得了初步成功,但却引起了苏联、英国和日本研究机构的机器翻译研究热,大大推动了早期机器翻译的研究进展。 \parinterval 随着电子计算机的发展,研究者开始尝试使用计算机来进行自动翻译。1954年,美国乔治敦大学在IBM公司支持下,启动了第一次真正的机器翻译实验。翻译的目标是将几个简单的俄语句子翻译成为英语,翻译系统包含6条翻译规则和250个单词。这次翻译实验中测试了50个化学文本句子,取得了初步成功。在某种意义上来说,这个实验显示了采用基于词典和翻译规则的方法可以实现机器翻译过程。虽然只是取得了初步成功,但却引起了苏联、英国和日本研究机构的机器翻译研究热,大大推动了早期机器翻译的研究进展。
\parinterval 1957年,Noam Chomsky在\emph{Syntactic Structures}中描述了转换生成语法\upcite{chomsky1957syntactic},并使用数学方法来研究自然语言,建立了包括上下文有关语法、上下文无关语法等4种类型的语法。这些工作最终为今天计算机中广泛使用的“形式语言”奠定了基础。而他的思想也深深地影响了同时期的语言学和自然语言处理领域的学者。特别的是,早期基于规则的机器翻译中也大量使用了这些思想。 \parinterval 1957年,Noam Chomsky在\emph{Syntactic Structures}中描述了转换生成语法\upcite{chomsky1957syntactic},并使用数学方法来研究自然语言,建立了包括上下文有关语法、上下文无关语法等4种类型的语法。这些工作最终为今天计算机中广泛使用的“形式语言”奠定了基础。而他的思想也深深地影响了同时期的语言学和自然语言处理领域的学者。特别的是,早期基于规则的机器翻译中也大量使用了这些思想。
...@@ -152,7 +152,7 @@ ...@@ -152,7 +152,7 @@
\parinterval 事物的发展都是螺旋式上升的,机器翻译也是一样。早期基于规则的机器翻译方法需要人来书写规则,虽然对少部分句子具有较高的翻译精度,可是对翻译现象的覆盖度有限,而且对规则或者模板中的噪声非常敏感,系统健壮性差。 \parinterval 事物的发展都是螺旋式上升的,机器翻译也是一样。早期基于规则的机器翻译方法需要人来书写规则,虽然对少部分句子具有较高的翻译精度,可是对翻译现象的覆盖度有限,而且对规则或者模板中的噪声非常敏感,系统健壮性差。
\parinterval 上世纪70年代中后期,特别是80年代到90年代初,国家之间往来日益密切,而不同语言之间形成的交流障碍愈发严重,传统的人工作业方式已经远远不能满足需求。与此同时,语料库语言学的发展也为机器翻译提供了新的思路。一方面,随着传统纸质文字资料不断电子化,计算机可读的语料越来越多,这使得人们可以用计算机对语言规律进行统计分析。另一方面,随着可用数据越来越多,用数学模型描述这些数据中的规律并进行推理逐渐成为可能。这也衍生出一类数学建模方法\ \dash\ {\small\bfnew{数据驱动}}\index{数据驱动}(Data-driven)\index{Data-driven}的方法。同时这类方法也成为了随后出现的统计机器翻译的基础,比如,IBM研究人员提出的基于噪声信道模型的5种统计翻译模型\upcite{brown1990statistical,DBLP:journals/coling/BrownPPM94} \parinterval 上世纪70年代中后期,特别是80年代到90年代初,国家之间往来日益密切,而不同语言之间形成的交流障碍愈发严重,传统的人工作业方式已经远远不能满足需求。与此同时,语料库语言学的发展也为机器翻译提供了新的思路。一方面,随着传统纸质文字资料不断电子化,计算机可读的语料越来越多,这使得人们可以用计算机对语言规律进行统计分析。另一方面,随着可用数据越来越多,用数学模型描述这些数据中的规律并进行推理逐渐成为可能。这也衍生出一类数学建模方法\ \dash\ {\small\bfnew{数据驱动}}\index{数据驱动}(Data-driven)\index{Data-driven}的方法。同时这类方法也成为了随后出现的统计机器翻译的基础,比如,IBM研究人员提出的基于噪声信道模型的5种统计翻译模型就使用了这类方法\upcite{brown1990statistical,DBLP:journals/coling/BrownPPM94}
\parinterval 基于数据驱动的方法不依赖于人书写的规则,机器翻译的建模、训练和推断都可以自动地从数据中学习。这使得整个机器翻译的范式发生了翻天覆地的变化,比如,日本学者长尾真提出的基于实例的方法\upcite{nagao1984framework,DBLP:conf/coling/SatoN90}和统计机器翻译\upcite{brown1990statistical,DBLP:journals/coling/BrownPPM94}就是在此期间兴起的。此外,这样的方法使得机器翻译系统的开发代价大大降低。 \parinterval 基于数据驱动的方法不依赖于人书写的规则,机器翻译的建模、训练和推断都可以自动地从数据中学习。这使得整个机器翻译的范式发生了翻天覆地的变化,比如,日本学者长尾真提出的基于实例的方法\upcite{nagao1984framework,DBLP:conf/coling/SatoN90}和统计机器翻译\upcite{brown1990statistical,DBLP:journals/coling/BrownPPM94}就是在此期间兴起的。此外,这样的方法使得机器翻译系统的开发代价大大降低。
...@@ -174,11 +174,11 @@ ...@@ -174,11 +174,11 @@
\vspace{0.5em} \vspace{0.5em}
\item 第二,神经网络的连续空间模型有更强的表示能力。机器翻译中的一个基本问题是:如何表示一个句子?统计机器翻译把句子的生成过程看作是短语或者规则的推导,这本质上是一个离散空间上的符号系统。深度学习把传统的基于离散化的表示变成了连续空间的表示。比如,用实数空间的分布式表示代替了离散化的词语表示,而整个句子可以被描述为一个实数向量。这使得翻译问题可以在连续空间上描述,进而大大缓解了传统离散空间模型维度灾难等问题。更重要的是,连续空间模型可以用梯度下降等方法进行优化,具有很好的数学性质并且易于实现。 \item 第二,神经网络的连续空间模型有更强的表示能力。机器翻译中的一个基本问题是:如何表示一个句子?统计机器翻译把句子的生成过程看作是短语或者规则的推导,这本质上是一个离散空间上的符号系统。深度学习把传统的基于离散化的表示变成了连续空间的表示。比如,用实数空间的分布式表示代替了离散化的词语表示,而整个句子可以被描述为一个实数向量。这使得翻译问题可以在连续空间上描述,进而大大缓解了传统离散空间模型维度灾难等问题。更重要的是,连续空间模型可以用梯度下降等方法进行优化,具有很好的数学性质并且易于实现。
\vspace{0.5em} \vspace{0.5em}
\item 第三,深度网络学习算法的发展和GPU\index{GPU}(Graphics Processing Unit)\index{Graphics Processing Unit}等并行计算设备为训练神经网络提供了可能。早期的基于神经网络的方法一直没有在机器翻译甚至自然语言处理领域得到大规模应用,其中一个重要的原因是这类方法需要大量的浮点运算,但是以前计算机的计算能力无法达到这个要求。随着GPU等并行计算设备的进步,训练大规模神经网络也变为了可能。现在已经可以在几亿、几十亿,甚至上百亿句对上训练机器翻译系统,系统研发的周期越来越短,进展日新月异。 \item 第三,深度网络学习算法的发展和{\small\bfnew{图形处理单元}}(Graphics Processing Unit\index{Graphics Processing Unit},GPU)等并行计算设备为训练神经网络提供了可能。早期的基于神经网络的方法一直没有在机器翻译甚至自然语言处理领域得到大规模应用,其中一个重要的原因是这类方法需要大量的浮点运算,但是以前计算机的计算能力无法达到这个要求。随着GPU等并行计算设备的进步,训练大规模神经网络也变为了可能。现在已经可以在几亿、几十亿,甚至上百亿句对上训练机器翻译系统,系统研发的周期越来越短,进展日新月异。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
\parinterval 今天,神经机器翻译已经成为新的范式,与统计机器翻译一同推动了机器翻译技术与应用产品的发展。比如,从世界上著名的机器翻译比赛WMT和CCMT中就可以看出这个趋势。如图\ref{fig:1-5}所示,其中左图是WMT\ 19国际机器翻译比赛的参赛队伍的截图,这些参赛队伍基本上都在使用深度学习完成机器翻译的建模。而在WMT\ 19各个项目夺冠系统中(\ref{fig:1-5}右图),神经机器翻译也占据了主导地位。 \parinterval 今天,神经机器翻译已经成为新的范式,与统计机器翻译一同推动了机器翻译技术与应用产品的发展。比如,从世界上著名的机器翻译比赛WMT和CCMT中就可以看出这个趋势。如图\ref{fig:1-5}所示,其中左图是WMT\ 19国际机器翻译比赛的参赛队伍的截图,这些参赛队伍基本上都在使用深度学习完成机器翻译的建模。而在WMT\ 19各个项目夺冠系统中(\ref{fig:1-5}右图),神经机器翻译也占据了主导地位。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -186,7 +186,7 @@ ...@@ -186,7 +186,7 @@
\includegraphics[scale=0.3]{./Chapter1/Figures/figure-wmt-participation.jpg} \includegraphics[scale=0.3]{./Chapter1/Figures/figure-wmt-participation.jpg}
\includegraphics[scale=0.3]{./Chapter1/Figures/figure-wmt-bestresults.jpg} \includegraphics[scale=0.3]{./Chapter1/Figures/figure-wmt-bestresults.jpg}
\setlength{\belowcaptionskip}{-1.5em} \setlength{\belowcaptionskip}{-1.5em}
\caption{WMT\ 19国际机器翻译大赛(左:WMT\ 19参赛队伍;右:WMT\ 19各项目的最分数)} \caption{WMT\ 19国际机器翻译大赛(左:WMT\ 19参赛队伍;右:WMT\ 19各项目的最分数)}
\label{fig:1-5} \label{fig:1-5}
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
...@@ -229,7 +229,7 @@ ...@@ -229,7 +229,7 @@
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{自然语言翻译问题的复杂性极高}}语言是人类进化的最高成就之一,自然语言具有高度的概括性、灵活性、多样性,这些都很难用几个简单的模型和算法进行描述。因此,翻译问题的数学建模和计算机程序实现难度很大。虽然近几年AlphaGo等人工智能系统在围棋等领域取得了令人瞩目的成绩,但是,相比翻译来说,围棋等棋类任务仍然“简单”。正如不同人对同一句话的理解不尽相同,一个句子往往不存在绝对的标准译文,其潜在的译文几乎是不可穷尽的。甚至人类译员在翻译一个句子、一个单词的时候,都要考虑整个篇章的上下文语境。这些难点都不是传统棋类任务所具有的。 \item {\small\bfnew{自然语言翻译问题的复杂性极高}}。自然语言具有高度的概括性、灵活性、多样性,这些都很难用几个简单的模型和算法进行描述。因此,翻译问题的数学建模和计算机程序实现难度很大。虽然近几年AlphaGo等人工智能系统在围棋等领域取得了令人瞩目的成绩,但是,相比翻译来说,围棋等棋类任务仍然“简单”。正如不同人对同一句话的理解不尽相同,一个句子往往不存在绝对的标准译文,其潜在的译文几乎是不可穷尽的。甚至人类译员在翻译一个句子、一个单词的时候,都要考虑整个篇章的上下文语境。这些难点都不是传统棋类任务所具有的。
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{计算机的“理解”与人类的“理解”存在鸿沟}}。人类一直希望把自己翻译时所使用的知识描述出来,并用计算机程序进行实现,例如早期基于规则的机器翻译方法就源自这个思想。但是,经过实践发现,人和计算机在“理解”自然语言上存在着明显差异。首先,人类的语言能力是经过长时间在多种外部环境因素共同作用下形成的,这种能力很难用计算机准确地刻画。况且人类的语言知识本身就很难描述,更不用说让计算机来理解;其次,人和机器翻译系统理解语言的目的不一样。人理解和使用语言是为了进行生活和工作,而机器翻译系统更多的是为了对某些数学上定义的目标函数进行优化。也就是说,机器翻译系统关注的是翻译这个单一目标,而并不是像人一样进行复杂的活动;此外,人和计算机的运行方式有着本质区别。人类语言能力的生物学机理与机器翻译系统所使用的计算模型本质上是不同的,机器翻译系统使用的是其自身能够理解的“知识”,比如,统计学上的词语表示。这种“知识”并不需要人来理解,当然从系统开发的角度,计算机也并不需要理解人是如何思考的。 \item {\small\bfnew{计算机的“理解”与人类的“理解”存在鸿沟}}。人类一直希望把自己翻译时所使用的知识描述出来,并用计算机程序进行实现,例如早期基于规则的机器翻译方法就源自这个思想。但是,经过实践发现,人和计算机在“理解”自然语言上存在着明显差异。首先,人类的语言能力是经过长时间在多种外部环境因素共同作用下形成的,这种能力很难用计算机准确地刻画。况且人类的语言知识本身就很难描述,更不用说让计算机来理解;其次,人和机器翻译系统理解语言的目的不一样。人理解和使用语言是为了进行生活和工作,而机器翻译系统更多的是为了对某些数学上定义的目标函数进行优化。也就是说,机器翻译系统关注的是翻译这个单一目标,而并不是像人一样进行复杂的活动;此外,人和计算机的运行方式有着本质区别。人类语言能力的生物学机理与机器翻译系统所使用的计算模型本质上是不同的,机器翻译系统使用的是其自身能够理解的“知识”,比如,统计学上的词语表示。这种“知识”并不需要人来理解,当然从系统开发的角度,计算机也并不需要理解人是如何思考的。
\vspace{0.5em} \vspace{0.5em}
...@@ -246,7 +246,7 @@ ...@@ -246,7 +246,7 @@
\sectionnewpage \sectionnewpage
\section{基于规则的方法}\label{section-1.4} \section{基于规则的方法}\label{section-1.4}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\parinterval 机器翻译技术大体上可以分为三种方法,分别为基于规则的机器翻译、统计机器翻译以及神经机器翻译。第一代机器翻译技术是主要使用基于规则的机器翻译方法,其主要思想是通过形式文法定义的规则引入源语言和目标语中的语言学知识。此类方法在机器翻译技术诞生之初就被人所关注,特别是在上世纪70年代,以基于规则方法为代表的专家系统是人工智能中最具代表性的研究领域。甚至到了统计机器翻译时代,很多系统中也大量地使用了基于规则的翻译知识表达形式。 \parinterval 机器翻译技术大体上可以分为两种方法,分别为基于规则的机器翻译方法以及数据驱动的机器翻译方法。进一步,数据驱动的机器翻译方法又可以分为统计机器翻译方法以及神经机器翻译方法。第一代机器翻译技术是主要使用基于规则的机器翻译方法,其主要思想是通过形式文法定义的规则引入源语言和目标语言中的语言学知识。此类方法在机器翻译技术诞生之初就被人所关注,特别是在上世纪70年代,以基于规则方法为代表的专家系统是人工智能中最具代表性的研究领域。甚至到了统计机器翻译时代,很多系统中也大量地使用了基于规则的翻译知识表达形式。
\parinterval 早期,基于规则的机器翻译大多依赖人工定义及书写的规则。主要有两类方法\upcite{nirenburg1989knowledge,hutchins1986machine,zarechnak1979history}:一类是基于转换规则的机器翻译方法,简称转换法。另一类是基于中间语言的方法。它们都以词典和人工书写的规则库作为翻译知识,用一系列规则的组合完成翻译。 \parinterval 早期,基于规则的机器翻译大多依赖人工定义及书写的规则。主要有两类方法\upcite{nirenburg1989knowledge,hutchins1986machine,zarechnak1979history}:一类是基于转换规则的机器翻译方法,简称转换法。另一类是基于中间语言的方法。它们都以词典和人工书写的规则库作为翻译知识,用一系列规则的组合完成翻译。
...@@ -267,7 +267,7 @@ ...@@ -267,7 +267,7 @@
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval\ref{fig:1-8}展示了一个使用转换法进行翻译的实例。这里,利用一个简单的汉译英规则库完成对句子“我对你感到满意”的翻译。当翻译“我”时,从规则库中找到规则1,该规则表示遇到单词“我”就翻译为“I”;类似地,也可以从规则库中找到规则4,该规则表示翻译调序,即将单词“you”放到“be satisfied with”后面。这种通过规则表示单词之间的对应关系也为统计机器翻译方法提供了思路。如统计机器翻译中,基于短语的翻译模型使用短语对对原文进行替换,详细描述可以参考{\chapterseven} \parinterval\ref{fig:1-8}展示了一个使用转换法进行翻译的实例。这里,利用一个简单的汉译英规则库完成对句子“我对你感到满意”的翻译。当翻译“我”时,从规则库中找到规则1,该规则表示遇到单词“我”就翻译为“I”;类似地,也可以从规则库中找到规则4,该规则表示翻译调序,即将单词“you”放到“be satisfied with”后面。这种通过规则表示单词之间对应关系的方式,也为统计机器翻译方法提供了思路。如统计机器翻译中,基于短语的翻译模型使用短语对对原文进行替换,详细描述可以参考{\chapterseven}
\parinterval 在上述例子中可以发现,规则不仅仅可以翻译句子之间单词的对应,如规则1,还可以表示句法甚至语法之间的对应,如规则6。因此基于规则的方法可以分成多个层次,如图\ref{fig:1-9}所示。图中不同的层次表示采用不同的知识来书写规则,进而完成机器翻译过程。对于翻译问题,可以构建不同层次的基于规则的机器翻译系统。这里包括四个层次,分别为:词汇转换、句法转换、语义转换和中间语言层。其中,上层可以继承下层的翻译知识,比如说句法转换层会利用词汇转换层知识。早期基于规则的方法属于词汇转换层。 \parinterval 在上述例子中可以发现,规则不仅仅可以翻译句子之间单词的对应,如规则1,还可以表示句法甚至语法之间的对应,如规则6。因此基于规则的方法可以分成多个层次,如图\ref{fig:1-9}所示。图中不同的层次表示采用不同的知识来书写规则,进而完成机器翻译过程。对于翻译问题,可以构建不同层次的基于规则的机器翻译系统。这里包括四个层次,分别为:词汇转换、句法转换、语义转换和中间语言层。其中,上层可以继承下层的翻译知识,比如说句法转换层会利用词汇转换层知识。早期基于规则的方法属于词汇转换层。
...@@ -287,18 +287,18 @@ ...@@ -287,18 +287,18 @@
\subsection{转换法} \subsection{转换法}
\parinterval 通常一个典型的{\small\bfnew{基于转换规则的机器翻译}}\index{基于转换规则的机器翻译}(Transfer-based Translation)\index{Transfer-based Translation}的过程可以被视为“独立分析-相关转换-独立生成”的过程\upcite{parsing2009speech}。如图\ref{fig:1-10}所示,这些过程可以分成六个步骤,其中每一个步骤都是通过相应的翻译规则来完成。比如,第一个步骤中需要构建源语词法分析规则,第二个步骤中需要构建源语句法分析规则,第三个和第四个步骤中需要构建转换规则,其中包括源语言-目标语言词汇和结构转换规则等等。 \parinterval 通常一个典型的{\small\bfnew{基于转换规则的机器翻译}}\index{基于转换规则的机器翻译}(Transfer-based Translation)\index{Transfer-based Translation}的过程可以被视为“独立分析-相关转换-独立生成”的过程\upcite{parsing2009speech}。如图\ref{fig:1-10}所示,这些过程可以分成六个步骤,其中每一个步骤都是通过相应的翻译规则来完成。比如,第一个步骤中需要构建源语言词法分析规则,第二个步骤中需要构建源语言句法分析规则,第三个和第四个步骤中需要构建转换规则,其中包括源语言-目标语言单词和结构转换规则等等。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter1/Figures/figure-process-of-rule-based-translation} \input{./Chapter1/Figures/figure-process-of-rule-based-translation}
\caption{基于转换规则的机器翻译过程} \caption{基于转换规则的机器翻译过程}
\label{fig:1-10} \label{fig:1-10}
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 转换法的目标就是使用规则定义的词法和句法,将源语言句子分解成为一个蕴含语言学标志的结构。如一个汉语句子“她把一束花放在桌上。”,经过词法和句法分析之后可以被表示成如图\ref{fig:1-11} 所示的结构,这个结构就是图\ref{fig:1-10}中的源语言句子结构。这种使用语言学提取句子结构化表示,并使用某种规则匹配源语言结构和目标语言结构的方式也为{\chaptereight}将要介绍的基于语言学句法的模型提供了思路。 \parinterval 转换法的目标就是使用规则定义的词法和句法,将源语言句子分解成为一个蕴含语言学标志的结构。如一个汉语句子“她把一束花放在桌上。”,经过词法和句法分析之后可以被表示成如图\ref{fig:1-11} 所示的结构,这个结构就是图\ref{fig:1-10}中的源结构。这种使用语言学提取句子结构化表示,并使用某种规则匹配源语言结构和目标语言结构的方式也为{\chaptereight}将要介绍的基于语言学句法的模型提供了思路。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -309,7 +309,7 @@ ...@@ -309,7 +309,7 @@
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 在转换法中,翻译规则通常会分成两类:通用规则和个性规则。所谓通用的规则主要用于句法分析、语义分析、结构转换和句法生成等,是不具体依赖于某个源语言或者目标语言词汇而设计的翻译规则;个性规则通常以具体源语言词汇来做索引,比如图\ref{fig:1-8}中规则5就是针对主语是“I”的个性规则,它直接针对某个具体词汇进行分析和翻译。 \parinterval 在转换法中,翻译规则通常会分成两类:通用规则和个性规则。所谓通用的规则主要用于句法分析、语义分析、结构转换和句法生成等,是不具体依赖于某个源语言或者目标语言单词而设计的翻译规则;个性规则通常以具体源语言单词来做索引,比如图\ref{fig:1-8}中规则5就是针对主语是“I”的个性规则,它直接针对某个具体单词进行分析和翻译。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -317,9 +317,9 @@ ...@@ -317,9 +317,9 @@
\subsection{基于中间语言的方法} \subsection{基于中间语言的方法}
\parinterval 基于转换的方法可以通过词汇层、句法层和语义层完成从源语到目标语的转换过程,虽然采用了独立分析和独立生成两个子过程,但中间包含一个从源语到目标语的相关转换过程。这就会导致一个实际问题,假设需要实现$N$个语言之间互译的机器翻译系统,采用基于转换的方法,需要构建$N(N-1)$个不同的机器翻译系统,这个构建代价是非常高的。为了解决这个问题,一种有效的解决方案是使用{\small\bfnew{基于中间语言的机器翻译}}\index{基于中间语言的机器翻译}(Interlingua-based Translation)\index{Interlingua-based Translation}方法。 \parinterval 基于转换的方法可以通过词汇层、句法层和语义层完成从源语言到目标语言的转换过程,虽然采用了独立分析和独立生成两个子过程,但中间包含一个从源语言到目标语言的相关转换过程。这就会导致一个实际问题,假设需要实现$N$个语言之间互译的机器翻译系统,采用基于转换的方法,需要构建$N(N-1)$个不同的机器翻译系统,这个构建代价是非常高的。为了解决这个问题,一种有效的解决方案是使用{\small\bfnew{基于中间语言的机器翻译}}\index{基于中间语言的机器翻译}(Interlingua-based Translation)\index{Interlingua-based Translation}方法。
\parinterval 如图\ref{fig:1-12}所示,基于中间语言方法的最大特点就是采用了一个称之为“中间语言”的知识表示结构,将“中间语言”作为独立源语言分析和独立目标语生成的桥梁,真正实现独立分析和独立生成。并且在基于中间语言的方法中不涉及“相关转换”这个过程,这一点与基于转换的方法有很大区别。 \parinterval 如图\ref{fig:1-12}所示,基于中间语言方法的最大特点就是采用了一个称之为“中间语言”的知识表示结构,将“中间语言”作为独立源语言分析和独立目标语生成的桥梁,真正实现独立分析和独立生成。并且在基于中间语言的方法中不涉及“相关转换”这个过程,这一点与基于转换的方法有很大区别。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -332,7 +332,7 @@ ...@@ -332,7 +332,7 @@
\parinterval 从图\ref{fig:1-9}可以发现,中间语言(知识表示)处于最顶端,本质上是独立于源语言和目标语言的,这也是基于中间语言的方法可以将分析过程和生成过程分开的原因。 \parinterval 从图\ref{fig:1-9}可以发现,中间语言(知识表示)处于最顶端,本质上是独立于源语言和目标语言的,这也是基于中间语言的方法可以将分析过程和生成过程分开的原因。
\parinterval 虽然基于中间语言的方法有上述优点,但如何定义中间语言是一个关键问题。严格上说,所谓中间语言本身是一种知识表示结构,承载着源语言句子的分析结果,应该包含和体现尽可能多的源语言知识。如果中间语言的表示能力不强,会导致源语言句子信息丢失,这自然会影响目标语生成结果。 \parinterval 虽然基于中间语言的方法有上述优点,但如何定义中间语言是一个关键问题。严格上说,所谓中间语言本身是一种知识表示结构,承载着源语言句子的分析结果,应该包含和体现尽可能多的源语言知识。如果中间语言的表示能力不强,会导致源语言句子信息丢失,这自然会影响目标语生成结果。
\parinterval 在基于规则的机器翻译方法中,构建中间语言结构的知识表示方式有很多,比较常见的是语法树、语义网、逻辑结构表示或者多种结构的融合等。但不管哪种方法,实际上都无法充分地表达源语言句子所携带的信息。因此,在早期的基于规则的机器翻译研究中,基于中间语言的方法明显弱于基于转换的机器翻译方法。不过,近些年随着神经机器翻译等方法的兴起,使用统一的中间表示来刻画句子又受到了广泛关注。但是,神经机器翻译中的“中间表示”并不是规则系统中的中间语言,二者有着本质区别,这部分内容将会在第十章进行介绍。 \parinterval 在基于规则的机器翻译方法中,构建中间语言结构的知识表示方式有很多,比较常见的是语法树、语义网、逻辑结构表示或者多种结构的融合等。但不管哪种方法,实际上都无法充分地表达源语言句子所携带的信息。因此,在早期的基于规则的机器翻译研究中,基于中间语言的方法明显弱于基于转换的机器翻译方法。不过,近些年随着神经机器翻译等方法的兴起,使用统一的中间表示来刻画句子又受到了广泛关注。但是,神经机器翻译中的“中间表示”并不是规则系统中的中间语言,二者有着本质区别,这部分内容将会在第十章进行介绍。
...@@ -375,7 +375,7 @@ ...@@ -375,7 +375,7 @@
\parinterval 在实际使用上,\ref{section-1.4}章提到的基于规则的方法更多地被使用在受限翻译场景中,比如受限词汇集的翻译。针对基于规则的方法存在的问题,基于实例的机器翻译于上世纪80年代中期被提出\upcite{nagao1984framework}。该方法的基本思想是在双语句库中找到与待翻译句子相似的实例,之后对实例的译文进行修改,如对译文进行替换、增加、删除等一系列操作,从而得到最终译文。这个过程可以类比人类学习并运用语言的过程:人会先学习一些翻译实例或者模板,当遇到新的句子时,会用以前的实例和模板作对比,之后得到新的句子的翻译结果。这也是一种举一反三的思想。 \parinterval 在实际使用上,\ref{section-1.4}章提到的基于规则的方法更多地被使用在受限翻译场景中,比如受限词汇集的翻译。针对基于规则的方法存在的问题,基于实例的机器翻译于上世纪80年代中期被提出\upcite{nagao1984framework}。该方法的基本思想是在双语句库中找到与待翻译句子相似的实例,之后对实例的译文进行修改,如对译文进行替换、增加、删除等一系列操作,从而得到最终译文。这个过程可以类比人类学习并运用语言的过程:人会先学习一些翻译实例或者模板,当遇到新的句子时,会用以前的实例和模板作对比,之后得到新的句子的翻译结果。这也是一种举一反三的思想。
\parinterval\ref{fig:1-13}展示了一个基于实例的机器翻译过程。它利用简单的翻译实例库与翻译词典完成对句子“我对你感到满意”的翻译。首先,使用待翻译句子的源语言端在翻译实例库中进行比较,根据相似度大小找到相似的实例“我对他感到高兴”。然后,标记实例中不匹配的部分,即“你”和“他”,“满意”和“高兴”。再查询翻译词典得到词“你”和“满意”所对应的翻译结果“you”和“satisfied”,用这两个词分别替换实例中的“him”和“happy”,从而得到最终译文。 \parinterval\ref{fig:1-13}展示了一个基于实例的机器翻译过程。它利用简单的翻译实例库与翻译词典完成对句子“我对你感到满意”的翻译。首先,使用待翻译句子的源语言端在翻译实例库中进行比较,根据相似度大小找到相似的实例“我对他感到失望”。然后,标记实例中不匹配的部分,即“你”和“他”,“满意”和“失望”。再查询翻译词典得到词“你”和“满意”所对应的翻译结果“you”和“satisfied”,用这两个词分别替换实例中的“him”和“disappointed”,从而得到最终译文。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -406,7 +406,7 @@ ...@@ -406,7 +406,7 @@
\parinterval 统计机器翻译兴起于上世纪90年代\upcite{brown1990statistical,gale1993a},它利用统计模型从单/双语语料中自动学习翻译知识。具体来说,可以使用单语语料学习语言模型,使用双语平行语料学习翻译模型,并使用这些统计模型完成对翻译过程的建模。整个过程不需要人工编写规则,也不需要从实例中构建翻译模板。无论是词还是短语,甚至是句法结构,统计机器翻译系统都可以自动学习。人更多的是定义翻译所需的特征和基本翻译单元的形式,而翻译知识都保存在模型的参数中。 \parinterval 统计机器翻译兴起于上世纪90年代\upcite{brown1990statistical,gale1993a},它利用统计模型从单/双语语料中自动学习翻译知识。具体来说,可以使用单语语料学习语言模型,使用双语平行语料学习翻译模型,并使用这些统计模型完成对翻译过程的建模。整个过程不需要人工编写规则,也不需要从实例中构建翻译模板。无论是词还是短语,甚至是句法结构,统计机器翻译系统都可以自动学习。人更多的是定义翻译所需的特征和基本翻译单元的形式,而翻译知识都保存在模型的参数中。
\parinterval\ref{fig:1-14}展示了一个统计机器翻译系统运行的简单实例。整个系统需要两个模型:翻译模型和语言模型。其中,翻译模型从双语平行语料中学习翻译知识,得到短语表,短语表包含了各种词汇的翻译及其概率,这样可以度量源语言和目标语言片段之间互为翻译的可能性大小;语言模型从单语语料中学习目标语的词序列生成规律,来衡量目标语言译文的流畅性。最后,将这两种模型联合使用,通过翻译引擎来搜索尽可能多的翻译结果,并计算不同翻译结果的可能性大小,最后将概率最大的译文作为最终结果输出。这个过程并没有显性地使用人工翻译规则和模板,译文的生成仅仅依赖翻译模型和语言模型中的统计参数。 \parinterval\ref{fig:1-14}展示了一个统计机器翻译系统运行的简单实例。整个系统需要两个模型:翻译模型和语言模型。其中,翻译模型从双语平行语料中学习翻译知识,得到短语表,短语表包含了各种单词的翻译及其概率,这样可以度量源语言和目标语言片段之间互为翻译的可能性大小;语言模型从单语语料中学习目标语言的词序列生成规律,来衡量目标语言译文的流畅性。最后,将这两种模型联合使用,通过翻译引擎来搜索尽可能多的翻译结果,并计算不同翻译结果的可能性大小,最后将概率最大的译文作为最终结果输出。这个过程并没有显性地使用人工翻译规则和模板,译文的生成仅仅依赖翻译模型和语言模型中的统计参数。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -425,9 +425,9 @@ ...@@ -425,9 +425,9 @@
\subsection{神经机器翻译} \subsection{神经机器翻译}
\parinterval 随着机器学习技术的发展,基于深度学习的神经机器翻译逐渐兴起。自2014年开始,它在短短几年内已经在大部分任务上取得了明显的优势\upcite{NIPS2014_5346,bahdanau2014neural,vaswani2017attention,DBLP:journals/corr/GehringAGYD17,DBLP:journals/corr/LuongPM15}。在神经机器翻译中,词串被表示成实数向量,即分布式向量表示。这样,翻译过程并不是在离散化的单词和短语上进行,而是在实数向量空间上计算。因此与之前的技术相比,它在词序列表示的方式上有着本质的改变。通常,机器翻译可以被看作一个序列到另一个序列的转化。在神经机器翻译中,序列到序列的转化过程可以由{\small\bfnew{编码器-解码器}}\index{编码器-解码器}(Encoder-Decoder)\index{Encoder-Decoder}框架实现。其中,编码器把源语言序列进行编码,并提取源语言中的信息进行分布式表示,之后解码器再把这种信息转换为另一种语言的表达。 \parinterval 随着机器学习技术的发展,基于深度学习的神经机器翻译逐渐兴起。自2014年开始,它在短短几年内已经在大部分任务上取得了明显的优势\upcite{NIPS2014_5346,bahdanau2014neural,vaswani2017attention,DBLP:journals/corr/GehringAGYD17,DBLP:journals/corr/LuongPM15}。在神经机器翻译中,词串被表示成实数向量,即分布式向量表示。此时,翻译就不再是在离散化的单词和短语上进行,而是在实数向量空间上计算。因此与之前的技术相比,它在词序列表示的方式上有着本质的改变。通常,机器翻译可以被看作一个序列到另一个序列的转化。在神经机器翻译中,序列到序列的转化过程可以由{\small\bfnew{编码器-解码器}}\index{编码器-解码器}(Encoder-Decoder)\index{Encoder-Decoder}框架实现。其中,编码器把源语言序列进行编码,并提取源语言中的信息进行分布式表示,之后解码器再把这种信息转换为另一种语言的表达。
\parinterval\ref{fig:1-15}展示了一个神经机器翻译的实例。首先,通过编码器,源语言序列“我对你感到满意”经过多层神经网络编码生成一个向量表示,即图中的向量(0.2,-1,6,5,0.7,-2)。再将该向量作为输入送到解码器中,解码器把这个向量解码成目标语言序列。注意,目标语言序列的生成是逐词进行的(虽然图中展示的是解码器一次生成了整个序列,但是在具体实现时是由左至右逐个单词地生成目标语译文),产生某个词的时候依赖之前生成的目标语言的历史信息,直到产生句子结束符为止 \parinterval\ref{fig:1-15}展示了一个神经机器翻译的实例。首先,通过编码器,源语言序列“我对你感到满意”经过多层神经网络编码生成一个向量表示,即图中的向量(0.2,-1,6,5,0.7,-2)。再将该向量作为输入送到解码器中,解码器把这个向量解码成目标语言序列。注意,目标语言序列的生成是逐词进行的(虽然图中展示的是解码器一次生成了整个序列,但是在具体实现时是由左至右逐个单词地生成目标语言译文),即在生成目标序列中的某个词时,该词的生成依赖之前生成的单词
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -441,7 +441,7 @@ ...@@ -441,7 +441,7 @@
\parinterval 与统计机器翻译相比,神经机器翻译的优势体现在其不需要特征工程,所有信息由神经网络自动从原始输入中提取。而且,相比于统计机器翻译中所使用的离散化的表示。神经机器翻译中词和句子的分布式连续空间表示可以为建模提供更为丰富的信息,同时可以使用相对成熟的基于梯度的方法优化模型。此外,神经网络的存储需求较小,天然适合小设备上的应用。当然,神经机器翻译也存在问题: \parinterval 与统计机器翻译相比,神经机器翻译的优势体现在其不需要特征工程,所有信息由神经网络自动从原始输入中提取。而且,相比于统计机器翻译中所使用的离散化的表示。神经机器翻译中词和句子的分布式连续空间表示可以为建模提供更为丰富的信息,同时可以使用相对成熟的基于梯度的方法优化模型。此外,神经网络的存储需求较小,天然适合小设备上的应用。当然,神经机器翻译也存在问题:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item 虽然脱离了特征工程,但神经网络的结构需要人工设计,即使设计好结构,系统的调优、超参数的设置等仍然依赖大量的实验。 \item 虽然脱离了特征工程,但神经网络的结构需要人工设计,即使设计好结构,系统的调优、{\small\bfnew{超参数}}\index{超参数}(Hyperparameter)\index{Hyperparameter}的设置等仍然依赖大量的实验。
\vspace{0.5em} \vspace{0.5em}
\item 神经机器翻译现在缺乏可解释性,其过程和人的认知差异很大,通过人的先验知识干预的程度差。 \item 神经机器翻译现在缺乏可解释性,其过程和人的认知差异很大,通过人的先验知识干预的程度差。
\vspace{0.5em} \vspace{0.5em}
...@@ -461,9 +461,9 @@ ...@@ -461,9 +461,9 @@
\vspace{0.5em} \vspace{0.5em}
\item 规则系统需要人工书写规则并维护,人工代价较高。统计和神经网络方法仅需要设计特征或者神经网络结构,对人工依赖较少(语言相关的)。 \item 规则系统需要人工书写规则并维护,人工代价较高。统计和神经网络方法仅需要设计特征或者神经网络结构,对人工依赖较少(语言相关的)。
\vspace{0.5em} \vspace{0.5em}
\item 基于实例、统计和神经网络的方法都需要依赖语料库(数据),其中统计和神经网络方法具有一定的抗噪能力,因此也更适合大规模数据情况下的机器翻译系统研发。 \item 基于实例、统计和神经网络的方法都需要依赖语料库(数据),其中统计和神经网络方法具有一定的抗噪声能力,因此也更适合具有大规模数据的机器翻译系统的研发。
\vspace{0.5em} \vspace{0.5em}
\item 基于规则和基于实例的方法在受限场景下有较好的精度,但是在开放领域的翻译上统计和神经网络方法更具优势。 \item 基于规则和基于实例的方法在受限领域下有较好的精度,但是在通用领域的翻译上统计和神经网络方法更具优势。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
\node [neuronnode] (neuron_y') at (2.4 * \nodespace,-1.5 * \neuronsep) {\scriptsize{$x_{i}^{l+1}$}}; \node [neuronnode] (neuron_y') at (2.4 * \nodespace,-1.5 * \neuronsep) {\scriptsize{$x_{i}^{l+1}$}};
\node [anchor=north,align=left,font=\scriptsize] (standard) at ([xshift=2em,yshift=-3em]neuron_z.south) {使用Dropout前的\\一层神经网络}; \node [anchor=north,align=left,font=\scriptsize] (standard) at ([xshift=2em,yshift=-3em]neuron_z.south) {使用Dropout前的\\一层神经网络};
\node [] (standard) at ([xshift=-1em]neuron_z.west) {\scriptsize{$\mathbi{w}_{i}^{l}$}}; \node [] (standard) at ([xshift=-1em]neuron_z.west) {\scriptsize{$w_{i}^{l}$}};
\node [] (standard) at ([xshift=0.6em,yshift=0.3em]neuron_z.east) {\scriptsize{$f$}}; \node [] (standard) at ([xshift=0.6em,yshift=0.3em]neuron_z.east) {\scriptsize{$f$}};
\draw [->,line width=0.3mm] (neuron_b.east) -- (neuron_z.130); \draw [->,line width=0.3mm] (neuron_b.east) -- (neuron_z.130);
...@@ -41,7 +41,7 @@ ...@@ -41,7 +41,7 @@
\node [neuronnode] (drop_neuron_r1) at (4.4*\nodespace,-2.5*\neuronsep) {\scriptsize{$r_{1}^{l}$}}; \node [neuronnode] (drop_neuron_r1) at (4.4*\nodespace,-2.5*\neuronsep) {\scriptsize{$r_{1}^{l}$}};
\node [anchor=north,align=left,font=\scriptsize] (standard) at ([xshift=2em,yshift=-3em]drop_neuron_z.south) {使用Dropout后的\\一层神经网络}; \node [anchor=north,align=left,font=\scriptsize] (standard) at ([xshift=2em,yshift=-3em]drop_neuron_z.south) {使用Dropout后的\\一层神经网络};
\node [] (standard) at ([xshift=-1em]drop_neuron_z.west) {\scriptsize{$\mathbi{w}_{i}^{l}$}}; \node [] (standard) at ([xshift=-1em]drop_neuron_z.west) {\scriptsize{$w_{i}^{l}$}};
\node [] (standard) at ([xshift=0.6em,yshift=0.3em]drop_neuron_z.east) {\scriptsize{$f$}}; \node [] (standard) at ([xshift=0.6em,yshift=0.3em]drop_neuron_z.east) {\scriptsize{$f$}};
%structure %structure
\draw [->,line width=0.3mm] (drop_neuron_b.east) -- (drop_neuron_z.130); \draw [->,line width=0.3mm] (drop_neuron_b.east) -- (drop_neuron_z.130);
...@@ -64,7 +64,7 @@ ...@@ -64,7 +64,7 @@
\node [anchor=north west,inner sep = 2pt] (line3) at (line2.south west) {$x_{i}^{l+1}=f\left(z_{i}^{l+1}\right)$}; \node [anchor=north west,inner sep = 2pt] (line3) at (line2.south west) {$x_{i}^{l+1}=f\left(z_{i}^{l+1}\right)$};
\node [anchor=north west,inner sep = 2pt] (line4) at (line3.south west) {应用Dropout:}; \node [anchor=north west,inner sep = 2pt] (line4) at (line3.south west) {应用Dropout:};
\node [anchor=north west,inner sep = 2pt] (line5) at (line4.south west) {$r_{i}^{l} \sim$ Bernoulli $(1-p)$}; \node [anchor=north west,inner sep = 2pt] (line5) at (line4.south west) {$r_{i}^{l} \sim$ Bernoulli $(1-p)$};
\node [anchor=north west,inner sep = 2pt] (line6) at (line5.south west) {$\tilde{\mathbi{x}}=\mathbi{r} * \mathbi{x}$}; \node [anchor=north west,inner sep = 2pt] (line6) at (line5.south west) {$\tilde{\mathbi{x}}=\mathbi{r} \mathbi{x}$};
\node [anchor=north west,inner sep = 2pt] (line7) at (line6.south west) {$z_{i}^{l+1}=\mathbi{w}^{l} \widetilde{\mathbi{x}}^{l} + b^{l}$}; \node [anchor=north west,inner sep = 2pt] (line7) at (line6.south west) {$z_{i}^{l+1}=\mathbi{w}^{l} \widetilde{\mathbi{x}}^{l} + b^{l}$};
\node [anchor=north west,inner sep = 2pt] (line8) at (line7.south west) {$x_{i}^{l+1}=f\left(z_{i}^{l+1}\right)$}; \node [anchor=north west,inner sep = 2pt] (line8) at (line7.south west) {$x_{i}^{l+1}=f\left(z_{i}^{l+1}\right)$};
......
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
}; };
\node[font=\footnotesize,anchor=north] (l1) at ([xshift=0em,yshift=-1em]top.south) {(a) 符号合并表}; \node[font=\footnotesize,anchor=north] (l1) at ([xshift=0em,yshift=-1em]top.south) {(a) 符号合并表};
\node[font=\scriptsize,anchor=west] (n1) at ([xshift=-4.5em,yshift=-6em]top.west) {l\ o\ w\ e\ r\ $<$e$>$}; \node[font=\scriptsize,anchor=west] (n1) at ([xshift=-3em,yshift=-6em]top.west) {l\ o\ w\ e\ r\ $<$e$>$};
\node[font=\scriptsize,anchor=west] (n2) at ([xshift=2.6em]n1.east) {l\ o\ w\ e\ {\red r$<$e$>$}}; \node[font=\scriptsize,anchor=west] (n2) at ([xshift=2.6em]n1.east) {l\ o\ w\ e\ {\red r$<$e$>$}};
\node[font=\scriptsize,anchor=west] (n3) at ([xshift=2.6em]n2.east) {{\red lo}\ w\ e\ r$<$e$>$}; \node[font=\scriptsize,anchor=west] (n3) at ([xshift=2.6em]n2.east) {{\red lo}\ w\ e\ r$<$e$>$};
\node[font=\scriptsize,anchor=west] (n4) at ([xshift=2.6em]n3.east) {{\red low}\ e\ r$<$e$>$}; \node[font=\scriptsize,anchor=west] (n4) at ([xshift=2.6em]n3.east) {{\red low}\ e\ r$<$e$>$};
...@@ -24,7 +24,7 @@ ...@@ -24,7 +24,7 @@
\node[font=\scriptsize,anchor=north east] (s1) at ([yshift=0.1em]n1.north west) {样例1:}; \node[font=\scriptsize,anchor=north east] (s1) at ([yshift=0.1em]n1.north west) {样例1:};
\node[font=\scriptsize,anchor=north east] (s1) at ([yshift=0.1em]t1.north west) {样例2:}; \node[font=\scriptsize,anchor=north east] (s1) at ([yshift=0.1em]t1.north west) {样例2:};
\node[font=\footnotesize,anchor=north] (l2) at ([xshift=2em,yshift=-1em]t3.south) {(b) 合并样例}; \node[font=\footnotesize,anchor=north] (l2) at ([xshift=0.5em,yshift=-1em]t3.south) {(b) 合并样例};
\draw[->,thick](n1.east) -- (n2.west); \draw[->,thick](n1.east) -- (n2.west);
\draw[->,thick](n2.east) -- (n3.west); \draw[->,thick](n2.east) -- (n3.west);
......
...@@ -153,7 +153,7 @@ ...@@ -153,7 +153,7 @@
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{BPE-Dropout}}\upcite{provilkov2020bpe}。在训练时,按照一定概率$p$随机丢弃一些可行的合并操作,从而产生不同的子词切分结果。而在推断阶段,将$p$设置为0,等同于标准的BPE。总的来说,上述方法相当于在子词的粒度上对输入的序列进行扰动,进而达到增加训练健壮性的目的。 \item {\small\bfnew{BPE-Dropout}}\upcite{provilkov2020bpe}。在训练时,按照一定概率$p$随机丢弃一些可行的合并操作,从而产生不同的子词切分结果。而在推断阶段,将$p$设置为0,等同于标准的BPE。总的来说,上述方法相当于在子词的粒度上对输入的序列进行扰动,进而达到增加训练健壮性的目的。
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{动态规划编码}}\index{动态规划编码}(Dynamic Programming Encoding,DPE\index{Dynamic Programming Encoding,DPE}\upcite{he2020dynamic}。引入了混合字符-子词的切分方式,将句子的子词切分看作一种隐含变量。机器翻译解码端的输入是基于字符表示的目标语言序列,推断时将每个时间步的输出映射到预先设定好的子词词表之上,得到当前最可能的子词结果。 \item {\small\bfnew{动态规划编码}}\index{动态规划编码}(Dynamic Programming Encoding,DPE\index{Dynamic Programming Encoding}\upcite{he2020dynamic}。引入了混合字符-子词的切分方式,将句子的子词切分看作一种隐含变量。机器翻译解码端的输入是基于字符表示的目标语言序列,推断时将每个时间步的输出映射到预先设定好的子词词表之上,得到当前最可能的子词结果。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -164,7 +164,7 @@ ...@@ -164,7 +164,7 @@
\sectionnewpage \sectionnewpage
\section{正则化}\label{subsection-13.2} \section{正则化}\label{subsection-13.2}
\parinterval 正则化是机器学习中的经典技术,通常用于缓解过拟合问题。正则化的概念源自线性代数和代数几何。在实践中,它更多的是指对{\small\bfnew{反问题}}\index{反问题}(The Inverse Problem)\index{Inverse Problem}的一种求解方式。假设输入$x$和输出$y$之间存在一种映射$f$ \parinterval 正则化是机器学习中的经典技术,通常用于缓解过拟合问题。正则化的概念源自线性代数和代数几何。在实践中,它更多的是指对{\small\bfnew{反问题}}\index{反问题}(The Inverse Problem)\index{The Inverse Problem}的一种求解方式。假设输入$x$和输出$y$之间存在一种映射$f$
\begin{eqnarray} \begin{eqnarray}
y &=& f(x) y &=& f(x)
\label{eq:13-1} \label{eq:13-1}
...@@ -235,7 +235,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -235,7 +235,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\subsection{标签平滑} \subsection{标签平滑}
\parinterval 神经机器翻译在每个目标语言位置$j$会输出一个分布$\hat{\mathbi{y}}_j$,这个分布描述了每个目标语言单词出现的可能性。在训练时,每个目标语言位置上的答案是一个单词,也就对应了One-hot 分布${\mathbi{y}}_j$,它仅仅在正确答案那一维为1,其它维均为0。模型训练可以被看作是一个调整模型参数让$\hat{\mathbi{y}}_j$逼近${\mathbi{y}}_j$的过程。但是,${\mathbi{y}}_j$的每一个维度是一个非0即1的目标,这样也就无法考虑类别之间的相关性。具体来说,除非模型在答案那一维输出1,否则都会得到惩罚。即使模型把一部分概率分配给与答案相近的单词(比如同义词),这个相近的单词仍被视为完全错误的预测。 \parinterval 神经机器翻译在每个目标语言位置$j$会输出一个分布$\hat{\mathbi{y}}_j$,这个分布描述了每个目标语言单词出现的可能性。在训练时,每个目标语言位置上的答案是一个单词,也就对应了One-hot分布${\mathbi{y}}_j$,它仅仅在正确答案那一维为1,其它维均为0。模型训练可以被看作是一个调整模型参数让$\hat{\mathbi{y}}_j$逼近${\mathbi{y}}_j$的过程。但是,${\mathbi{y}}_j$的每一个维度是一个非0即1的目标,这样也就无法考虑类别之间的相关性。具体来说,除非模型在答案那一维输出1,否则都会得到惩罚。即使模型把一部分概率分配给与答案相近的单词(比如同义词),这个相近的单词仍被视为完全错误的预测。
\parinterval 标签平滑的思想很简单\upcite{Szegedy_2016_CVPR}:答案所对应的单词不应该“独享”所有的概率,其它单词应该有机会作为答案。这个观点与{\chaptertwo}中语言模型的平滑非常类似。在复杂模型的参数估计中,往往需要给未见或者低频事件分配一些概率,以保证模型具有更好的泛化能力。具体实现时,标签平滑使用了一个额外的分布$\mathbi{q}$,它是在词汇表$V$ 上的一个均匀分布,即$\mathbi{q}_k=\frac{1}{|V|}$,其中$\mathbi{q}_k$表示分布的第$k$维。然后,标准答案的分布被重新定义为${\mathbi{y}}_j$$\mathbi{q}$的线性插值: \parinterval 标签平滑的思想很简单\upcite{Szegedy_2016_CVPR}:答案所对应的单词不应该“独享”所有的概率,其它单词应该有机会作为答案。这个观点与{\chaptertwo}中语言模型的平滑非常类似。在复杂模型的参数估计中,往往需要给未见或者低频事件分配一些概率,以保证模型具有更好的泛化能力。具体实现时,标签平滑使用了一个额外的分布$\mathbi{q}$,它是在词汇表$V$ 上的一个均匀分布,即$\mathbi{q}_k=\frac{1}{|V|}$,其中$\mathbi{q}_k$表示分布的第$k$维。然后,标准答案的分布被重新定义为${\mathbi{y}}_j$$\mathbi{q}$的线性插值:
\begin{eqnarray} \begin{eqnarray}
...@@ -432,7 +432,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -432,7 +432,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\subsection{极大似然估计的问题}\label{subsec-13.3.1} \subsection{极大似然估计的问题}\label{subsec-13.3.1}
\parinterval 极大似然估计已成为机器翻译乃至整个自然语言处理领域中使用最广泛的训练用目标函数。但是,使用极大似然估存在{\small\bfnew{曝光偏置}}\index{曝光偏置}(Exposure Bias\index{Exposure Bias})问题和训练目标函数与任务评价指标不一致问题,具体体现在如下两个方面。 \parinterval 极大似然估计已成为机器翻译乃至整个自然语言处理领域中使用最广泛的训练用目标函数。但是,使用极大似然估存在{\small\bfnew{曝光偏置}}\index{曝光偏置}(Exposure Bias\index{Exposure Bias})问题和训练目标函数与任务评价指标不一致问题,具体体现在如下两个方面。
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -448,7 +448,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -448,7 +448,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\item {\small\bfnew{训练目标函数与任务评价指标不一致问题}}在训练数据上使用极大似然估计,而在新数据上进行推断的时候,通常使用BLEU等外部评价指标来评价模型的性能。在机器翻译任务中,这个问题的一种体现是,训练数据上更低的困惑度不一定能带来BLEU的提升。更加理想的情况是,模型应该直接最大化性能评价指标,而不是训练集数据上的似然函数\upcite{DBLP:conf/acl/ShenCHHWSL16}。但是很多模型性能评价指标不可微分,这使得研究人员无法直接利用基于梯度的方法来优化这些指标。 \item {\small\bfnew{训练目标函数与任务评价指标不一致问题}}通常,在训练过程中,模型采用极大似然估计对训练数据进行学习,而在推断过程中,通常使用BLEU等外部评价指标来评价模型的性能。在机器翻译任务中,这个问题的一种体现是,训练数据上更低的困惑度不一定能带来BLEU的提升。更加理想的情况是,模型应该直接使性能评价指标最大化,而不是训练集数据上的似然函数\upcite{DBLP:conf/acl/ShenCHHWSL16}。但是很多模型性能评价指标不可微分,这使得研究人员无法直接利用基于梯度的方法来优化这些指标。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -477,7 +477,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -477,7 +477,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\parinterval$\epsilon_i=1$时,模型的训练与原始的训练策略完全相同,而当$\epsilon_i=0$时,模型的训练则与推断时使用的策略完全一样。在这里使用到了一种{\small\bfnew{课程学习}}\index{课程学习}(Curriculum Learning\index{curriculum learning}策略\upcite{DBLP:conf/coling/XuHJFWHJXZ20},该策略认为学习应该循序渐进,从一种状态逐渐过渡到另一种状态。在训练开始时,由于模型训练不充分,因此如果使用模型预测结果作为输入,会导致收敛速度非常慢。因此,在模型训练的前期,通常会选择使用标准答案$\{{y}_{1},...,{y}_{j-1}\}$。在模型训练的后期,应该更倾向于使用自模型本身的预测$\{\hat{{y}}_{1},...,\hat{{y}}_{j-1}\}$。关于课程学习的内容在\ref{sec:curriculum-learning}节还会有详细介绍。 \parinterval$\epsilon_i=1$时,模型的训练与原始的训练策略完全相同,而当$\epsilon_i=0$时,模型的训练则与推断时使用的策略完全一样。在这里使用到了一种{\small\bfnew{课程学习}}\index{课程学习}(Curriculum Learning\index{Curriculum learning}策略\upcite{DBLP:conf/coling/XuHJFWHJXZ20},该策略认为学习应该循序渐进,从一种状态逐渐过渡到另一种状态。在训练开始时,由于模型训练不充分,因此如果使用模型预测结果作为输入,会导致收敛速度非常慢。因此,在模型训练的前期,通常会选择使用标准答案$\{{y}_{1},...,{y}_{j-1}\}$。在模型训练的后期,应该更倾向于使用自模型本身的预测$\{\hat{{y}}_{1},...,\hat{{y}}_{j-1}\}$。关于课程学习的内容在\ref{sec:curriculum-learning}节还会有详细介绍。
\parinterval 在使用调度策略时,需要调整关于训练批次$i$的函数来降低$\epsilon_i$,与梯度下降方法中降低学习率的方式相似。调度策略可以采用如下几种方式: \parinterval 在使用调度策略时,需要调整关于训练批次$i$的函数来降低$\epsilon_i$,与梯度下降方法中降低学习率的方式相似。调度策略可以采用如下几种方式:
...@@ -499,7 +499,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -499,7 +499,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\parinterval 调度采样解决曝光偏置的方法是,把模型前$j-1$步的预测结果作为输入,来预测第$j$步的输出。但是,如果模型预测的结果中有错误,再使用错误的结果预测未来的序列也会产生问题。解决这个问题就需要知道模型预测的好与坏,并在训练中有效的使用它们。如果生成好的结果,那么可以使用它进行模型训练,否则就不使用。生成对抗网络就是这样一种技术,它引入了一个额外的模型(判别器)来对原有模型(生成器)的生成结果进行评价,并根据评价结果同时训练两个模型。 \parinterval 调度采样解决曝光偏置的方法是,把模型前$j-1$步的预测结果作为输入,来预测第$j$步的输出。但是,如果模型预测的结果中有错误,再使用错误的结果预测未来的序列也会产生问题。解决这个问题就需要知道模型预测的好与坏,并在训练中有效的使用它们。如果生成好的结果,那么可以使用它进行模型训练,否则就不使用。生成对抗网络就是这样一种技术,它引入了一个额外的模型(判别器)来对原有模型(生成器)的生成结果进行评价,并根据评价结果同时训练两个模型。
\parinterval\ref{sec:adversarial-examples}小节已经提到了生成对抗网络,这里稍微进行一些展开。 在机器翻译中,基于对抗神经网络的架构被命名为{\small\bfnew{对抗神经机器翻译}}\index{对抗神经机器翻译}(Adversarial-NMT\index{Adversarial-NMT}\upcite{DBLP:conf/acml/WuXTZQLL18}。这里,令$(\seq{x},\seq{y})$表示一个训练样本,令$\hat{\seq{y}}$ 表示神经机器翻译系统对源语言句子$\seq{x}$ 的翻译结果。此时,对抗神经机器翻译的总体框架可以表示为图\ref{fig:13-10},其中。绿色部分表示神经机器翻译模型$G$,该模型将源语言句子$\seq{x}$翻译为目标语言句子$\hat{\seq{y}}$。红色部分是对抗网络$D$,它的作用是判断目标语言句子是否是源语言句子$\seq{x}$ 的真实翻译。$G$$D$相互对抗,用$G$生成的翻译结果$\hat{\seq{y}}$来训练$D$,并生成奖励信号,再使用奖励信号通过策略梯度训练$G$ \parinterval\ref{sec:adversarial-examples}小节已经提到了生成对抗网络,这里稍微进行一些展开。 在机器翻译中,基于对抗神经网络的架构被命名为{\small\bfnew{对抗神经机器翻译}}\index{对抗神经机器翻译}(Adversarial-NMT\index{Adversarial-NMT}\upcite{DBLP:conf/acml/WuXTZQLL18}。这里,令$(\seq{x},\seq{y})$表示一个训练样本,令$\hat{\seq{y}}$ 表示神经机器翻译系统对源语言句子$\seq{x}$ 的翻译结果。此时,对抗神经机器翻译的总体框架可以表示为图\ref{fig:13-10},其中。绿色部分表示神经机器翻译模型$G$,该模型将源语言句子$\seq{x}$翻译为目标语言句子$\hat{\seq{y}}$。红色部分是对抗网络$D$,它的作用是判断目标语言句子是否是源语言句子$\seq{x}$ 的真实翻译。$G$$D$相互对抗,用$G$生成的翻译结果$\hat{\seq{y}}$来训练$D$,并生成奖励信号,再使用奖励信号通过策略梯度训练$G$
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -576,7 +576,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -576,7 +576,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\label{eq:13-16} \label{eq:13-16}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$\funp{r}_j(a;\hat{{y}}_{1 \ldots j-1},\seq{y})$$j$时刻做出行动$a$获得的奖励,$\funp{r}_i(\hat{{y}}_i;\hat{{y}}_{1 \ldots j-1}a\hat{{y}}_{j+1 \ldots i},\seq{y})$是在$j$时刻的行动为$a$的前提下,$i$时刻的做出行动$\hat{{y}}_i$获得的奖励,$\hat{y}_{j+1 \ldots J} \sim \funp{p}(\cdot|\hat{y}_{1 \ldots j-1} a,\seq{x})$表示序列$\hat{y}_{j+1 \ldots J}$是根据$\funp{p}(\cdot|\hat{y}_{1 \ldots j-1} a,\seq{x})$得到的采样结果,概率函数$\funp{p}$中的$\cdot$表示序列$\hat{y}_{j+1 \ldots J}$服从的随机变量,$\seq{x}$是源语言句子,$\seq{y}$是正确译文,$\hat{{y}}_{1 \ldots j-1}$是策略$\funp{p}$产生的译文的前$j-1$个词,$J$是生成译文的长度。特别的,对于公式\ref{eq:13-16}$\hat{{y}}_{j+1 \ldots i}$来说,如果$i<j+1$,则$\hat{{y}}_{j+1 \ldots i}$不存在,对于源语句子$x$,最优策略$\hat{p}$可以被定义为: \noindent 其中,$\funp{r}_j(a;\hat{{y}}_{1 \ldots j-1},\seq{y})$$j$时刻做出行动$a$获得的奖励,$\funp{r}_i(\hat{{y}}_i;\hat{{y}}_{1 \ldots j-1}a\hat{{y}}_{j+1 \ldots i},\seq{y})$是在$j$时刻的行动为$a$的前提下,$i$时刻的做出行动$\hat{{y}}_i$获得的奖励,$\hat{y}_{j+1 \ldots J} \sim \funp{p}(\cdot|\hat{y}_{1 \ldots j-1} a,\seq{x})$表示序列$\hat{y}_{j+1 \ldots J}$是根据$\funp{p}(\cdot|\hat{y}_{1 \ldots j-1} a,\seq{x})$得到的采样结果,概率函数$\funp{p}$中的$\cdot$表示序列$\hat{y}_{j+1 \ldots J}$服从的随机变量,$\seq{x}$是源语言句子,$\seq{y}$是正确译文,$\hat{{y}}_{1 \ldots j-1}$是策略$\funp{p}$产生的译文的前$j-1$个词,$J$是生成译文的长度。特别的,对于公式\ref{eq:13-16}$\hat{{y}}_{j+1 \ldots i}$来说,如果$i<j+1$,则$\hat{{y}}_{j+1 \ldots i}$不存在,对于源语句子$x$,最优策略$\hat{p}$可以被定义为:
\begin{eqnarray} \begin{eqnarray}
\hat{p} & = & \argmax_{\funp{p}}\mathbb{E}_{\hat{\seq{y}} \sim \funp{p}(\hat{\seq{y}} | \seq{x})}\sum_{j=1}^J\sum_{a \in A}\funp{p}(a|\hat{{y}}_{1 \ldots j},\seq{x})\funp{Q}(a;\hat{{y}}_{1 \ldots j},\seq{y}) \hat{p} & = & \argmax_{\funp{p}}\mathbb{E}_{\hat{\seq{y}} \sim \funp{p}(\hat{\seq{y}} | \seq{x})}\sum_{j=1}^J\sum_{a \in A}\funp{p}(a|\hat{{y}}_{1 \ldots j},\seq{x})\funp{Q}(a;\hat{{y}}_{1 \ldots j},\seq{y})
\label{eq:13-17} \label{eq:13-17}
...@@ -651,8 +651,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -651,8 +651,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\parinterval 理想的机器翻译系统应该是品质好、速度快、存储占用少。不过,为了追求更好的翻译品质,往往需要更大的模型,但是相应的翻译速度会降低,模型的体积会变大。在很多场景下,这样的模型无法直接使用。比如,Transformer-Big等“大”模型通常在专用服务器上运行,在手机等受限环境下仍很难应用。 \parinterval 理想的机器翻译系统应该是品质好、速度快、存储占用少。不过,为了追求更好的翻译品质,往往需要更大的模型,但是相应的翻译速度会降低,模型的体积会变大。在很多场景下,这样的模型无法直接使用。比如,Transformer-Big等“大”模型通常在专用服务器上运行,在手机等受限环境下仍很难应用。
\parinterval 但是,直接训练“小”模型的效果往往并不理想,其翻译品质与“大”模型相比仍有比较明显的差距。既然直接训练小模型无法达到很好的效果,一种有趣的想法是把“大”模型的知识传递给“小”模型。这类似于,教小孩子学习数学,是请一个权威数学家(数据中的标准答案)进行教学,而是会请一个小学数 \parinterval 但是,直接训练“小”模型的效果往往并不理想,其翻译品质与“大”模型相比仍有比较明显的差距。既然直接训练小模型无法达到很好的效果,一种有趣的想法是把“大”模型的知识传递给“小”模型。这类似于,教小孩子学习数学,不是请一个权威数学家(即数据中的标准答案)进行教学,而是会请一个小学数学教师(即“大”模型)来教小孩子。这就是知识蒸馏的基本思想。
学教师(“大”模型)来教小孩子。这就是知识蒸馏的基本思想。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -688,7 +687,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\ ...@@ -688,7 +687,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{基于单词的知识蒸馏}}\index{基于单词的知识蒸馏}(Word-level Knowledge Distillation)\index{Word-level Knowledge Distillation}。该方法的目标是使得学生模型的预测(分布)尽可能逼近教师模型的预测(分布)。令$\seq{x}=\{x_1,\ldots,x_m\}$$\seq{y}=\{y_1,\ldots,y_n\}$分别表示输入和输出(数据中的答案)序列,$V$表示目标语言词表,则基于单词的知识蒸馏的损失函数被定义为: \item {\small\bfnew{单词级的知识蒸馏}}\index{单词级的知识蒸馏}(Word-level Knowledge Distillation)\index{Word-level Knowledge Distillation}。该方法的目标是使得学生模型的预测(分布)尽可能逼近教师模型的预测(分布)。令$\seq{x}=\{x_1,\ldots,x_m\}$$\seq{y}=\{y_1,\ldots,y_n\}$分别表示输入和输出(数据中的答案)序列,$V$表示目标语言词表,则单词级的知识蒸馏的损失函数被定义为:
\begin{eqnarray} \begin{eqnarray}
L_{\textrm{word}} = - \sum_{j=1}^n \sum_{y_j \in V} \textrm{P}_{\textrm{t}} (y_{\textrm{j}}|\seq{x})\textrm{logP}_{\textrm{s}}(y_j|\seq{x}) L_{\textrm{word}} = - \sum_{j=1}^n \sum_{y_j \in V} \textrm{P}_{\textrm{t}} (y_{\textrm{j}}|\seq{x})\textrm{logP}_{\textrm{s}}(y_j|\seq{x})
\label{eq:13-22} \label{eq:13-22}
...@@ -696,7 +695,7 @@ L_{\textrm{word}} = - \sum_{j=1}^n \sum_{y_j \in V} \textrm{P}_{\textrm{t}} (y_{ ...@@ -696,7 +695,7 @@ L_{\textrm{word}} = - \sum_{j=1}^n \sum_{y_j \in V} \textrm{P}_{\textrm{t}} (y_{
这里, $\textrm{P}_{\textrm{s}}(y_j|\seq{x})$$\textrm{P}_{\textrm{t}} (y_j|\seq{x})$分别表示学生模型和教师模型在$j$位置输出的概率。公式\eqref{eq:13-22}实际上在最小化教师模型和学生模型输出分布之间的交叉熵。 这里, $\textrm{P}_{\textrm{s}}(y_j|\seq{x})$$\textrm{P}_{\textrm{t}} (y_j|\seq{x})$分别表示学生模型和教师模型在$j$位置输出的概率。公式\eqref{eq:13-22}实际上在最小化教师模型和学生模型输出分布之间的交叉熵。
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{基于序列的知识蒸馏}}\index{基于序列的知识蒸馏}(Sequence-level Knowledge Distillation)\index{Sequence-level Knowledge Distillation}。除了单词一级输出的拟合,基于序列的知识蒸馏希望在序列整体上进行拟合。其损失函数被定义为: \item {\small\bfnew{序列级的知识蒸馏}}\index{序列级的知识蒸馏}(Sequence-level Knowledge Distillation)\index{Sequence-level Knowledge Distillation}。除了单词一级输出的拟合,序列级的知识蒸馏希望在序列整体上进行拟合。其损失函数被定义为:
\begin{eqnarray} \begin{eqnarray}
L_{\textrm{seq}} = - \sum_{\seq{y}}\textrm{P}_{\textrm{t}} (\seq{y}|\seq{x})\textrm{logP}_{\textrm{s}}(\seq{y}|\seq{x}) L_{\textrm{seq}} = - \sum_{\seq{y}}\textrm{P}_{\textrm{t}} (\seq{y}|\seq{x})\textrm{logP}_{\textrm{s}}(\seq{y}|\seq{x})
\label{eq:13-23} \label{eq:13-23}
...@@ -721,7 +720,7 @@ L_{\textrm{seq}} = - \textrm{logP}_{\textrm{s}}(\hat{\seq{y}} | \seq{x}) ...@@ -721,7 +720,7 @@ L_{\textrm{seq}} = - \textrm{logP}_{\textrm{s}}(\hat{\seq{y}} | \seq{x})
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 本质上,基于单词的知识蒸馏与语言建模等问题的建模方式是一致的。在传统方法中,训练数据中的答案会被看作是一个One-hot分布,之后让模型去尽可能拟合这种分布。而这里,答案不再是一个One-hot分布,而是由教师模型生成的真实分布,但是损失函数的形式是一模一样的。在具体实现时,一个容易出现的问题是在词级别的知识蒸馏中,教师模型的Softmax可能会生成非常尖锐的分布。这时需要考虑对分布进行平滑,提高模型的泛化能力,比如,可以在Softmax函数中加入一个参数$\alpha$,如$\textrm{Softmax}(s_i)=\frac{\exp(s_i/\alpha)}{\sum_{i'} \exp(s_{i'}/\alpha)}$。这样可以通过$\alpha$ 控制分布的平滑程度。 \parinterval 本质上,单词级的知识蒸馏与语言建模等问题的建模方式是一致的。在传统方法中,训练数据中的答案会被看作是一个One-hot分布,之后让模型去尽可能拟合这种分布。而这里,答案不再是一个One-hot分布,而是由教师模型生成的真实分布,但是损失函数的形式是一模一样的。在具体实现时,一个容易出现的问题是在词级别的知识蒸馏中,教师模型的Softmax可能会生成非常尖锐的分布。这时需要考虑对分布进行平滑,提高模型的泛化能力,比如,可以在Softmax函数中加入一个参数$\alpha$,如$\textrm{Softmax}(s_i)=\frac{\exp(s_i/\alpha)}{\sum_{i'} \exp(s_{i'}/\alpha)}$。这样可以通过$\alpha$ 控制分布的平滑程度。
\parinterval 除了在模型最后输出的分布上进行知识蒸馏,同样可以使用教师模型对学生模型的中间层输出和注意力分布进行约束。这种方法在{\chapterfourteen}中会有具体应用。 \parinterval 除了在模型最后输出的分布上进行知识蒸馏,同样可以使用教师模型对学生模型的中间层输出和注意力分布进行约束。这种方法在{\chapterfourteen}中会有具体应用。
...@@ -785,7 +784,7 @@ L_{\textrm{seq}} = - \textrm{logP}_{\textrm{s}}(\hat{\seq{y}} | \seq{x}) ...@@ -785,7 +784,7 @@ L_{\textrm{seq}} = - \textrm{logP}_{\textrm{s}}(\hat{\seq{y}} | \seq{x})
\parinterval 当机器翻译系统应用于不同领域时,训练语料与所应用领域的相关性就显得非常重要\upcite{DBLP:journals/mt/EetemadiLTR15,britz2017effective}。不同领域往往具有自己独特的属性,比如语言风格、句子结构、专业术语等,例如,“bank”这个英语单词,在金融领域通常被翻译为“银行”,而在计算机领域,一般被解释为“库”、“存储体”等。这也会导致,使用通用领域数据训练出来的模型在特定领域上的翻译效果往往不理想,这本质上是训练数据和测试数据的领域属性不匹配造成的。 \parinterval 当机器翻译系统应用于不同领域时,训练语料与所应用领域的相关性就显得非常重要\upcite{DBLP:journals/mt/EetemadiLTR15,britz2017effective}。不同领域往往具有自己独特的属性,比如语言风格、句子结构、专业术语等,例如,“bank”这个英语单词,在金融领域通常被翻译为“银行”,而在计算机领域,一般被解释为“库”、“存储体”等。这也会导致,使用通用领域数据训练出来的模型在特定领域上的翻译效果往往不理想,这本质上是训练数据和测试数据的领域属性不匹配造成的。
\parinterval 一种解决办法是只使用特定领域的数据进行模型训练,然而这种数据往往比较稀缺。那能不能利用通用领域数据来帮助数据稀少的领域呢?这个研究方向被称为机器翻译的{\small\bfnew{领域适应}}\index{领域适应}(Domain Adaptation\index{Domain Adaptation}),即把数据从资源丰富的领域(称为{\small\bfnew{源领域}}\index{源领域} Source Domain\index{Source Domain})向资源稀缺的领域(称为{\small\bfnew{目标领域}}\index{目标领域},Target Domain\index{Target Domain})迁移。这本身也对应着资源稀缺场景下的机器翻译问题,这类问题会在{\chaptersixteen}进行详细讨论。本章更加关注如何有效地利用训练样本以更好地适应目标领域。具体来说,可以使用{\small\bfnew{数据选择}}\index{数据选择}(Data Selection\index{Selection})从源领域训练数据中选择与目标领域更加相关的样本进行模型训练。这样做的一个好处是,源领域中混有大量与目标领域不相关的样本,数据选择可以有效降低这部分数据的比例,这样可以更加突出与领域相关样本的作用。 \parinterval 一种解决办法是只使用特定领域的数据进行模型训练,然而这种数据往往比较稀缺。那能不能利用通用领域数据来帮助数据稀少的领域呢?这个研究方向被称为机器翻译的{\small\bfnew{领域适应}}\index{领域适应}(Domain Adaptation\index{Domain Adaptation}),即把数据从资源丰富的领域(称为{\small\bfnew{源领域}}\index{源领域}Source Domain\index{Source Domain})向资源稀缺的领域(称为{\small\bfnew{目标领域}}\index{目标领域},Target Domain\index{Target Domain})迁移。这本身也对应着资源稀缺场景下的机器翻译问题,这类问题会在{\chaptersixteen}进行详细讨论。本章更加关注如何有效地利用训练样本以更好地适应目标领域。具体来说,可以使用{\small\bfnew{数据选择}}\index{数据选择}(Data Selection\index{Data Selection})从源领域训练数据中选择与目标领域更加相关的样本进行模型训练。这样做的一个好处是,源领域中混有大量与目标领域不相关的样本,数据选择可以有效降低这部分数据的比例,这样可以更加突出与领域相关样本的作用。
\parinterval 数据选择所要解决的核心问题是:给定一个目标领域/任务数据集(如,目标任务的开发集),如何衡量原始训练样本与目标领域/任务的相关性?主要方法可以分为以下几类: \parinterval 数据选择所要解决的核心问题是:给定一个目标领域/任务数据集(如,目标任务的开发集),如何衡量原始训练样本与目标领域/任务的相关性?主要方法可以分为以下几类:
...@@ -896,15 +895,15 @@ L_{\textrm{seq}} = - \textrm{logP}_{\textrm{s}}(\hat{\seq{y}} | \seq{x}) ...@@ -896,15 +895,15 @@ L_{\textrm{seq}} = - \textrm{logP}_{\textrm{s}}(\hat{\seq{y}} | \seq{x})
\subsection{持续学习} \subsection{持续学习}
\parinterval 人类具有不断学习、调整和转移知识的能力,这种能力被称为{\small\bfnew{持续学习}}\index{持续学习}(Continual Learning\index{Continual Learning}),也叫{\small\bfnew{终生学习}}(Lifelong Learning\index{Lifelong Learning})或{\small\bfnew{增量式学习}}\index{增量式学习}(Incremental Learning\index{Incremental Learning})。人类学习的新任务时,会很自然的利用以前的知识并将新学习的知识整合到以前的知识中。然而对于机器学习系统来说,尤其在连接主义的范式下(如深度神经网络模型),这是一个很大的挑战,这是由神经网络的特性所决定的。当前的神经网络模型依赖于标注的训练样本,通过反向传播算法对模型参数进行训练更新,最终达到拟合数据分布的目的。当把模型切换到新的任务时,本质上是数据的分布发生了变化,从这种分布差异过大的数据中不断增量获取可用信息很容易导致{\small\bfnew{灾难性遗忘}}\index{灾难性遗忘}(Catastrophic Forgetting\index{Catastrophic Forgetting})问题,即用新数据训练模型的时候会干扰先前学习的知识。甚至,这在最坏的情况下会导致旧知识被新知识完全重写。在机器翻译领域,类似的问题经常发生在不断增加数据的场景中,因为当用户使用少量数据对模型进行更新之后,发现在旧数据上的性能下降了(见{\chaptereighteen})。 \parinterval 人类具有不断学习、调整和转移知识的能力,这种能力被称为{\small\bfnew{持续学习}}\index{持续学习}(Continual Learning\index{Continual Learning}),也叫{\small\bfnew{终生学习}}\index{终生学习}(Lifelong Learning\index{Lifelong Learning})或{\small\bfnew{增量式学习}}\index{增量式学习}(Incremental Learning\index{Incremental Learning})。人类学习的新任务时,会很自然的利用以前的知识并将新学习的知识整合到以前的知识中。然而对于机器学习系统来说,尤其在连接主义的范式下(如深度神经网络模型),这是一个很大的挑战,这是由神经网络的特性所决定的。当前的神经网络模型依赖于标注的训练样本,通过反向传播算法对模型参数进行训练更新,最终达到拟合数据分布的目的。当把模型切换到新的任务时,本质上是数据的分布发生了变化,从这种分布差异过大的数据中不断增量获取可用信息很容易导致{\small\bfnew{灾难性遗忘}}\index{灾难性遗忘}(Catastrophic Forgetting\index{Catastrophic Forgetting})问题,即用新数据训练模型的时候会干扰先前学习的知识。甚至,这在最坏的情况下会导致旧知识被新知识完全重写。在机器翻译领域,类似的问题经常发生在不断增加数据的场景中,因为当用户使用少量数据对模型进行更新之后,发现在旧数据上的性能下降了(见{\chaptereighteen})。
\parinterval 为克服灾难性遗忘问题,学习系统一方面必须能连续获取新知识和完善现有知识,另一方面,还应防止新数据输入明显干扰现有的知识,这个问题称作{\small\bfnew{稳定性-可塑性}}\index{稳定性- 可塑性}(Stability-Plasticity\index{Stability-Plasticity})问题。可塑性指整合新知识的能力,稳定性指保留先前的知识不至于遗忘。要解决这些问题,就需要模型在保留先前任务的知识与学习当前任务的新知识之间取得平衡。目前的解决方法可以分为以下几类: \parinterval 为克服灾难性遗忘问题,学习系统一方面必须能连续获取新知识和完善现有知识,另一方面,还应防止新数据输入明显干扰现有的知识,这个问题称作{\small\bfnew{稳定性-可塑性}}\index{稳定性-可塑性}(Stability-Plasticity\index{Stability-Plasticity})问题。可塑性指整合新知识的能力,稳定性指保留先前的知识不至于遗忘。要解决这些问题,就需要模型在保留先前任务的知识与学习当前任务的新知识之间取得平衡。目前的解决方法可以分为以下几类:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{基于正则化的方法}}。通过对模型参数的更新施加约束来减轻灾难性的遗忘,通常是在损失函数中引入了一个额外的正则化项,使得模型在学习新数据时巩固先前的知识\upcite{DBLP:journals/pami/LiH18a,DBLP:conf/iccv/TrikiABT17} \item {\small\bfnew{基于正则化的方法}}。通过对模型参数的更新施加约束来减轻灾难性的遗忘,通常是在损失函数中引入了一个额外的正则化项,使得模型在学习新数据时巩固先前的知识\upcite{DBLP:journals/pami/LiH18a,DBLP:conf/iccv/TrikiABT17}
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{基于实例的方法}}基于实例的方法。在学习新任务的同时混合训练先前的任务样本以减轻遗忘,这些样本可以是从先前任务的训练数据中精心挑选出的子集,或者利用生成模型生成的伪样本\upcite{DBLP:conf/cvpr/RebuffiKSL17,DBLP:conf/eccv/CastroMGSA18} \item {\small\bfnew{基于实例的方法}}。在学习新任务的同时混合训练先前的任务样本以减轻遗忘,这些样本可以是从先前任务的训练数据中精心挑选出的子集,或者利用生成模型生成的伪样本\upcite{DBLP:conf/cvpr/RebuffiKSL17,DBLP:conf/eccv/CastroMGSA18}
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{基于动态模型架构的方法}}。例如,增加神经元或新的神经网络层进行重新训练,或者是在新任务训练时只更新部分参数\upcite{rusu2016progressive,DBLP:journals/corr/FernandoBBZHRPW17} \item {\small\bfnew{基于动态模型架构的方法}}。例如,增加神经元或新的神经网络层进行重新训练,或者是在新任务训练时只更新部分参数\upcite{rusu2016progressive,DBLP:journals/corr/FernandoBBZHRPW17}
\vspace{0.5em} \vspace{0.5em}
......
...@@ -23,11 +23,11 @@ ...@@ -23,11 +23,11 @@
\node[attnnode,anchor=south] (attn11) at ([yshift=0.1\hnode]layer11.south) {}; \node[attnnode,anchor=south] (attn11) at ([yshift=0.1\hnode]layer11.south) {};
\node[anchor=north west,inner sep=4pt,font=\small] () at (attn11.north west) {注意力}; \node[anchor=north west,inner sep=4pt,font=\small] () at (attn11.north west) {注意力};
\node[anchor=south,inner sep=0pt] (out11) at ([yshift=0.3\hseg]attn11.north) {$\cdots$}; \node[anchor=south,inner sep=0pt] (out11) at ([yshift=0.3\hseg]attn11.north) {$\cdots$};
\node[thinnode,anchor=south west,thick,draw=dblue,text=black] (q11) at ([xshift=0.1\wseg,yshift=0.2\hseg]attn11.south west) {$Q^n$}; \node[thinnode,anchor=south west,thick,draw=dblue,text=black] (q11) at ([xshift=0.1\wseg,yshift=0.2\hseg]attn11.south west) {${\mathbi Q}^n$};
\node[thinnode,anchor=south,thick,draw=orange,text=black] (k11) at ([yshift=0.2\hseg]attn11.south) {$K^n$}; \node[thinnode,anchor=south,thick,draw=orange,text=black] (k11) at ([yshift=0.2\hseg]attn11.south) {${\mathbi K}^n$};
\node[thinnode,anchor=south east,thick,draw=purple,text=black] (v11) at ([xshift=-0.1\wseg,yshift=0.2\hseg]attn11.south east) {$V^n$}; \node[thinnode,anchor=south east,thick,draw=purple,text=black] (v11) at ([xshift=-0.1\wseg,yshift=0.2\hseg]attn11.south east) {${\mathbi V}^n$};
\node[fatnode,anchor=south,thick,draw] (s11) at ([xshift=0.5\wseg,yshift=0.8\hseg]q11.north east) {$S^n\!=\!S(Q^n\!\cdot\!K^n)$}; \node[fatnode,anchor=south,thick,draw] (s11) at ([xshift=0.5\wseg,yshift=0.8\hseg]q11.north east) {${\mathbi S}^n\!=\!{\mathbi S}({\mathbi Q}^n\!\cdot\!{\mathbi K}^n)$};
\node[fatnode,anchor=south,thick,draw] (a11) at ([xshift=0.45\wseg,yshift=1.3\hseg+0.6\hnode]k11.north east) {$A^n\!=\!S^n\!\cdot\!V$}; \node[fatnode,anchor=south,thick,draw] (a11) at ([xshift=0.45\wseg,yshift=1.3\hseg+0.6\hnode]k11.north east) {${\mathbi A}^n\!=\!{\mathbi S}^n\!\cdot\!{\mathbi V}$};
\begin{scope}[fill=black!100] \begin{scope}[fill=black!100]
\draw[-latex',thick,draw=black!100] (q11.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s11.south); \draw[-latex',thick,draw=black!100] (q11.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s11.south);
\draw[-latex',thick,draw=black!100] (k11.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s11.south); \draw[-latex',thick,draw=black!100] (k11.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s11.south);
...@@ -43,11 +43,11 @@ ...@@ -43,11 +43,11 @@
\node[attnnode,anchor=south] (attn12) at ([yshift=0.1\hnode]layer12.south) {}; \node[attnnode,anchor=south] (attn12) at ([yshift=0.1\hnode]layer12.south) {};
\node[anchor=north west,inner sep=4pt,font=\small] () at (attn12.north west) {注意力}; \node[anchor=north west,inner sep=4pt,font=\small] () at (attn12.north west) {注意力};
\node[anchor=south,inner sep=0pt] (out12) at ([yshift=0.3\hseg]attn12.north) {$\cdots$}; \node[anchor=south,inner sep=0pt] (out12) at ([yshift=0.3\hseg]attn12.north) {$\cdots$};
\node[thinnode,anchor=south west,thick,draw=dblue!40,text=black!40] (q12) at ([xshift=0.1\wseg,yshift=0.2\hseg]attn12.south west) {$Q^n$}; \node[thinnode,anchor=south west,thick,draw=dblue!40,text=black!40] (q12) at ([xshift=0.1\wseg,yshift=0.2\hseg]attn12.south west) {${\mathbi Q}^n$};
\node[thinnode,anchor=south,thick,draw=orange!40,text=black!40] (k12) at ([yshift=0.2\hseg]attn12.south) {$K^n$}; \node[thinnode,anchor=south,thick,draw=orange!40,text=black!40] (k12) at ([yshift=0.2\hseg]attn12.south) {${\mathbi K}^n$};
\node[thinnode,anchor=south east,thick,draw=purple,text=black] (v12) at ([xshift=-0.1\wseg,yshift=0.2\hseg]attn12.south east) {$V^n$}; \node[thinnode,anchor=south east,thick,draw=purple,text=black] (v12) at ([xshift=-0.1\wseg,yshift=0.2\hseg]attn12.south east) {${\mathbi V}^n$};
\node[fatnode,anchor=south,thick,densely dashed,draw] (s12) at ([xshift=0.5\wseg,yshift=0.8\hseg]q12.north east) {$S^n\!=\!S^m$}; \node[fatnode,anchor=south,thick,densely dashed,draw] (s12) at ([xshift=0.5\wseg,yshift=0.8\hseg]q12.north east) {${\mathbi S}^n\!=\!{\mathbi S}^m$};
\node[fatnode,anchor=south,thick,draw] (a12) at ([xshift=0.45\wseg,yshift=1.3\hseg+0.6\hnode]k12.north east) {$A^n\!=\!S^n\!\cdot\!V$}; \node[fatnode,anchor=south,thick,draw] (a12) at ([xshift=0.45\wseg,yshift=1.3\hseg+0.6\hnode]k12.north east) {${\mathbi A}^n\!=\!{\mathbi S}^n\!\cdot\!{\mathbi V}$};
\begin{scope}[fill=black!40] \begin{scope}[fill=black!40]
\draw[-latex',thick,draw=black!40] (q12.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s12.south); \draw[-latex',thick,draw=black!40] (q12.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s12.south);
\draw[-latex',thick,draw=black!40] (k12.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s12.south); \draw[-latex',thick,draw=black!40] (k12.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s12.south);
...@@ -63,11 +63,11 @@ ...@@ -63,11 +63,11 @@
\node[attnnode,anchor=south] (attn13) at ([yshift=0.1\hnode]layer13.south) {}; \node[attnnode,anchor=south] (attn13) at ([yshift=0.1\hnode]layer13.south) {};
\node[anchor=north west,inner sep=4pt,font=\small] () at (attn13.north west) {注意力}; \node[anchor=north west,inner sep=4pt,font=\small] () at (attn13.north west) {注意力};
\node[anchor=south,inner sep=0pt] (out13) at ([yshift=0.3\hseg]attn13.north) {$\cdots$}; \node[anchor=south,inner sep=0pt] (out13) at ([yshift=0.3\hseg]attn13.north) {$\cdots$};
\node[thinnode,anchor=south west,thick,draw=dblue!40,text=black!40] (q13) at ([xshift=0.1\wseg,yshift=0.2\hseg]attn13.south west) {$Q^n$}; \node[thinnode,anchor=south west,thick,draw=dblue!40,text=black!40] (q13) at ([xshift=0.1\wseg,yshift=0.2\hseg]attn13.south west) {${\mathbi Q}^n$};
\node[thinnode,anchor=south,thick,draw=orange!40,text=black!40] (k13) at ([yshift=0.2\hseg]attn13.south) {$K^n$}; \node[thinnode,anchor=south,thick,draw=orange!40,text=black!40] (k13) at ([yshift=0.2\hseg]attn13.south) {${\mathbi K}^n$};
\node[thinnode,anchor=south east,thick,draw=purple!40,text=black!40] (v13) at ([xshift=-0.1\wseg,yshift=0.2\hseg]attn13.south east) {$V^n$}; \node[thinnode,anchor=south east,thick,draw=purple!40,text=black!40] (v13) at ([xshift=-0.1\wseg,yshift=0.2\hseg]attn13.south east) {${\mathbi V}^n$};
\node[fatnode,anchor=south,thick,draw=black!40,text=black!40] (s13) at ([xshift=0.5\wseg,yshift=0.8\hseg]q13.north east) {$S^n$}; \node[fatnode,anchor=south,thick,draw=black!40,text=black!40] (s13) at ([xshift=0.5\wseg,yshift=0.8\hseg]q13.north east) {${\mathbi S}^n$};
\node[fatnode,anchor=south,thick,densely dashed,draw] (a13) at ([xshift=0.45\wseg,yshift=1.3\hseg+0.6\hnode]k13.north east) {$A^n\!=\!A^m$}; \node[fatnode,anchor=south,thick,densely dashed,draw] (a13) at ([xshift=0.45\wseg,yshift=1.3\hseg+0.6\hnode]k13.north east) {${\mathbi A}^n\!=\!{\mathbi A}^m$};
\begin{scope}[fill=black!40] \begin{scope}[fill=black!40]
\draw[-latex',thick,draw=black!40] (q13.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s13.south); \draw[-latex',thick,draw=black!40] (q13.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s13.south);
\draw[-latex',thick,draw=black!40] (k13.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s13.south); \draw[-latex',thick,draw=black!40] (k13.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s13.south);
...@@ -87,11 +87,11 @@ ...@@ -87,11 +87,11 @@
\node[anchor=north west,inner sep=4pt,font=\small] () at (attn\i\j.north west) {注意力}; \node[anchor=north west,inner sep=4pt,font=\small] () at (attn\i\j.north west) {注意力};
\node[anchor=south,inner sep=0pt] (out\i\j) at ([yshift=0.3\hseg]attn\i\j.north) {$\cdots$}; \node[anchor=south,inner sep=0pt] (out\i\j) at ([yshift=0.3\hseg]attn\i\j.north) {$\cdots$};
\node[thinnode,anchor=south west,thick,draw=dblue!\q,text=black] (q\i\j) at ([xshift=0.1\wseg,yshift=0.2\hseg]attn\i\j.south west) {$Q^m$}; \node[thinnode,anchor=south west,thick,draw=dblue!\q,text=black] (q\i\j) at ([xshift=0.1\wseg,yshift=0.2\hseg]attn\i\j.south west) {${\mathbi Q}^m$};
\node[thinnode,anchor=south,thick,draw=orange!\q,text=black] (k\i\j) at ([yshift=0.2\hseg]attn\i\j.south) {$K^m$}; \node[thinnode,anchor=south,thick,draw=orange!\q,text=black] (k\i\j) at ([yshift=0.2\hseg]attn\i\j.south) {${\mathbi K}^m$};
\node[thinnode,anchor=south east,thick,draw=purple!\s,text=black] (v\i\j) at ([xshift=-0.1\wseg,yshift=0.2\hseg]attn\i\j.south east) {$V^m$}; \node[thinnode,anchor=south east,thick,draw=purple!\s,text=black] (v\i\j) at ([xshift=-0.1\wseg,yshift=0.2\hseg]attn\i\j.south east) {${\mathbi V}^m$};
\node[fatnode,anchor=south,thick,draw=black!\s] (s\i\j) at ([xshift=0.45\wseg,yshift=0.8\hseg]q\i\j.north east) {$S^m\!=\!S(Q^m\!\cdot\!K^m)$}; \node[fatnode,anchor=south,thick,draw=black!\s] (s\i\j) at ([xshift=0.45\wseg,yshift=0.8\hseg]q\i\j.north east) {${\mathbi S}^m\!=\!{\mathbi S}({\mathbi Q}^m\!\cdot\!{\mathbi K}^m)$};
\node[fatnode,anchor=south,thick,draw=black!80] (a\i\j) at ([xshift=0.45\wseg,yshift=1.3\hseg+0.6\hnode]k\i\j.north east) {$A^m\!=\!S^m\!\cdot\!V$}; \node[fatnode,anchor=south,thick,draw=black!80] (a\i\j) at ([xshift=0.45\wseg,yshift=1.3\hseg+0.6\hnode]k\i\j.north east) {${\mathbi A}^m\!=\!{\mathbi S}^m\!\cdot\!{\mathbi V}$};
\begin{scope}[fill=black!\q] \begin{scope}[fill=black!\q]
\draw[-latex',thick,draw=black!\t] (q\i\j.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s\i\j.south); \draw[-latex',thick,draw=black!\t] (q\i\j.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s\i\j.south);
\draw[-latex',thick,draw=black!\t] (k\i\j.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s\i\j.south); \draw[-latex',thick,draw=black!\t] (k\i\j.north) .. controls +(north:0.5\hseg) and +(south:0.8\hseg) .. (s\i\j.south);
......
...@@ -31,7 +31,7 @@ ...@@ -31,7 +31,7 @@
\vspace{0.5em} \vspace{0.5em}
\item 神经机器翻译的基本问题,如推断方向、译文长度控制等。 \item 神经机器翻译的基本问题,如推断方向、译文长度控制等。
\vspace{0.5em} \vspace{0.5em}
\item 神经机器翻译的推断加速方法,如轻量模型、非自回归模型等。 \item 神经机器翻译的推断加速方法,如轻量模型、非自回归翻译模型等。
\vspace{0.5em} \vspace{0.5em}
\item 多模型集成推断。 \item 多模型集成推断。
\vspace{0.5em} \vspace{0.5em}
...@@ -61,25 +61,25 @@ ...@@ -61,25 +61,25 @@
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{预测模块}},它根据已经生成的部分译文和源语言信息,预测下一个要生成的译文单词的概率分布\footnote{在统计机器翻译中,翻译的每一步也可以同时预测若干个连续的单词,即短语。在神经机器翻译中也有类似于生成短语的方 \item {\small\sffamily\bfseries{预测模块}},它根据已经生成的部分译文和源语言信息,预测下一个要生成的译文单词的概率分布\footnote{在统计机器翻译中,也可以同时预测若干个连续的单词,即短语。在神经机器翻译中也有类似于生成短语的方
法,但是主流的方法还是按单词为单位进行生成。}。因此预测模块实际上就是一个模型打分装置; 法,但是主流的方法还是按单词为单位进行生成。}。因此预测模块实际上就是一个模型打分装置;
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{搜索模块}},它会利用预测结果,对当前的翻译假设进行打分,并根据模型得分对翻译假设进行排序和剪枝。 \item {\small\sffamily\bfseries{搜索模块}},它会利用预测结果,对当前的翻译假设进行打分,并根据模型得分对翻译假设进行排序和剪枝。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
\parinterval 预测模块是由模型决定的,而搜索模块可以与模型无关。也就是说,不同的模型可以共享同一个搜索模块完成推断。比如,对于基于循环神经网络的模型,预测模块需要读入前一个状态的信息和前一个位置的译文单词,然后预测当前位置单词的概率分布;对于Transformer,预测模块需要对前面的所有位置做注意力运算,之后预测当前位置单词的概率分布。不过,这两个模型都可以使用同一个搜索模块。图\ref{fig:14-1}给出了这种架构的示意图。 \parinterval 预测模块是由模型决定的,而搜索模块可以与模型无关。也就是说,不同的模型可以共享同一个搜索模块完成推断。比如,对于基于循环神经网络的模型,预测模块需要读入前一个状态的信息和前一个位置的译文单词,然后预测当前位置单词的概率分布;对于Transformer,预测模块需要对前面的所有位置做注意力运算,之后预测当前位置单词的概率分布。不过,这两个模型都可以使用同一个搜索模块。图\ref{fig:14-1}给出了神经机器翻译推断系统的结构示意图。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter14/Figures/figure-main-module} \input{./Chapter14/Figures/figure-main-module}
\caption{神经机器翻译推断系统结构} \caption{神经机器翻译推断系统结构}
\label{fig:14-1} \label{fig:14-1}
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\parinterval 这是一个非常通用的框架,同样适用于统计机器翻译模型。因此,神经机器翻译推断中的很多问题与统计机器翻译是一致的,比如:束搜索的宽度、解码终止条件等等。 \parinterval 这是一个非常通用的结构框架,同样适用于统计机器翻译模型。因此,神经机器翻译推断中的很多问题与统计机器翻译是一致的,比如:束搜索的宽度、解码终止条件等等。
\parinterval 一般来说,设计机器翻译推断系统需要考虑三个因素:搜索的准确性、搜索的时延、搜索所需要的存储。通常,准确性是研究人员最关心的问题,比如可以通过增大搜索空间来找到模型得分更高的结果。而搜索的时延和存储消耗是实践中必须要考虑的问题,比如可以设计更小的模型和更高效的推断方法来提高系统的可用性。 \parinterval 一般来说,设计机器翻译推断系统需要考虑三个因素:搜索的准确性、搜索的时延、搜索所需要的存储。通常,准确性是研究人员最关心的问题,比如可以通过增大搜索空间来找到模型得分更高的结果。而搜索的时延和存储消耗是实践中必须要考虑的问题,比如可以设计更小的模型和更高效的推断方法来提高系统的可用性。
...@@ -89,7 +89,7 @@ ...@@ -89,7 +89,7 @@
\vspace{0.5em} \vspace{0.5em}
\item 搜索的基本问题在神经机器翻译中有着特殊的现象。比如,在统计机器翻译中,减少搜索错误是提升翻译品质的一种手段。但是神经机器翻译中,简单的减少搜索错误可能无法带来性能的提升,甚至会造成翻译品质的下降\upcite{li-etal-2018-simple,Stahlberg2019OnNS} \item 搜索的基本问题在神经机器翻译中有着特殊的现象。比如,在统计机器翻译中,减少搜索错误是提升翻译品质的一种手段。但是神经机器翻译中,简单的减少搜索错误可能无法带来性能的提升,甚至会造成翻译品质的下降\upcite{li-etal-2018-simple,Stahlberg2019OnNS}
\vspace{0.5em} \vspace{0.5em}
\item 搜索的时延很高,系统实际部署的成本很高。与统计机器翻译系统不同的是,神经机器翻译依赖大量的浮点运算。这导致神经机器翻译系统的推断会比统计机器翻译系统慢很多。虽然可以使用GPU来提高神经机器翻译的推断速度,但是也大大增加了成本; \item 搜索的时延很高,系统实际部署的成本很高。与统计机器翻译系统不同的是,神经机器翻译系统依赖大量的浮点运算。这导致神经机器翻译系统的推断会比统计机器翻译系统慢很多。虽然可以使用GPU来提高神经机器翻译的推断速度,但是也大大增加了成本;
\vspace{0.5em} \vspace{0.5em}
\item 神经机器翻译在优化过程中容易陷入局部最优,单模型的表现并不稳定。由于神经机器翻译优化的目标函数非常不光滑,每次训练得到的模型往往只是一个局部最优解。在新数据上使用这个局部最优模型进行推断时,模型的表现可能不稳定。 \item 神经机器翻译在优化过程中容易陷入局部最优,单模型的表现并不稳定。由于神经机器翻译优化的目标函数非常不光滑,每次训练得到的模型往往只是一个局部最优解。在新数据上使用这个局部最优模型进行推断时,模型的表现可能不稳定。
\vspace{0.5em} \vspace{0.5em}
...@@ -146,11 +146,11 @@ ...@@ -146,11 +146,11 @@
\subsection{译文长度控制} \subsection{译文长度控制}
\parinterval 机器翻译推断的一个特点是译文长度需要额外的机制进行控制\upcite{Kikuchi2016ControllingOL,Takase2019PositionalET,Murray2018CorrectingLB,Sountsov2016LengthBI}。这是因为机器翻译在建模时仅考虑了将训练样本(即标准答案)上的损失最小化,但是推断的时候会看到从未见过的样本,而且这些未见样本占据了样本空间的绝大多数。该问题会导致的一个现象是:直接使用训练好的模型会翻译出长度短得离谱的译文。神经机器翻译模型使用单词概率的乘积表示整个句子的翻译概率,它天然就倾向生成短译文,因为概率为大于0小于1的常数,短译文会使用更少的概率因式相乘,倾向于得到更高的句子得分,而模型只关心每个目标语言位置是否被正确预测,对于译文长度没有考虑。统计机器翻译模型中也存在译文长度不合理的问题,解决该问题的常见策略是在推断过程中引入译文长度控制机制\upcite{Koehn2007Moses}。神经机器翻译也借用了类似的思想来控制译文长度,有以下几种方法: \parinterval 机器翻译推断的一个特点是译文长度需要额外的机制进行控制\upcite{Kikuchi2016ControllingOL,Takase2019PositionalET,Murray2018CorrectingLB,Sountsov2016LengthBI}。这是因为机器翻译在建模时仅考虑了将训练样本(即标准答案)上的损失最小化,但是推断的时候会看到从未见过的样本,甚至样本空间中的绝大多数都是未见样本。该问题会导致的一个现象是:直接使用训练好的模型会翻译出长度短得离谱的译文。神经机器翻译模型使用单词概率的乘积表示整个句子的翻译概率,它天然就倾向生成短译文,因为概率为大于0小于1的常数,短译文会使用更少的概率因式相乘,倾向于得到更高的句子得分,而模型只关心每个目标语言位置是否被正确预测,对于译文长度没有考虑。统计机器翻译模型中也存在译文长度不合理的问题,解决该问题的常见策略是在推断过程中引入译文长度控制机制\upcite{Koehn2007Moses}。神经机器翻译也借用了类似的思想来控制译文长度,有以下几种方法:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{长度惩罚因子}}。用译文长度来归一化翻译概率是最常用的方法:对于源语言句子$\seq{x}$和译文句子$\seq{y}$,模型得分$\textrm{score}(\seq{x},\seq{y})$的值会随着译文$\seq{y}$ 的长度增大而减小。为了避免此现象,可以引入一个长度惩罚函数$\textrm{lp}(\seq{y})$,并定义模型得分如公式\eqref{eq:14-12}所示: \item {\small\sffamily\bfseries{长度惩罚因子}}。用译文长度来归一化翻译概率是最常用的方法:对于源语言句子$\seq{x}$和译文句子$\seq{y}$,模型得分$\textrm{score}(\seq{x},\seq{y})$的值会随着译文$\seq{y}$ 的长度增大而减小。为了避免此现象,可以引入一个长度惩罚因子$\textrm{lp}(\seq{y})$,并定义模型得分如公式\eqref{eq:14-12}所示:
\begin{eqnarray} \begin{eqnarray}
\textrm{score}(\seq{x},\seq{y}) &=& \frac{\log \funp{P}(\seq{y}\vert\seq{x})}{\textrm{lp}(\seq{y})} \textrm{score}(\seq{x},\seq{y}) &=& \frac{\log \funp{P}(\seq{y}\vert\seq{x})}{\textrm{lp}(\seq{y})}
\label{eq:14-12} \label{eq:14-12}
...@@ -189,7 +189,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -189,7 +189,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\label{eq:14-6} \label{eq:14-6}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$\textrm{cp}(\seq{x},\seq{y}) $表示覆盖度模型,它度量了译文对源语言每个单词的覆盖程度。$\textrm{cp}(\seq{x},\seq{y}) $的定义中,$\beta$是一需要自行设置的超参数,$a_{ij}$表示源语言第$i$个位置与译文 第$j$个位置的注意力权重,这样$\sum \limits_{j}^{|\seq{y}|} a_{ij}$就可以用来衡量源语言第$i$个单词中的信息被翻译的程度,如果它大于1,表明翻译多了;如果小于1,表明翻译少了。公式\eqref{eq:14-6}会惩罚那些欠翻译的翻译假设。对覆盖度模型的一种改进形式是\upcite{li-etal-2018-simple} \noindent 其中,$\textrm{cp}(\seq{x},\seq{y}) $表示覆盖度模型,它度量了译文对源语言每个单词的覆盖程度。$\textrm{cp}(\seq{x},\seq{y}) $的定义中,$\beta$是一需要自行设置的超参数,$a_{ij}$表示源语言第$i$个位置与译文 第$j$个位置的注意力权重,这样$\sum \limits_{j}^{|\seq{y}|} a_{ij}$就可以用来衡量源语言第$i$个单词中的信息被翻译的程度,如果它大于1,则表明出现了过翻译问题;如果小于1,则表明出现了欠翻译问题。公式\eqref{eq:14-6}会惩罚那些欠翻译的翻译假设。对覆盖度模型的一种改进形式是\upcite{li-etal-2018-simple}
\begin{eqnarray} \begin{eqnarray}
\textrm{cp}(\seq{x},\seq{y}) &=& \sum_{i=1}^{|\seq{x}|} \log( \textrm{max} ( \sum_{j}^{|\seq{y}|} a_{ij},\beta)) \textrm{cp}(\seq{x},\seq{y}) &=& \sum_{i=1}^{|\seq{x}|} \log( \textrm{max} ( \sum_{j}^{|\seq{y}|} a_{ij},\beta))
\label{eq:14-7} \label{eq:14-7}
...@@ -205,13 +205,13 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -205,13 +205,13 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{搜索终止条件} \subsection{搜索终止条件}
\parinterval 在机器翻译推断中,何时终止搜索是一个非常基础的问题。如{\chaptertwo}所述,系统研发者一方面希望尽可能遍历更大的搜索空间,找到更好的结果,另一方面也希望在尽可能短的时间内得到结果。这时搜索的终止条件就是一个非常关键的指标。在束搜索中有很多终止条件可以使用,比如,在生成一定数量的译文之后就终止搜索,或者当最佳译文与排名第二的译文之间的分差距超过一个阈值时就终止搜索等。 \parinterval 在机器翻译推断中,何时终止搜索是一个非常基础的问题。如{\chaptertwo}所述,系统研发者一方面希望尽可能遍历更大的搜索空间,找到更好的结果,另一方面也希望在尽可能短的时间内得到结果。这时搜索的终止条件就是一个非常关键的指标。在束搜索中有很多终止条件可以使用,比如,在生成一定数量的译文之后就终止搜索,或者当最佳译文与排名第二的译文之间的分差距超过一个阈值时就终止搜索等。
\parinterval 在统计机器翻译中,搜索的终止条件相对容易设计。因为所有的翻译结果都可以用相同步骤的搜索过程生成,比如,在CYK推断中搜索的步骤仅与构建的分析表大小有关。在神经机器翻译中,这个问题要更加复杂。当系统找到一个完整的译文之后,可能还有很多译文没有被生成完,这时就面临着一个问题\ \dash \ 如何决定是否继续搜索。 \parinterval 在统计机器翻译中,搜索的终止条件相对容易设计。因为所有的翻译结果都可以用相同步骤的搜索过程生成,比如,在CYK推断中搜索的步骤仅与构建的分析表大小有关。在神经机器翻译中,这个问题要更加复杂。当系统找到一个完整的译文之后,可能还有很多译文没有被生成完,这时就面临着一个问题\ \dash \ 如何决定是否继续搜索。
\parinterval 针对这些问题,研究人员设计了很多新的方法。比如,可以在束搜索中使用启发性信息让搜索尽可能早地停止,同时保证搜索结果是“最优的”\upcite{DBLP:conf/emnlp/HuangZM17}。也可以将束搜索建模为优化问题\upcite{Wiseman2016SequencetoSequenceLA,DBLP:conf/emnlp/Yang0M18},进而设计出新的终止条件\upcite{Ma2019LearningTS}。很多开源机器翻译系统也都使用了简单有效的终止条件,比如,在OpenNMT 系统中当搜索束中当前最好的假设生成了完整的译文搜索就会停止\upcite{KleinOpenNMT},在RNNSearch系统中当找到预设数量的译文时搜索就会停止,同时在这个过程中会不断减小搜索束的大小\upcite{bahdanau2014neural} \parinterval 针对这些问题,研究人员设计了很多新的方法。比如,可以在束搜索中使用启发性信息让搜索尽可能早地停止,同时保证搜索结果是“最优的”\upcite{DBLP:conf/emnlp/HuangZM17}。也可以将束搜索建模为优化问题\upcite{Wiseman2016SequencetoSequenceLA,DBLP:conf/emnlp/Yang0M18},进而设计出新的终止条件\upcite{Ma2019LearningTS}。很多开源机器翻译系统也都使用了简单有效的终止条件,比如,在OpenNMT 系统中当搜索束中当前最好的假设生成了完整的译文搜索就会停止\upcite{KleinOpenNMT},在RNNSearch系统中当找到预设数量的译文时搜索就会停止,同时在这个过程中会不断减小搜索束的大小\upcite{bahdanau2014neural}
\parinterval 实际上,设计搜索终止条件反映了搜索时延和搜索精度的一种折中\upcite{Eisner2011LearningST,Jiang2012LearnedPF}。在很多应用中,这个问题会非常关键。比如,在同声传译中,对于输入的长文本,何时开始翻译、何时结束翻译都是十分重要的\upcite{Zheng2020OpportunisticDW,Ma2019STACLST}。在很多线上翻译应用中,翻译结果的响应不能超过一定的时间,这时就需要一种{\small\sffamily\bfseries{时间受限的搜索}}\index{时间受限的搜索}(Time-constrained Search)\index{Time-constrained Search}策略\upcite{DBLP:conf/emnlp/StahlbergHSB17} \parinterval 实际上,设计搜索终止条件反映了搜索时延和搜索精度的一种折中\upcite{Eisner2011LearningST,Jiang2012LearnedPF}。在很多应用中,这个问题会非常关键。比如,在同声传译中,对于输入的长文本,何时开始翻译、何时结束翻译都是十分重要的\upcite{Zheng2020OpportunisticDW,Ma2019STACLST}。在很多线上翻译应用中,翻译结果的响应不能超过一定的时间,这时就需要一种{\small\sffamily\bfseries{时间受限搜索}}\index{时间受限搜索}(Time-constrained Search)\index{Time-constrained Search}策略\upcite{DBLP:conf/emnlp/StahlbergHSB17}
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -219,7 +219,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -219,7 +219,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{译文多样性} \subsection{译文多样性}
\parinterval 机器翻译系统的输出并不仅限于单个译文。很多情况下,需要多个译文。比如,译文重排序中通常就需要系统的$n$-best输出,在交互式机器翻译中也往往需要提供多个译文供用户选择\upcite{Peris2017InteractiveNM,Peris2018ActiveLF}。但是,无论是统计机器翻译还是神经机器翻译,都面临一个同样的问题:$n$-best输出中的译文十分相似。实例\ref{eg:14-1}就展示了一个神经机器翻译输出的多个翻译结果,可以看到这些译文的区别很小。这个问题也被看做是机器翻译缺乏译文多样性的问题\upcite{Gimpel2013ASE,Li2016MutualIA,DBLP:conf/emnlp/DuanLXZ09,DBLP:conf/acl/XiaoZZW10,xiao2013bagging} \parinterval 机器翻译系统的输出并不仅限于单个译文。很多情况下,需要多个译文。比如,译文重排序中通常就需要系统的$n$-best输出,在交互式机器翻译中也往往需要提供多个译文供用户选择\upcite{Peris2017InteractiveNM,Peris2018ActiveLF}。但是,无论是统计机器翻译还是神经机器翻译,都面临一个同样的问题:$n$-best输出中的译文十分相似。实例\ref{eg:14-1}就展示了一个神经机器翻译系统输出的多个翻译结果,可以看到这些译文的区别很小。这个问题也被看做是机器翻译缺乏译文多样性的问题\upcite{Gimpel2013ASE,Li2016MutualIA,DBLP:conf/emnlp/DuanLXZ09,DBLP:conf/acl/XiaoZZW10,xiao2013bagging}
\begin{example} \begin{example}
源语言句子:我们/期待/安理会/尽早/就此/作出/决定/ 。 源语言句子:我们/期待/安理会/尽早/就此/作出/决定/ 。
...@@ -251,7 +251,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -251,7 +251,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\parinterval 机器翻译的错误分为两类:搜索错误和模型错误。搜索错误是指由于搜索算法的限制,即使潜在的搜索空间中有更好的解,模型也无法找到。比较典型的例子是,在对搜索结果进行剪枝的时候,如果剪枝过多,找到的结果很有可能不是最优的,这时就出现了搜索错误。而模型错误则是指由于模型学习能力的限制,即使搜索空间中存在最优解,模型也无法将该解排序在前面。 \parinterval 机器翻译的错误分为两类:搜索错误和模型错误。搜索错误是指由于搜索算法的限制,即使潜在的搜索空间中有更好的解,模型也无法找到。比较典型的例子是,在对搜索结果进行剪枝的时候,如果剪枝过多,找到的结果很有可能不是最优的,这时就出现了搜索错误。而模型错误则是指由于模型学习能力的限制,即使搜索空间中存在最优解,模型也无法将该解排序在前面。
\parinterval 在统计机器翻译中,搜索错误可以通过减少剪枝进行缓解。比较简单的方式是增加搜索束宽度,这往往会带来一定的性能提升\upcite{Xiao2016ALA}。也可以对搜索问题进行单独建模,以保证学习到的模型出现更少的搜索错误\upcite{Liu2014SearchAwareTF,Yu2013MaxViolationPA}。但是,在神经机器翻译中,这个问题却表现出不同的现象:在很多神经机器翻译系统中,随着搜索束的增大,系统的BLEU不升反降。图\ref{fig:14-3}展示了神经机器翻译系统中BLEU随搜索束大小的变化曲线,这里为了使该图更加规整直观,横坐标处将束大小进行了取对数操作。这个现象与传统的常识是相违背的,因此也有一些研究尝试解释这个现象\upcite{Stahlberg2019OnNS,Niehues2017AnalyzingNM} \parinterval 在统计机器翻译中,搜索错误可以通过减少剪枝进行缓解。比较简单的方式是增加搜索束宽度,这往往会带来一定的性能提升\upcite{Xiao2016ALA}。也可以对搜索问题进行单独建模,以保证学习到的模型出现更少的搜索错误\upcite{Liu2014SearchAwareTF,Yu2013MaxViolationPA}。但是,在神经机器翻译中,这个问题却表现出不同的现象:在很多神经机器翻译系统中,随着搜索束的增大,系统的BLEU值不升反降。图\ref{fig:14-3}展示了神经机器翻译系统中BLEU值随搜索束大小的变化曲线,这里为了使该图更加规整直观,横坐标处对束大小取对数。这个现象与传统的常识是相违背的,因此也有一些研究尝试解释这个现象\upcite{Stahlberg2019OnNS,Niehues2017AnalyzingNM}
%---------------------------------------------------------------------- %----------------------------------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -281,7 +281,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -281,7 +281,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\parinterval 神经机器翻译需要对输入和输出的单词进行分布式表示。但是,由于真实的词表通常很大,因此计算并保存这些单词的向量表示会消耗较多的计算和存储资源。特别是对于基于Softmax 的输出层,大词表的计算十分耗时。虽然可以通过BPE 和限制词汇表规模的方法降低输出层计算的负担\upcite{DBLP:conf/acl/SennrichHB16a},但是为了获得可接受的翻译品质,词汇表也不能过小,因此输出层的计算代价仍然很高。 \parinterval 神经机器翻译需要对输入和输出的单词进行分布式表示。但是,由于真实的词表通常很大,因此计算并保存这些单词的向量表示会消耗较多的计算和存储资源。特别是对于基于Softmax 的输出层,大词表的计算十分耗时。虽然可以通过BPE 和限制词汇表规模的方法降低输出层计算的负担\upcite{DBLP:conf/acl/SennrichHB16a},但是为了获得可接受的翻译品质,词汇表也不能过小,因此输出层的计算代价仍然很高。
\parinterval 通过改变输出层的结构,可以一定程度上缓解这个问题\upcite{DBLP:conf/acl/JeanCMB15}。一种比较简单的方法是对可能输出的单词进行筛选,即词汇选择。这里,可以利用类似于统计机器翻译的翻译表,获得每个源语言单词最可能的译文。在翻译过程中,利用注意力机制找到每个目标语言位置对应的源语言位置,之后获得这些源语言单词最可能的翻译候选。之后,Softmax 只需要在这个有限的翻译候选单词集合上进行计算,大大降低了输出层的计算量。尤其对于CPU 上的系统,这个方法往往会带来明显的速度提升。图\ref{fig:14-4}对比了标准Softmax与词汇选择方法中的Softmax。 \parinterval 通过改变输出层的结构,可以一定程度上缓解这个问题\upcite{DBLP:conf/acl/JeanCMB15}。一种比较简单的方法是对可能输出的单词进行筛选,即词汇选择。这里,可以利用类似于统计机器翻译的翻译表,获得每个源语言单词最可能的译文。在翻译过程中,利用注意力机制找到每个目标语言位置对应的源语言位置,之后获得这些源语言单词最可能的翻译候选。之后,只需要在这个有限的翻译候选单词集合上进行Softmax计算,此方法大大降低了输出层的计算量。尤其对于CPU 上的系统,这个方法往往会带来明显的速度提升。图\ref{fig:14-4}对比了标准Softmax与词汇选择方法中的Softmax。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -302,7 +302,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -302,7 +302,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\parinterval 消除不必要的计算是加速机器翻译系统的另一种方法。比如,在统计机器翻译时代,假设重组就是一种典型的避免冗余计算的手段(见{\chapterseven})。在神经机器翻译中,消除冗余计算的一种简单有效的方法是对解码器的注意力结果进行缓存。以Transformer为例,在生成每个译文时,Transformer 模型会对当前位置之前的所有位置进行自注意力操作,但是这些计算里只有和当前位置相关的计算是“新” 的,前面位置之间的注意力结果已经在之前的解码步骤里计算过,因此可以对其进行缓存。 \parinterval 消除不必要的计算是加速机器翻译系统的另一种方法。比如,在统计机器翻译时代,假设重组就是一种典型的避免冗余计算的手段(见{\chapterseven})。在神经机器翻译中,消除冗余计算的一种简单有效的方法是对解码器的注意力结果进行缓存。以Transformer为例,在生成每个译文时,Transformer 模型会对当前位置之前的所有位置进行自注意力操作,但是这些计算里只有和当前位置相关的计算是“新” 的,前面位置之间的注意力结果已经在之前的解码步骤里计算过,因此可以对其进行缓存。
\parinterval 此外,由于Transformer 模型较为复杂,还存在很多冗余。比如,Transformer 的每一层会包含自注意力机制、层正则化、残差连接、前馈神经网络等多种不同的结构。同时,不同结构之间还会包含一些线性变换。多层Transformer模型会更加复杂。但是,这些层可能在做相似的事情,甚至有些计算根本就是重复的。图\ref{fig:14-5}中展示了解码器自注意力和编码-解码注意力中不同层的注意力权重的相似性,这里的相似性利用Jensen-Shannon散度进行度量\upcite{61115}。可以看到,自注意力中,2-6层之间的注意力权重的分布非常相似。编码-解码注意力也有类似的现象,临近的层之间有非常相似的注意力权重。这个现象说明:在多层神经网络中有些计算是冗余的,因此很自然的想法是消除这些冗余使得机器翻译变得更“轻”。 \parinterval 此外,由于Transformer 模型较为复杂,还存在很多冗余。比如,Transformer 的每一层会包含自注意力机制、层正则化、残差连接、前馈神经网络等多种不同的结构,不同结构之间还会包含一些线性变换。多层Transformer模型会更加复杂。但是,这些层可能在做相似的事情,甚至有些计算根本就是重复的。图\ref{fig:14-5}中展示了解码器自注意力和编码-解码注意力中不同层的注意力权重的相似性,这里的相似性利用Jensen-Shannon散度进行度量\upcite{61115}。可以看到,自注意力中,2-6层之间的注意力权重的分布非常相似。编码-解码注意力也有类似的现象,临近的层之间有非常相似的注意力权重。这个现象说明:在多层神经网络中有些计算是冗余的,因此很自然的想法是消除这些冗余使得机器翻译变得更“轻”。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -337,7 +337,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -337,7 +337,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\parinterval 比较简单的做法是把解码器的网络变得更“浅”、更“窄”。所谓浅网络是指使用更少的层构建神经网络,比如,使用3 层,甚至1 层网络的Transformer 解码器。所谓窄网络是指将网络中某些层中神经元的数量减少。不过,直接训练这样的小模型会造成翻译品质下降。这时会考虑使用知识蒸馏等技术来提升小模型的品质(见{\chapterthirteen})。 \parinterval 比较简单的做法是把解码器的网络变得更“浅”、更“窄”。所谓浅网络是指使用更少的层构建神经网络,比如,使用3 层,甚至1 层网络的Transformer 解码器。所谓窄网络是指将网络中某些层中神经元的数量减少。不过,直接训练这样的小模型会造成翻译品质下降。这时会考虑使用知识蒸馏等技术来提升小模型的品质(见{\chapterthirteen})。
\parinterval 化简Transformer 解码器的神经网络也可以提高推断速度。比如,可以使用平均注意力机制代替原始Transformer 中的自注意力机制\upcite{DBLP:journals/corr/abs-1805-00631},也可以使用运算更轻的卷积操作代替注意力模块\upcite{Wu2019PayLA}。前面提到的基于共享注意力机制的模型也是一种典型的轻量模型\upcite{Xiao2019SharingAW}。这些方法本质上也是对注意力模型结构的优化,这类思想在近几年也受到了很多关注 \upcite{Kitaev2020ReformerTE,Katharopoulos2020TransformersAR,DBLP:journals/corr/abs-2006-04768},在{\chapterfifteen}也会有进一步讨论。 \parinterval 化简Transformer 解码器的神经网络也可以提高推断速度。比如,可以使用平均注意力机制代替原始Transformer 模型中的自注意力机制\upcite{DBLP:journals/corr/abs-1805-00631},也可以使用运算更轻的卷积操作代替注意力模块\upcite{Wu2019PayLA}。前面提到的基于共享注意力机制的模型也是一种典型的轻量模型\upcite{Xiao2019SharingAW}。这些方法本质上也是对注意力模型结构的优化,这类思想在近几年也受到了很多关注 \upcite{Kitaev2020ReformerTE,Katharopoulos2020TransformersAR,DBLP:journals/corr/abs-2006-04768},在{\chapterfifteen}也会有进一步讨论。
\parinterval 此外,使用异构神经网络也是一种平衡精度和速度的有效方法。在很多研究中发现,基于Transformer 的编码器对翻译品质的影响更大,而解码器的作用会小一些。因此,一种想法是使用速度更快的解码器结构,比如,用基于循环神经网络的解码器代替Transformer模型中基于注意力机制的解码器\upcite{Chen2018TheBO}。这样,既能发挥Transformer 在编码上的优势,同时也能利用循环神经网络在解码器速度上的优势。使用类似的思想,也可以用卷积神经网络等结构进行解码器的设计。 \parinterval 此外,使用异构神经网络也是一种平衡精度和速度的有效方法。在很多研究中发现,基于Transformer 的编码器对翻译品质的影响更大,而解码器的作用会小一些。因此,一种想法是使用速度更快的解码器结构,比如,用基于循环神经网络的解码器代替Transformer模型中基于注意力机制的解码器\upcite{Chen2018TheBO}。这样,既能发挥Transformer 在编码上的优势,同时也能利用循环神经网络在解码器速度上的优势。使用类似的思想,也可以用卷积神经网络等结构进行解码器的设计。
...@@ -376,7 +376,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -376,7 +376,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{低精度运算} \subsection{低精度运算}
\parinterval 降低运算强度也是计算密集型任务的加速手段之一。标准的神经机器翻译系统大多基于单精度浮点运算。从计算机的硬件发展看,单精度浮点运算还是很“重” 的。当计算能容忍一些精度损失的时候,可以考虑降低运算精度来达到加速的目的。比如: \parinterval 降低运算强度也是计算密集型任务的加速手段之一。标准的神经机器翻译系统大多基于单精度浮点运算。从计算机的硬件发展看,单精度浮点运算还是很“重” 的。当计算能容忍一些精度损失的时候,可以考虑使用以下方法降低运算精度来达到加速的目的。
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -398,10 +398,10 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -398,10 +398,10 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\end{tabular} \end{tabular}
\label{tab:14-3} \label{tab:14-3}
\end{table} \end{table}
\footnotetext{表中比较了几种通用数据类型的乘法运算速度,不同硬件和架构上不同类型的数据的计算速度略有不同。总体来看整型数据类型和浮点型数据相比具有显著的计算速度优势,INT4相比于FP32数据类型的计算最高能达到8倍的速度提升。} \footnotetext{表中比较了几种通用数据类型的乘法运算速度,不同硬件和架构上不同类型的数据的计算速度略有不同。总体来看整型数据和浮点型数据相比具有显著的计算速度优势,INT4相比于FP32数据类型的计算最高能达到8倍的速度提升。}
%-------------------------------------- %--------------------------------------
\parinterval 实际上,低精度运算的另一个好处是可以减少模型存储的体积。比如,如果要把机器翻译模型作为软件的一部分打包存储,这时可以考虑用低精度的方式保存模型参数,使用时再恢复成原始精度的参数。值得注意的是,参数的离散化表示(比如整型表示)的一个极端例子是{\small\sffamily\bfseries{二值网络}}\index{二值网络}(Binarized Neural Networks)\index{Binarized Neural Networks}\upcite{DBLP:conf/nips/HubaraCSEB16},即只用−1和+1 表示神经网络的每个参数\footnote{也存在使用0或1表示神经网络参数的二值网络。}。二值化可以被看作是一种极端的量化手段。不过,这类方法还没有在机器翻译中得到大规模验证。 \parinterval 实际上,低精度运算的另一个好处是可以减少模型存储的体积。比如,如果要把机器翻译模型作为软件的一部分打包存储,这时可以考虑用低精度的方式保存模型参数,使用时再恢复成原始精度的参数。值得注意的是,参数的离散化表示(比如整型表示)的一个极端例子是{\small\sffamily\bfseries{二值神经网络}}\index{二值神经网络}(Binarized Neural Networks)\index{Binarized Neural Networks}\upcite{DBLP:conf/nips/HubaraCSEB16},即只用−1和+1 表示神经网络的每个参数\footnote{也存在使用0或1表示神经网络参数的二值神经网络。}。二值化可以被看作是一种极端的量化手段。不过,这类方法还没有在机器翻译中得到大规模验证。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SECTION % NEW SECTION
...@@ -409,7 +409,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -409,7 +409,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\sectionnewpage \sectionnewpage
\section{非自回归翻译} \section{非自回归翻译}
\parinterval 目前大多数神经机器翻译模型都使用自左向右逐词生成译文的策略,即第$j$个目标语言单词的生成依赖于先前生成的$j-1$ 个词。这种翻译方式也被称作{\small\sffamily\bfseries{自回归解码}}\index{自回归解码}(Autoregressive Decoding)\index{Autoregressive Decoding}。虽然以Transformer为代表的模型使得训练过程高度并行化,加快了训练速度。但由于推断过程自回归的特性,模型无法同时生成译文中的所有单词,导致模型的推断过程非常缓慢,这对于神经机器翻译的实际应用是个很大的挑战。因此,如何设计一个在训练和推断阶段都能够并行化的模型是目前研究的热点之一。 \parinterval 目前大多数神经机器翻译模型都使用自左向右逐词生成译文的策略,即第$j$个目标语言单词的生成依赖于先前生成的$j-1$ 个词。这种翻译方式也被称作{\small\sffamily\bfseries{自回归解码}}\index{自回归解码}(Autoregressive Decoding)\index{Autoregressive Decoding}。虽然以Transformer为代表的模型使得训练过程高度并行化,加快了训练速度。但由于推断过程自回归的特性,模型无法同时生成译文中的所有单词,导致模型的推断过程非常缓慢,这对于神经机器翻译的实际应用是个很大的挑战。因此,如何设计一个在训练和推断阶段都能够并行化进行的模型是目前研究的热点之一。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -417,7 +417,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -417,7 +417,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{自回归 vs 非自回归} \subsection{自回归 vs 非自回归}
\parinterval 目前主流的神经机器翻译的推断是一种{\small\sffamily\bfseries{自回归翻译}}\index{自回归翻译}(Autoregressive Translation)\index{Autoregressive Translation}过程。所谓自回归是一种描述时间序列生成的方式:对于目标序列$\seq{y}=\{y_1,\dots,y_n\}$,如果$j$时刻状态$y_j$的生成依赖于之前的状态$\{y_1,\dots,y_{j-1}\}$,而且$y_j$$\{y_1,\dots,y_{j-1}\}$构成线性关系,那么称目标序列$\seq{y}$的生成过程是自回归的。神经机器翻译借用了这个概念,但是并不要求$y_j$$\{y_1,\dots,y_{j-1}\}$构成线性关系,\ref{sec:14-2-1}节提到的自左向右翻译模型和自右向左翻译模型都属于自回归翻译模型。自回归模型在机器翻译任务上也有很好的表现,特别是配合束搜索往往能够有效地寻找近似最优译文。但是,由于解码器的每个步骤必须顺序地而不是并行地运行,自回归翻译模型会阻碍不同译文单词生成的并行化。特别是在GPU 上,翻译的自回归性会大大降低计算的并行度和设备利用率。 \parinterval 目前主流的神经机器翻译的推断是一种{\small\sffamily\bfseries{自回归翻译}}\index{自回归翻译}(Autoregressive Translation)\index{Autoregressive Translation}过程。所谓自回归是一种描述时间序列生成的方式:对于目标序列$\seq{y}=\{y_1,\dots,y_n\}$,如果$j$时刻状态$y_j$的生成依赖于之前的状态$\{y_1,\dots,y_{j-1}\}$,而且$y_j$$\{y_1,\dots,y_{j-1}\}$构成线性关系,那么称目标序列$\seq{y}$的生成过程是自回归的。神经机器翻译借用了这个概念,但是并不要求$y_j$$\{y_1,\dots,y_{j-1}\}$构成线性关系,\ref{sec:14-2-1}节提到的自左向右翻译模型和自右向左翻译模型都属于自回归翻译模型。自回归翻译模型在机器翻译任务上也有很好的表现,特别是配合束搜索往往能够有效地寻找近似最优译文。但是,由于解码器的每个步骤必须顺序地而不是并行地运行,自回归翻译模型会阻碍不同译文单词生成的并行化。特别是在GPU 上,翻译的自回归性会大大降低计算的并行度和设备利用率。
\parinterval 对于这个问题,研究人员也考虑移除翻译的自回归性,进行{\small\sffamily\bfseries{非自回归翻译}}\index{非自回归翻译}(Non-Autoregressive Translation,NAT)\index{Non-Autoregressive Translation}\upcite{Gu2017NonAutoregressiveNM}。一个简单的非自回归翻译模型将问题建模为公式\eqref{eq:14-9} \parinterval 对于这个问题,研究人员也考虑移除翻译的自回归性,进行{\small\sffamily\bfseries{非自回归翻译}}\index{非自回归翻译}(Non-Autoregressive Translation,NAT)\index{Non-Autoregressive Translation}\upcite{Gu2017NonAutoregressiveNM}。一个简单的非自回归翻译模型将问题建模为公式\eqref{eq:14-9}
\begin{eqnarray} \begin{eqnarray}
...@@ -433,7 +433,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -433,7 +433,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{非自回归翻译模型的结构} \subsection{非自回归翻译模型的结构}
\parinterval 在介绍非自回归模型的具体结构之前,先来看看如何实现一个简单的非自回归翻译模型。这里用标准的Transformer来举例。首先为了一次性生成所有的词,需要丢弃解码器对未来信息屏蔽的矩阵,从而去掉模型的自回归性。此外,还要考虑生成译文的长度。在自回归模型中,每步的输入是上一步解码出的结果,当预测到终止符<eos>时,序列的生成就自动停止了,然而非自回归模型却没有这样的特性,因此还需要一个长度预测器来预测出其长度,之后再用这个长度得到每个位置的表示,将其作为解码器的输入,进而完成整个序列的生成。 \parinterval 在介绍非自回归翻译模型的具体结构之前,先来看看如何实现一个简单的非自回归翻译模型。这里用标准的Transformer来举例。首先为了一次性生成所有的词,需要丢弃解码器对未来信息屏蔽的矩阵,从而去掉模型的自回归性。此外,还要考虑生成译文的长度。在自回归翻译模型中,每步的输入是上一步解码出的结果,当预测到终止符<eos>时,序列的生成就自动停止了,然而非自回归翻译模型却没有这样的特性,因此还需要一个长度预测器来预测出其长度,之后再用这个长度得到每个位置的表示,将其作为解码器的输入,进而完成整个序列的生成。
%---------------------------------------------------------------------- %----------------------------------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -444,30 +444,29 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -444,30 +444,29 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\end{figure} \end{figure}
%---------------------------------------------------------------------- %----------------------------------------------------------------------
\parinterval\ref{fig:14-12}对比了自回归翻译模型和简单的非自回归翻译模型。可以看到这种自回归翻译模型可以一次性生成完整的译文。不过,高并行性也带来了翻译品质的下降。比如,在IWSLT 英德等数据上的BLEU[\%] 值只有个位数,而现在最好的自回归模型已经能够达到30左右的BLEU得分。这是因为每个位置词的预测只依赖于源语言句子$\seq{x}$,使得预测不准确。需要注意的是,图\ref{fig:14-12}(b)中将位置编码作为非自回归模型解码器的输入只是一个最简单的例子,在真实的系统中,非自回归解码器的输入一般是拷贝的源语言句子词嵌入与位置编码的融合。 \parinterval\ref{fig:14-12}对比了自回归翻译模型和简单的非自回归翻译模型。可以看到这种自回归翻译模型可以一次性生成完整的译文。不过,高并行性也带来了翻译品质的下降。例如,对于IWSLT英德等数据,非自回归翻译模型的BLEU值只有个位数,而现在最好的自回归模型的BLEU值已经能够达到30左右。这是因为每个位置词的预测只依赖于源语言句子$\seq{x}$,使得预测不准确。需要注意的是,图\ref{fig:14-12}(b)中将位置编码作为非自回归翻译模型解码器的输入只是一个最简单的例子,在真实的系统中,非自回归解码器的输入一般是复制编码器端的输入,即源语言句子词嵌入与位置编码的融合。
\parinterval 完全独立地对每个词建模,会出现什么问题呢?来看一个例子,将汉语句子“干/得/好/!”翻译成英文,可以翻译成“Good job !”或者“Well done !”。假设生成这两种翻译的概率是相等的,即一半的概率是“Good job !”,另一半的概率是“Well done !”。由于非自回归翻译模型的条件独立性假设,推断时第一个词“Good”和“Well”的概率是差不多大的,如果第二个词“job”和“done”的概率也差不多大,会使得模型生成出“Good done !”或者“Well job !”这样错误的翻译,如图\ref{fig:14-13}所示。这便是影响句子质量的关键问题,称之为{\small\sffamily\bfseries{多峰问题}}\index{多峰问题}(Multimodality Problem)\index{Multimodality Problem}\upcite{Gu2017NonAutoregressiveNM}。如何有效处理非自回归翻译模型中的多峰问题 是提升非自回归翻译模型质量的关键。
\parinterval 完全独立地对每个词建模,会出现什么问题呢?来看一个例子,将汉语句子“干/得/好/!”翻译成英文,可以翻译成“Good job !”或者“Well done !”。假设生成这两种翻译的概率是相等的,即一半的概率是“Good job !”,另一半的概率是“Well done !”。由于非自回归模型的条件独立性假设,推断时第一个词“Good”和“Well”的概率是差不多大的,如果第二个词“job”和“done”的概率也差不多大,会使得模型生成出“Good done !”或者“Well job !”这样错误的翻译,如图\ref{fig:14-13}所示。这便是影响句子质量的关键问题,称之为{\small\sffamily\bfseries{多峰问题}}\index{多峰问题}(Multimodality Problem)\index{Multimodality Problem}\upcite{Gu2017NonAutoregressiveNM}。如何有效处理非自回归模型中的多峰问题 是提升非自回归模型质量的关键。
%---------------------------------------------------------------------- %----------------------------------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter14/Figures/figure-multi-modality} \input{./Chapter14/Figures/figure-multi-modality}
\caption{非自回归模型中的多峰问题} \caption{非自回归翻译模型中的多峰问题}
\label{fig:14-13} \label{fig:14-13}
\end{figure} \end{figure}
%---------------------------------------------------------------------- %----------------------------------------------------------------------
\parinterval 因此,非自回归翻译的研究大多集中在针对以上问题的求解。有三个角度:使用繁衍率预测译文长度、使用句子级知识蒸馏来降低学习难度、使用自回归模型进行翻译候选打分。下面将依次对这些方法进行介绍。 \parinterval 因此,非自回归翻译的研究大多集中在针对以上问题的求解。有三个角度:使用繁衍率预测译文长度、使用句子级知识蒸馏来降低学习难度、使用自回归翻译模型进行翻译候选打分。下面将依次对这些方法进行介绍。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsubsection{1. 基于繁衍率的非自回归模型} \subsubsection{1. 基于繁衍率的非自回归翻译模型}
\parinterval\ref{fig:14-14}给出了基于繁衍率的Transformer非自回归模型的结构\upcite{Gu2017NonAutoregressiveNM},由三个模块组成:编码器,解码器,繁衍率预测器。类似于标准的Transformer模型,这里编码器和解码器都完全由前馈神经网络和多头注意力模块组成。唯一的不同是解码器中新增了位置注意力模块(图\ref{fig:14-14}中被红色虚线框住的模块),用于更好的捕捉目标语言端的位置信息。 \parinterval\ref{fig:14-14}给出了基于繁衍率的Transformer非自回归翻译模型的结构\upcite{Gu2017NonAutoregressiveNM},由三个模块组成:编码器,解码器,繁衍率预测器。类似于标准的Transformer模型,这里编码器和解码器都完全由前馈神经网络和多头注意力模块组成。唯一的不同是解码器中新增了位置注意力模块(图\ref{fig:14-14}中被红色虚线框住的模块),用于更好的捕捉目标语言端的位置信息。
\parinterval 繁衍率预测器的一个作用是预测整个译文句子的长度,以便并行地生成所有译文单词。可以通过对每个源语言单词计算繁衍率来估计最终译文的长度。具体来说,繁衍率指的是:根据每个源语言单词预测出其对应的目标语言单词的个数(见\chaptersix),如图\ref{fig:14-14}所示,翻译过程中英语单词“We”对应一个汉语单词“我们”,其繁衍率为1。于是,可以得到源语言句子对应的繁衍率序列(图\ref{fig:14-14}中的数字1\ 1\ 2\ 0\ 1),最终译文长度则由源语言单词的繁衍率之和决定。之后将源语言单词按该繁衍率序列进行拷贝,在图中的例子中,将“We”、“totally”、“.”拷贝一次,将"accept"、“it”分别拷贝两次和零次,就得到了最终解码器的输入“We totally accept accept .”。在模型训练阶段,繁衍率序列可以通过外部词对齐工具得到, 用于之后训练繁衍率预测器。但由于外部词对齐系统会出现错误,因此在模型收敛之后,可以对繁衍率预测器进行额外的微调。 \parinterval 繁衍率预测器的一个作用是预测整个译文句子的长度,以便并行地生成所有译文单词。可以通过对每个源语言单词计算繁衍率来估计最终译文的长度。具体来说,繁衍率指的是:根据每个源语言单词预测出其对应的目标语言单词的个数(见\chaptersix),如图\ref{fig:14-14}所示,翻译过程中英语单词“We”对应一个汉语单词“我们”,其繁衍率为1。于是,可以得到源语言句子对应的繁衍率序列(图\ref{fig:14-14}中的数字1\ 1\ 2\ 0\ 1),最终译文长度则由源语言单词的繁衍率之和决定。之后将源语言单词按该繁衍率序列进行拷贝,在图中的例子中,将“We”、“totally”、“.”拷贝一次,将"accept"、“it”分别拷贝两次和零次,就得到了最终解码器的输入“We totally accept accept .”。在模型训练阶段,繁衍率序列可以通过外部词对齐工具得到, 用于之后训练繁衍率预测器。但由于外部词对齐系统会出现错误,因此在模型收敛之后,可以对繁衍率预测器进行额外的微调。
...@@ -475,7 +474,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -475,7 +474,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter14/Figures/figure-reproduction-rate} \input{./Chapter14/Figures/figure-reproduction-rate}
\caption{基于繁衍率的非自回归模型} \caption{基于繁衍率的非自回归翻译模型}
\label{fig:14-14} \label{fig:14-14}
\end{figure} \end{figure}
%---------------------------------------------------------------------- %----------------------------------------------------------------------
...@@ -490,15 +489,15 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -490,15 +489,15 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsubsection{2. 句子级知识蒸馏} \subsubsection{2. 句子级知识蒸馏}
\parinterval 知识蒸馏的基本思路是把教师模型的知识传递给学生模型,让学生模型可以更好地学习(见\chapterthirteen)。通过这种方法,可以降低非自回归模型的学习难度。具体来说,可以让自回归模型作为“教师”,非自回归模型作为“学生”。把自回归神经机器翻译模型生成的句子作为新的训练样本,送给非自回归机器翻译模型进行学习\upcite{Lee2018DeterministicNN,Zhou2020UnderstandingKD,Guo2020FineTuningBC}。有研究发现自回归模型生成的结果的“确定性”更高,也就是不同句子中相同源语言片段翻译的多样性相对低一些\upcite{Gu2017NonAutoregressiveNM}。虽然从人工翻译的角度看,这可能并不是理想的译文,但是使用这样的译文可以在一定程度上缓解多峰问题。因为,经过训练的自回归模型会始终将相同的源语言句子翻译成相同的译文。这样得到的数据集噪声更少,能够降低非自回归模型学习的难度。此外,相比人工标注的译文,自回归模型输出的译文更容易让模型进行学习,这也是句子级知识蒸馏有效的原因之一。 \parinterval 知识蒸馏的基本思路是把教师模型的知识传递给学生模型,让学生模型可以更好地学习(见\chapterthirteen)。通过这种方法,可以降低非自回归翻译模型的学习难度。具体来说,可以让自回归翻译模型作为“教师”,非自回归翻译模型作为“学生”。把自回归翻译模型生成的句子作为新的训练样本,送给非自回归翻译模型进行学习\upcite{Lee2018DeterministicNN,Zhou2020UnderstandingKD,Guo2020FineTuningBC}。有研究发现自回归翻译模型生成的结果的“确定性”更高,也就是不同句子中相同源语言片段翻译的多样性相对低一些\upcite{Gu2017NonAutoregressiveNM}。虽然从人工翻译的角度看,这可能并不是理想的译文,但是使用这样的译文可以在一定程度上缓解多峰问题。因为,经过训练的自回归翻译模型会始终将相同的源语言句子翻译成相同的译文。这样得到的数据集噪声更少,能够降低非自回归翻译模型学习的难度。此外,相比人工标注的译文,自回归翻译模型输出的译文更容易让模型进行学习,这也是句子级知识蒸馏有效的原因之一。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsubsection{3.自回归模型打分} \subsubsection{3.自回归翻译模型打分}
\parinterval 通过采样不同的繁衍率序列,可以得到多个不同的翻译候选。之后,把这些不同的译文再交给自回归模型来评分,选择一个最好的结果作为最终的翻译结果。通常,这种方法能够很有效地提升非自回归翻译模型的译文质量,并且保证较高的推断速度\upcite{Gu2017NonAutoregressiveNM,Wei2019ImitationLF,Guo2019NonAutoregressiveNM,Wang2019NonAutoregressiveMT,Ma2019FlowSeqNC}。但是,缺点是需要同时部署自回归和非自回归两套系统。 \parinterval 通过采样不同的繁衍率序列,可以得到多个不同的翻译候选。之后,把这些不同的译文再交给自回归翻译模型来评分,选择一个最好的结果作为最终的翻译结果。通常,这种方法能够很有效地提升非自回归翻译模型的译文质量,并且保证较高的推断速度\upcite{Gu2017NonAutoregressiveNM,Wei2019ImitationLF,Guo2019NonAutoregressiveNM,Wang2019NonAutoregressiveMT,Ma2019FlowSeqNC}。但是,缺点是需要同时部署自回归翻译和非自回归翻译两套系统。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSECTION % NEW SUBSECTION
...@@ -506,11 +505,11 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -506,11 +505,11 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{更好的训练目标} \subsection{更好的训练目标}
\parinterval 虽然非自回归翻译可以显著提升翻译速度,但是很多情况下其翻译质量还是低于传统的自回归翻译\upcite{Gu2017NonAutoregressiveNM,Kaiser2018FastDI,Guo2020FineTuningBC}。因此,很多工作致力于缩小自回归模型和非自回归模型的性能差距\upcite{Ran2020LearningTR,Tu2020ENGINEEI,Shu2020LatentVariableNN} \parinterval 虽然非自回归翻译可以显著提升翻译速度,但是很多情况下其翻译质量还是低于传统的自回归翻译\upcite{Gu2017NonAutoregressiveNM,Kaiser2018FastDI,Guo2020FineTuningBC}。因此,很多工作致力于缩小自回归翻译模型和非自回归翻译模型的性能差距\upcite{Ran2020LearningTR,Tu2020ENGINEEI,Shu2020LatentVariableNN}
\parinterval 一种直接的方法是层级知识蒸馏\upcite{Li2019HintBasedTF}。由于自回归模型和非自回归模型的结构相差不大,因此可以将翻译质量更高的自回归模型作为“教师”,通过给非自回归模型提供监督信号,使其逐块地学习前者的分布。研究人员发现了两点非常有意思的现象:1)非自回归模型容易出现“重复翻译”的现象,这些相邻的重复单词所对应的位置的隐藏状态非常相似。2)非自回归模型的注意力分布比自回归模型的分布更加尖锐。这两点发现启发了研究人员使用自回归模型中的隐层状态和注意力矩阵等中间表示来指导非自回归模型的学习过程。可以计算两个模型隐层状态的距离以及注意力矩阵的KL散度\footnote{KL散度即相对熵。},将它们作为额外的损失指导非自回归模型的训练。类似的做法也出现在基于模仿学习的方法中\upcite{Wei2019ImitationLF},它也可以被看作是对自回归模型不同层行为的模拟。不过,基于模仿学习的方法会使用更复杂的模块来完成自回归模型对非自回归模型的指导,比如,在自回归模型和非自回归模型中都使用一个额外的神经网络,用于传递自回归模型提供给非自回归模型的层级监督信号。 \parinterval 一种直接的方法是层级知识蒸馏\upcite{Li2019HintBasedTF}。由于自回归翻译模型和非自回归翻译模型的结构相差不大,因此可以将翻译质量更高的自回归翻译模型作为“教师”,通过给非自回归翻译模型提供监督信号,使其逐块地学习前者的分布。研究人员发现了两点非常有意思的现象:1)非自回归翻译模型容易出现“重复翻译”的现象,这些相邻的重复单词所对应的位置的隐藏状态非常相似。2)非自回归翻译模型的注意力分布比自回归翻译模型的分布更加尖锐。这两点发现启发了研究人员使用自回归翻译模型中的隐层状态和注意力矩阵等中间表示来指导非自回归翻译模型的学习过程。可以计算两个模型隐层状态的距离以及注意力矩阵的KL散度\footnote{KL散度即相对熵。},将它们作为额外的损失指导非自回归翻译模型的训练。类似的做法也出现在基于模仿学习的方法中\upcite{Wei2019ImitationLF},它也可以被看作是对自回归翻译模型不同层行为的模拟。不过,基于模仿学习的方法会使用更复杂的模块来完成自回归翻译模型对非自回归翻译模型的指导,比如,在自回归翻译模型和非自回归翻译模型中都使用一个额外的神经网络,用于传递自回归翻译模型提供给非自回归翻译模型的层级监督信号。
\parinterval 此外,也可以使用基于正则化因子的方法\upcite{Wang2019NonAutoregressiveMT}。非自回归模型的翻译结果中存在着两种非常严重的错误:重复翻译和不完整的翻译。重复翻译问题是因为解码器隐层状态中相邻的两个位置过于相似,因此翻译出来的单词也一样。对于不完整翻译,即欠翻译问题,通常是由于非自回归模型在翻译的过程中丢失了一些源语言句子的信息。针对这两个问题,可以通过在相邻隐层状态间添加相似度约束来计算一个重构损失。具体实践时,对于翻译$\seq{x}\to\seq{y}$,通过一个反向的自回归模型再将$\seq{y}$翻译成$\seq{x'}$,最后计算$\seq{x}$$\seq{x'}$的差异性作为损失。 \parinterval 此外,也可以使用基于正则化因子的方法\upcite{Wang2019NonAutoregressiveMT}。非自回归翻译模型的翻译结果中存在着两种非常严重的错误:重复翻译和不完整的翻译。重复翻译问题是因为解码器隐层状态中相邻的两个位置过于相似,因此翻译出来的单词也一样。对于不完整翻译,即欠翻译问题,通常是由于非自回归翻译模型在翻译的过程中丢失了一些源语言句子的信息。针对这两个问题,可以通过在相邻隐层状态间添加相似度约束来计算一个重构损失。具体实践时,对于翻译$\seq{x}\to\seq{y}$,通过一个反向的自回归翻译模型再将$\seq{y}$翻译成$\seq{x'}$,最后计算$\seq{x}$$\seq{x'}$的差异性作为损失。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
...@@ -519,7 +518,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -519,7 +518,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{引入自回归模块} \subsection{引入自回归模块}
\parinterval 非自回归翻译消除了序列生成过程中不同位置预测结果间的依赖,在每个位置都进行独立的预测,但这反而会导致翻译质量显著下降,因为缺乏不同单词间依赖关系的建模。因此,也有研究聚焦于在非自回归模型中添加一些自回归组件。 \parinterval 非自回归翻译消除了序列生成过程中不同位置预测结果间的依赖,在每个位置都进行独立的预测,但这反而会导致翻译质量显著下降,因为缺乏不同单词间依赖关系的建模。因此,也有研究聚焦于在非自回归翻译模型中添加一些自回归组件。
\parinterval 一种做法是将句法信息作为目标语言句子的框架\upcite{Akoury2019SyntacticallyST}。具体来说,先自回归地预测出一个目标语言的句法块序列,将句法块作为序列信息的抽象,然后根据句法块序列非自回归地生成所有目标语言单词。如图\ref{fig:14-21}所示,该模型由一个编码器和两个解码器组成。其中编码器和第一个解码器与标准的Transformer模型相同,用来自回归地预测句法树信息;第二个解码器将第一个解码器的句法信息作为输入,之后再非自回归地生成整个译文。在训练过程中,通过使用外部句法分析器获得对句法预测任务的监督信号。虽然可以简单地让模型预测整个句法树,但是这种方法会显著增加自回归步骤的数量,从而增大时间开销。因此,为了维持句法信息与解码时间的平衡,这里预测一些由句法标记和子树大小组成的块标识符(如VP3)而不是整个句法树。关于基于句法的神经机器翻译模型在{\chapterfifteen}还会有进一步讨论。 \parinterval 一种做法是将句法信息作为目标语言句子的框架\upcite{Akoury2019SyntacticallyST}。具体来说,先自回归地预测出一个目标语言的句法块序列,将句法块作为序列信息的抽象,然后根据句法块序列非自回归地生成所有目标语言单词。如图\ref{fig:14-21}所示,该模型由一个编码器和两个解码器组成。其中编码器和第一个解码器与标准的Transformer模型相同,用来自回归地预测句法树信息;第二个解码器将第一个解码器的句法信息作为输入,之后再非自回归地生成整个译文。在训练过程中,通过使用外部句法分析器获得对句法预测任务的监督信号。虽然可以简单地让模型预测整个句法树,但是这种方法会显著增加自回归步骤的数量,从而增大时间开销。因此,为了维持句法信息与解码时间的平衡,这里预测一些由句法标记和子树大小组成的块标识符(如VP3)而不是整个句法树。关于基于句法的神经机器翻译模型在{\chapterfifteen}还会有进一步讨论。
...@@ -527,12 +526,12 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -527,12 +526,12 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter14/Figures/figure-syntax} \input{./Chapter14/Figures/figure-syntax}
\caption{基于句法结构的非自回归模型} \caption{基于句法结构的非自回归翻译模型}
\label{fig:14-21} \label{fig:14-21}
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\parinterval 另一种做法是半自回归地生成译文\upcite{Wang2018SemiAutoregressiveNM}。如图\ref{fig:14-20}所示,自回归模型从左到右依次生成译文,具有“最强”的自回归性;而非自回归模型完全独立的生成每个译文单词,具有“最弱”的自回归性;半自回归模型则是将整个译文分成$k$个块,在块内执行非自回归解码,在块间则执行自回归的解码,能够在每个时间步并行产生多个连续的单词。通过调整块的大小,半自回归模型可以灵活的调整为自回归翻译(当$k$等于1)和非自回归翻译(当$k$大于等于最大的译文长度)。 \parinterval 另一种做法是半自回归地生成译文\upcite{Wang2018SemiAutoregressiveNM}。如图\ref{fig:14-20}所示,自回归翻译模型从左到右依次生成译文,具有“最强”的自回归性;而非自回归翻译模型完全独立的生成每个译文单词,具有“最弱”的自回归性;半自回归翻译模型则是将整个译文分成$k$个块,在块内执行非自回归解码,在块间则执行自回归的解码,能够在每个时间步并行产生多个连续的单词。通过调整块的大小,半自回归翻译模型可以灵活的调整为自回归翻译(当$k$等于1)和非自回归翻译(当$k$大于等于最大的译文长度)。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -543,13 +542,13 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -543,13 +542,13 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\parinterval 还有一种做法引入了轻量级的自回归调序模块\upcite{Ran2019GuidingNN}。为了解决非自回归模型解码搜索空间过大的问题,可以使用调序技术在相对较少的翻译候选上进行自回归模型的计算。如图\ref{fig:14-22}所示,该方法对源语言句子进行重新排列转换成由源语言单词组成但位于目标语言结构中的伪译文,然后将伪译文进一步转换成目标语言以获得最终的翻译。其中,这个调序模块可以是一个轻量自回归模型,例如,一层的循环神经网络。 \parinterval 还有一种做法引入了轻量级的自回归调序模块\upcite{Ran2019GuidingNN}。为了解决非自回归翻译模型解码搜索空间过大的问题,可以使用调序技术在相对较少的翻译候选上进行自回归翻译模型的计算。如图\ref{fig:14-22}所示,该方法对源语言句子进行重新排列转换成由源语言单词组成但位于目标语言结构中的伪译文,然后将伪译文进一步转换成目标语言以获得最终的翻译。其中,这个调序模块可以是一个轻量自回归翻译模型,例如,一层的循环神经网络。
%---------------------------------------------------------------------- %----------------------------------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter14/Figures/figure-reranking} \input{./Chapter14/Figures/figure-reranking}
\caption{引入调序模块的非自回归模型} \caption{引入调序模块的非自回归翻译模型}
\label{fig:14-22} \label{fig:14-22}
\end{figure} \end{figure}
%---------------------------------------------------------------------- %----------------------------------------------------------------------
...@@ -560,7 +559,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -560,7 +559,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{基于迭代精化的非自回归翻译模型} \subsection{基于迭代精化的非自回归翻译模型}
\parinterval 如果一次并行生成整个序列,往往很难捕捉单词之间的关系,而且即便生成了错误的译文单词,这类方法也无法修改。针对这些问题,也可以使用迭代式的生成方式\upcite{Lee2018DeterministicNN,Ghazvininejad2019MaskPredictPD,Kasai2020NonAutoregressiveMT}。这种方法放弃了一次生成最终的译文句子,而是将解码出的译文再重新送给解码器,在每次迭代中来改进之前生成的译文单词,可以理解为句子级的自回归模型。这样做的好处在于,每次迭代的过程中可以利用已经生成的部分翻译结果,来指导其它部分的生成。 \parinterval 如果一次性并行地生成整个译文序列,往往很难捕捉单词之间的关系,而且即便生成了错误的译文单词,这类方法也无法修改。针对这些问题,也可以使用迭代式的生成方式\upcite{Lee2018DeterministicNN,Ghazvininejad2019MaskPredictPD,Kasai2020NonAutoregressiveMT}。这种方法放弃了一次生成最终的译文句子,而是将解码出的译文再重新送给解码器,在每次迭代中来改进之前生成的译文单词,可以理解为句子级的自回归翻译模型。这样做的好处在于,每次迭代的过程中可以利用已经生成的部分翻译结果,来指导其它部分的生成。
\parinterval\ref{fig:14-18}展示了这种方法的简单示例。它拥有一个编码器和$N$个解码器。编码器首先预测出译文的长度,然后将输入$\seq{x}$按照长度复制出$\seq{x'}$作为第一个解码器的输入,之后生成$\seq{y}^{[1]}$作为第一轮迭代的输出。接下来再把$\seq{y}^{[1]}$输入给第二个解码器,然后输出$\seq{y}^{[2]}$,以此类推。那么迭代到什么时候结束呢?一种简单的做法是提前制定好迭代次数,这种方法能够自主地对生成句子的质量和效率进行平衡。另一种称之为“自适应”的方法,具体是通过计算当前生成的句子与上一次生成句子之间的变化量来判断是否停止,例如,使用杰卡德相似系数作为变化量函数\footnote{杰卡德相似系数是衡量有限样本集之间的相似性与差异性的一种指标,杰卡德相似系数值越大,样本相似度越高。}。另外,需要说明的是,图\ref{fig:14-18}中是使用多个解码器的一种逻辑示意。真实的系统仅需要一个解码器,并运行多次,就达到了迭代精化的目的。 \parinterval\ref{fig:14-18}展示了这种方法的简单示例。它拥有一个编码器和$N$个解码器。编码器首先预测出译文的长度,然后将输入$\seq{x}$按照长度复制出$\seq{x'}$作为第一个解码器的输入,之后生成$\seq{y}^{[1]}$作为第一轮迭代的输出。接下来再把$\seq{y}^{[1]}$输入给第二个解码器,然后输出$\seq{y}^{[2]}$,以此类推。那么迭代到什么时候结束呢?一种简单的做法是提前制定好迭代次数,这种方法能够自主地对生成句子的质量和效率进行平衡。另一种称之为“自适应”的方法,具体是通过计算当前生成的句子与上一次生成句子之间的变化量来判断是否停止,例如,使用杰卡德相似系数作为变化量函数\footnote{杰卡德相似系数是衡量有限样本集之间的相似性与差异性的一种指标,杰卡德相似系数值越大,样本相似度越高。}。另外,需要说明的是,图\ref{fig:14-18}中是使用多个解码器的一种逻辑示意。真实的系统仅需要一个解码器,并运行多次,就达到了迭代精化的目的。
...@@ -573,7 +572,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -573,7 +572,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\parinterval 除了使用上一个步骤的输出,当前解码器的输入还可以使用了添加噪声的正确目标语言句子\upcite{Lee2018DeterministicNN}。另外,对于译文长度的预测,也可以使用编码器的输出单独训练一个独立的长度预测模块,这种方法也推广到了目前大多数非自回归模型上。 \parinterval 除了使用上一个步骤的输出,当前解码器的输入还可以使用了添加噪声的正确目标语言句子\upcite{Lee2018DeterministicNN}。另外,对于译文长度的预测,也可以使用编码器的输出单独训练一个独立的长度预测模块,这种方法也推广到了目前大多数非自回归翻译模型上。
\parinterval 另一种方法借鉴了BERT的思想\upcite{devlin2019bert},称为Mask-Predict\upcite{Ghazvininejad2019MaskPredictPD}。类似于BERT中的<CLS>标记,该方法在源语言句子的最前面加上了一个特殊符号<LEN>作为输入,用来预测目标句的长度$n$。之后,将特殊符<Mask>(与BERT中的<Mask>有相似的含义)复制$n$次作为解码器的输入,然后用非自回归的方式生成所有的译文单词。这样生成的翻译可能是比较差的,因此可以将第一次生成的这些词中不确定(即生成概率比较低)的一些词“擦”掉,依据剩余的译文单词以及源语言句子重新进行预测,不断迭代,直到满足停止条件为止。图\ref{fig:14-19}给出了一个示例。 \parinterval 另一种方法借鉴了BERT的思想\upcite{devlin2019bert},称为Mask-Predict\upcite{Ghazvininejad2019MaskPredictPD}。类似于BERT中的<CLS>标记,该方法在源语言句子的最前面加上了一个特殊符号<LEN>作为输入,用来预测目标句的长度$n$。之后,将特殊符<Mask>(与BERT中的<Mask>有相似的含义)复制$n$次作为解码器的输入,然后用非自回归的方式生成所有的译文单词。这样生成的翻译可能是比较差的,因此可以将第一次生成的这些词中不确定(即生成概率比较低)的一些词“擦”掉,依据剩余的译文单词以及源语言句子重新进行预测,不断迭代,直到满足停止条件为止。图\ref{fig:14-19}给出了一个示例。
...@@ -650,15 +649,15 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -650,15 +649,15 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\vspace{0.5em} \vspace{0.5em}
\item 改变模型宽度和深度,即用不同层数或者不同隐藏层大小得到多个模型; \item 改变模型宽度和深度,即用不同层数或者不同隐藏层大小得到多个模型;
\vspace{0.5em} \vspace{0.5em}
\item 使用不同的参数进行初始化,即用不同的随机种子初始化参数训练多个模型; \item 使用不同的参数进行初始化,即使用不同的随机种子初始化参数,训练多个模型;
\vspace{0.5em} \vspace{0.5em}
\item 不同模型(局部)架构的调整,比如,使用不同的位置编码模型\upcite{Shaw2018SelfAttentionWR}、多层融合模型\upcite{WangLearning}等; \item 不同模型(局部)架构的调整,比如,使用不同的位置编码模型\upcite{Shaw2018SelfAttentionWR}、多层融合模型\upcite{WangLearning}等;
\vspace{0.5em} \vspace{0.5em}
\item 利用不同数量以及不同数据增强方式产生的伪数据训练模型\upcite{zhang-EtAl:2020:WMT} \item 利用不同数量以及不同数据增强方式产生的伪数据训练模型\upcite{zhang-EtAl:2020:WMT}
\vspace{0.5em} \vspace{0.5em}
\item 利用多分支多通道的模型,不同分支可能有不同结构,使得模型能有更好的表示能力\upcite{zhang-EtAl:2020:WMT} \item 利用多分支多通道的模型,使得模型能有更好的表示能力\upcite{zhang-EtAl:2020:WMT}
\vspace{0.5em} \vspace{0.5em}
\item 利用预训练进行参数共享之后微调的模型 \item 利用预训练方法进行参数共享,然后对模型进行微调
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -697,7 +696,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -697,7 +696,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\sectionnewpage \sectionnewpage
\section{小结与拓展阅读} \section{小结与拓展阅读}
\parinterval 推断系统(或解码系统)是神经机器翻译的重要组成部分。在神经机器翻译研究中,单独针对推断问题开展的讨论并不多见。更多的工作是将其与实践结合,常见于开源系统、评测比赛中。但是,从应用的角度看,研发高效的推断系统是机器翻译能够被大规模使用的前提。本章也从神经机器翻译推断的基本问题出发,重点探讨了推断系统的效率、非自回归翻译、多模型集成等问题。但是,由于推断问题涉及的问题十分广泛,因此本章也无法对其进行全面覆盖。关于神经机器翻译模型推断还有以下若干研究方向值得关注: \parinterval 推断系统(或解码系统)是神经机器翻译的重要组成部分。在神经机器翻译研究中,单独针对推断问题开展的讨论并不多见。更多的工作是将其与实践结合,常见于开源系统、评测比赛中。但是,从应用的角度看,研发高效的推断系统是机器翻译能够被大规模使用的前提。本章也从神经机器翻译推断的基本问题出发,重点探讨了推断系统的效率、非自回归翻译、多模型集成等问题。但是,由于推断阶段涉及的问题十分广泛,因此本章也无法对其进行全面覆盖。关于神经机器翻译模型推断还有以下若干研究方向值得关注:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -705,11 +704,11 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4} ...@@ -705,11 +704,11 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\vspace{0.5em} \vspace{0.5em}
\item 推断系统也可以受益于更加高效的神经网络结构。这方面工作集中在结构化剪枝、减少模型的冗余计算、低秩分解等方向。结构化剪枝中的代表性工作是LayerDrop\upcite{DBLP:conf/iclr/FanGJ20,DBLP:conf/emnlp/WangXZ20,DBLP:journals/corr/abs-2002-02925},这类方法在训练时随机选择部分子结构,在推断时根据输入来选择模型中的部分层进行计算,而跳过其余层,达到加速的目的。有关减少冗余计算的研究主要集中在改进注意力机制上,本章已经有所介绍。低秩分解则针对词向量或者注意力的映射矩阵进行改进,例如词频自适应表示\upcite{DBLP:conf/iclr/BaevskiA19},词频越高则对应的向量维度越大,反之则越小,或者层数越高注意力映射矩阵维度越小\upcite{DBLP:journals/corr/abs-2006-04768,DBLP:journals/corr/abs-1911-12385,DBLP:journals/corr/abs-1906-09777,DBLP:conf/nips/YangLSL19}。在实践中比较有效的是较深的编码器与较浅的解码器结合的方式,极端情况下解码器仅使用1层神经网络即可取得与多层神经网络相媲美的翻译品质,从而极大地提升翻译效率\upcite{DBLP:journals/corr/abs-2006-10369,DBLP:conf/aclnmt/HuLLLLWXZ20,DBLP:journals/corr/abs-2010-02416}。在{\chapterfifteen}还会进一步对高效神经机器翻译的模型结构进行讨论。 \item 推断系统也可以受益于更加高效的神经网络结构。这方面工作集中在结构化剪枝、减少模型的冗余计算、低秩分解等方向。结构化剪枝中的代表性工作是LayerDrop\upcite{DBLP:conf/iclr/FanGJ20,DBLP:conf/emnlp/WangXZ20,DBLP:journals/corr/abs-2002-02925},这类方法在训练时随机选择部分子结构,在推断时根据输入来选择模型中的部分层进行计算,而跳过其余层,达到加速的目的。有关减少冗余计算的研究主要集中在改进注意力机制上,本章已经有所介绍。低秩分解则针对词向量或者注意力的映射矩阵进行改进,例如词频自适应表示\upcite{DBLP:conf/iclr/BaevskiA19},词频越高则对应的向量维度越大,反之则越小,或者层数越高注意力映射矩阵维度越小\upcite{DBLP:journals/corr/abs-2006-04768,DBLP:journals/corr/abs-1911-12385,DBLP:journals/corr/abs-1906-09777,DBLP:conf/nips/YangLSL19}。在实践中比较有效的是较深的编码器与较浅的解码器结合的方式,极端情况下解码器仅使用1层神经网络即可取得与多层神经网络相媲美的翻译品质,从而极大地提升翻译效率\upcite{DBLP:journals/corr/abs-2006-10369,DBLP:conf/aclnmt/HuLLLLWXZ20,DBLP:journals/corr/abs-2010-02416}。在{\chapterfifteen}还会进一步对高效神经机器翻译的模型结构进行讨论。
\vspace{0.5em} \vspace{0.5em}
\item 在对机器翻译推断系统进行实际部署时,对存储的消耗也是需要考虑的因素。因此如何让模型变得更小也是研发人员所关注的方向。当前的模型压缩方法主要可以分为几类:剪枝、量化、知识蒸馏和轻量方法,其中轻量方法主要是基于更轻量模型结构的设计,这类方法已经在本章进行了介绍。剪枝主要包括权重大小剪枝\upcite{Han2015LearningBW,Lee2019SNIPSN,Frankle2019TheLT,Brix2020SuccessfullyAT}、 面向多头注意力的剪枝\upcite{Michel2019AreSH,DBLP:journals/corr/abs-1905-09418}、网络层以及其他结构剪枝等\upcite{Liu2017LearningEC,Liu2019RethinkingTV},还有一些方法也通过在训练期间采用正则化的方式来提升剪枝能力\upcite{DBLP:conf/iclr/FanGJ20}。量化方法主要通过截断浮点数来减少模型的存储大小,使其仅使用几个比特位的数字表示方法便能存储整个模型,虽然会导致舍入误差,但压缩效果显著\upcite{DBLP:journals/corr/abs-1906-00532,Cheong2019transformersZ,Banner2018ScalableMF,Hubara2017QuantizedNN}。一些方法利用知识蒸馏手段还将Transformer模型蒸馏成如LSTMs 等其他各种推断速度更快的结构\upcite{Hinton2015Distilling,Munim2019SequencelevelKD,Tang2019DistillingTK} \item 在对机器翻译推断系统进行实际部署时,对存储的消耗也是需要考虑的因素。因此如何让模型变得更小也是研发人员所关注的方向。当前的模型压缩方法主要可以分为几类:剪枝、量化、知识蒸馏和轻量方法,其中轻量方法的研究重点集中于更轻量模型结构的设计,这类方法已经在本章进行了介绍。剪枝主要包括权重大小剪枝\upcite{Han2015LearningBW,Lee2019SNIPSN,Frankle2019TheLT,Brix2020SuccessfullyAT}、 面向多头注意力的剪枝\upcite{Michel2019AreSH,DBLP:journals/corr/abs-1905-09418}、网络层以及其他结构剪枝等\upcite{Liu2017LearningEC,Liu2019RethinkingTV},还有一些方法也通过在训练期间采用正则化的方式来提升剪枝能力\upcite{DBLP:conf/iclr/FanGJ20}。量化方法主要通过截断浮点数来减少模型的存储大小,使其仅使用几个比特位的数字表示方法便能存储整个模型,虽然会导致舍入误差,但压缩效果显著\upcite{DBLP:journals/corr/abs-1906-00532,Cheong2019transformersZ,Banner2018ScalableMF,Hubara2017QuantizedNN}。一些方法利用知识蒸馏手段还将Transformer模型蒸馏成如LSTMs 等其他各种推断速度更快的结构\upcite{Hinton2015Distilling,Munim2019SequencelevelKD,Tang2019DistillingTK}
\vspace{0.5em} \vspace{0.5em}
\item 目前的翻译模型使用交叉熵损失作为优化函数,这在自回归模型上取得了非常优秀的性能。交叉熵是一个严格的损失函数,每个预测错误的单词所对应的位置都会受到惩罚,即使是编辑距离很小的输出序列\upcite{Ghazvininejad2020AlignedCE}。自回归模型会很大程度上避免这种惩罚,因为当前位置的单词是根据先前生成的词得到的,然而非自回归模型无法获得这种信息。如果在预测时漏掉一个单词,就可能会将正确的单词放在错误的位置上。为此,一些研究工作通过改进损失函数来提高非自回归模型的性能。一种做法使用一种新的交叉熵函数\upcite{Ghazvininejad2020AlignedCE},它通过忽略绝对位置、关注相对顺序和词汇匹配来为非自回归模型提供更精确的训练信号。另外,也可以使用基于$n$-gram的训练目标\upcite{Shao2020MinimizingTB}来最小化模型与参考译文之间的$n$-gram差异。该训练目标在$n$-gram 的层面上评估预测结果,因此能够建模目标序列单词之间的依赖关系。 \item 目前的翻译模型使用交叉熵损失作为优化函数,这在自回归翻译模型上取得了非常优秀的性能。交叉熵是一个严格的损失函数,每个预测错误的单词所对应的位置都会受到惩罚,即使是编辑距离很小的输出序列\upcite{Ghazvininejad2020AlignedCE}。自回归翻译模型会很大程度上避免这种惩罚,因为当前位置的单词是根据先前生成的词得到的,然而非自回归翻译模型无法获得这种信息。如果在预测时漏掉一个单词,就可能会将正确的单词放在错误的位置上。为此,一些研究工作通过改进损失函数来提高非自回归翻译模型的性能。一种做法使用一种新的交叉熵函数\upcite{Ghazvininejad2020AlignedCE},它通过忽略绝对位置、关注相对顺序和词汇匹配来为非自回归翻译模型提供更精确的训练信号。另外,也可以使用基于$n$-gram的训练目标\upcite{Shao2020MinimizingTB}来最小化模型与参考译文之间的$n$-gram差异。该训练目标在$n$-gram 的层面上评估预测结果,因此能够建模目标序列单词之间的依赖关系。
\vspace{0.5em} \vspace{0.5em}
\item 自回归模型解码时,当前位置单词的生成依赖于先前生成的单词,已生成的单词提供了较强的目标端上下文信息。与自回归模型相比,非自回归模型的解码器需要在信息更少的情况下执行翻译任务。一些研究工作通过将条件随机场引入非自回归模型中来对序列依赖进行建模\upcite{Ma2019FlowSeqNC}。也有工作引入了词嵌入转换矩阵来将源语言端的词嵌入转换为目标语言端的词嵌入来为解码器提供更好的输入\upcite{Guo2019NonAutoregressiveNM}。此外,研究人员也提出了轻量级的调序模块来显式地建模调序信息,以指导非自回归模型的推断\upcite{Ran2019GuidingNN} \item 自回归翻译模型解码时,当前位置单词的生成依赖于先前生成的单词,已生成的单词提供了较强的目标端上下文信息。与自回归翻译模型相比,非自回归翻译模型的解码器需要在信息更少的情况下执行翻译任务。一些研究工作通过将条件随机场引入非自回归翻译模型中来对序列依赖进行建模\upcite{Ma2019FlowSeqNC}。也有工作引入了词嵌入转换矩阵来将源语言端的词嵌入转换为目标语言端的词嵌入来为解码器提供更好的输入\upcite{Guo2019NonAutoregressiveNM}。此外,研究人员也提出了轻量级的调序模块来显式地建模调序信息,以指导非自回归翻译模型的推断\upcite{Ran2019GuidingNN}。大多数非自回归模型都可以被看作是一种基于隐含变量的模型,因为目标语言单词的并行生成是基于源语言编码器生成的一个(一些)隐含变量。因此,也有很多方法来生成隐含变量,例如,利用自编码生成一个较短的离散化序列,将其作为隐含变量,之后在这个较短的变量上并行生成目标语言序列\upcite{Kaiser2018FastDI}。类似的思想也可以用于局部块内的单词并行生成\upcite{DBLP:conf/nips/SternSU18}
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
......
...@@ -38,7 +38,7 @@ ...@@ -38,7 +38,7 @@
\end{scope} \end{scope}
\begin{scope}[xshift=1.85in] \begin{scope}[xshift=1.75in]
\node [anchor=west,stnode] (r1) at (0, 0) {第1层}; \node [anchor=west,stnode] (r1) at (0, 0) {第1层};
\node [anchor=south,tnode] (r2) at ([xshift=0em,yshift=1em]r1.north){第2层}; \node [anchor=south,tnode] (r2) at ([xshift=0em,yshift=1em]r1.north){第2层};
...@@ -60,11 +60,11 @@ ...@@ -60,11 +60,11 @@
\draw[->,thick] ([xshift=0em,yshift=0em]r3.north)--([xshift=0em,yshift=0em]r4.south); \draw[->,thick] ([xshift=0em,yshift=0em]r3.north)--([xshift=0em,yshift=0em]r4.south);
\draw[->,thick] ([xshift=0em,yshift=0em]r4.north)--([xshift=0em,yshift=0em]output.south); \draw[->,thick] ([xshift=0em,yshift=0em]r4.north)--([xshift=0em,yshift=0em]output.south);
\node [anchor=north,font=\small] (label) at ([xshift=-1.5em,yshift=-0.7em]input.south) {(b)原始Transformer模型}; \node [anchor=north,font=\small] (label) at ([xshift=-1.7em,yshift=-0.7em]input.south) {(b)原始Transformer模型};
\end{scope} \end{scope}
\begin{scope}[xshift=3.9in] \begin{scope}[xshift=3.85in]
\node [anchor=west,stnode] (r1) at (0, 0) {第1层}; \node [anchor=west,stnode] (r1) at (0, 0) {第1层};
\node [anchor=south,stnode] (r2) at ([xshift=0em,yshift=1em]r1.north){第2层}; \node [anchor=south,stnode] (r2) at ([xshift=0em,yshift=1em]r1.north){第2层};
...@@ -89,7 +89,7 @@ ...@@ -89,7 +89,7 @@
\draw[->,thick] ([xshift=0em,yshift=0em]wr2.east)--([xshift=0em,yshift=0em]r2.west); \draw[->,thick] ([xshift=0em,yshift=0em]wr2.east)--([xshift=0em,yshift=0em]r2.west);
\draw[->,thick] ([xshift=0em,yshift=0em]wr3.east)--([xshift=0em,yshift=0em]r4.west); \draw[->,thick] ([xshift=0em,yshift=0em]wr3.east)--([xshift=0em,yshift=0em]r4.west);
\node [anchor=north,font=\small,align=left] (label) at ([xshift=-3em,yshift=-0.7em]input.south) {(c)共享权重的\\ Transformer模型}; \node [anchor=north,font=\small] (label) at ([xshift=-3em,yshift=-0.7em]input.south) {(c)共享权重的Transformer模型};
\end{scope} \end{scope}
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
\node [anchor=south west,manode] (a1) at ([xshift=0em,yshift=1em]e1.north west){Attention}; \node [anchor=south west,manode] (a1) at ([xshift=0em,yshift=1em]e1.north west){Attention};
\node [anchor=south east,manode] (c1) at ([xshift=0em,yshift=1em]e1.north east){Conv}; \node [anchor=south east,manode] (c1) at ([xshift=0em,yshift=1em]e1.north east){Conv};
\node [anchor=south west,ebnode] (e2) at ([xshift=0em,yshift=1em]a1.north west){Embedding}; \node [anchor=south west,ebnode] (e2) at ([xshift=0em,yshift=1em]a1.north west){Embedding};
\node [anchor=south,draw,circle,inner sep=4pt] (add1) at ([xshift=0em,yshift=0.5em]e2.north){}; \node [anchor=south,draw,circle,inner sep=4pt,thick] (add1) at ([xshift=0em,yshift=0.5em]e2.north){};
\node [anchor=south,ffnnode] (f2) at ([xshift=0em,yshift=0.5em]add1.north){FFN}; \node [anchor=south,ffnnode] (f2) at ([xshift=0em,yshift=0.5em]add1.north){FFN};
\node [anchor=south,inner sep=0mm,minimum height=1.8em] (op) at ([xshift=0em,yshift=0.5em]f2.north){output}; \node [anchor=south,inner sep=0mm,minimum height=1.8em] (op) at ([xshift=0em,yshift=0.5em]f2.north){output};
...@@ -29,8 +29,8 @@ ...@@ -29,8 +29,8 @@
\draw[->,thick] ([xshift=0em,yshift=0em]f2.north)--([xshift=0em,yshift=0.3em]op.south); \draw[->,thick] ([xshift=0em,yshift=0em]f2.north)--([xshift=0em,yshift=0.3em]op.south);
\draw[-] ([xshift=0em,yshift=0em]add1.west)--([xshift=-0em,yshift=0em]add1.east); \draw[-,thick] ([xshift=0em,yshift=0em]add1.west)--([xshift=-0em,yshift=0em]add1.east);
\draw[-] ([xshift=0em,yshift=0em]add1.south)--([xshift=-0em,yshift=-0em]add1.north); \draw[-,thick] ([xshift=0em,yshift=0em]add1.south)--([xshift=-0em,yshift=-0em]add1.north);
\draw[->,thick,rectangle,rounded corners=5pt] ([xshift=0em,yshift=0.5em]f1.north)--([xshift=-6em,yshift=0.5em]f1.north)--([xshift=-5.45em,yshift=0em]add1.west)--([xshift=0em,yshift=0em]add1.west); \draw[->,thick,rectangle,rounded corners=5pt] ([xshift=0em,yshift=0.5em]f1.north)--([xshift=-6em,yshift=0.5em]f1.north)--([xshift=-5.45em,yshift=0em]add1.west)--([xshift=0em,yshift=0em]add1.west);
......
...@@ -10,10 +10,10 @@ ...@@ -10,10 +10,10 @@
\begin{scope}[] \begin{scope}[]
\node [anchor=east,circle,fill=black,inner sep = 2pt] (n1) at (-0, 0) {}; \node [anchor=east,circle,fill=black,inner sep = 2pt] (n1) at (-0, 0) {};
\node [anchor=west,draw,circle,inner sep=5pt] (n2) at ([xshift=13em,yshift=0em]n1.east){}; \node [anchor=west,draw,circle,inner sep=5pt,thick] (n2) at ([xshift=13em,yshift=0em]n1.east){};
\node [anchor=west,lnnode] (n3) at ([xshift=1.5em,yshift=0em]n2.east){LN}; \node [anchor=west,lnnode] (n3) at ([xshift=1.5em,yshift=0em]n2.east){LN};
\node [anchor=west,circle,fill=black,inner sep=2pt] (n4) at ([xshift=1.5em,yshift=0em]n3.east){}; \node [anchor=west,circle,fill=black,inner sep=2pt] (n4) at ([xshift=1.5em,yshift=0em]n3.east){};
\node [anchor=west,draw,circle,inner sep=5pt] (n5) at ([xshift=5em,yshift=0em]n4.east){}; \node [anchor=west,draw,circle,inner sep=5pt,thick] (n5) at ([xshift=5em,yshift=0em]n4.east){};
\node [anchor=west,lnnode] (n6) at ([xshift=1.5em,yshift=0em]n5.east){LN}; \node [anchor=west,lnnode] (n6) at ([xshift=1.5em,yshift=0em]n5.east){LN};
\node [anchor=west,manode] (a1) at ([xshift=1.5em,yshift=2em]n1.east){Multi-Head Attention}; \node [anchor=west,manode] (a1) at ([xshift=1.5em,yshift=2em]n1.east){Multi-Head Attention};
......
...@@ -7,14 +7,14 @@ ...@@ -7,14 +7,14 @@
\node [anchor=east] (x1) at (-0.5em, 0) {$\mathbi{x}_l$}; \node [anchor=east] (x1) at (-0.5em, 0) {$\mathbi{x}_l$};
\node [anchor=west,draw,fill=red!20,inner xsep=5pt,rounded corners=2pt,thick] (F1) at ([xshift=4em]x1.east){\small{$F$}}; \node [anchor=west,draw,fill=red!20,inner xsep=5pt,rounded corners=2pt,thick] (F1) at ([xshift=4em]x1.east){\small{$F$}};
\node [anchor=west,circle,draw,minimum size=1em] (n1) at ([xshift=4em]F1.east) {}; \node [anchor=west,circle,draw,minimum size=1em,thick] (n1) at ([xshift=4em]F1.east) {};
\node [anchor=west,draw,fill=green!20,inner xsep=5pt,rounded corners=2pt,thick] (ln1) at ([xshift=4em]n1.east){\small{\textrm{LN}}}; \node [anchor=west,draw,fill=green!20,inner xsep=5pt,rounded corners=2pt,thick] (ln1) at ([xshift=4em]n1.east){\small{\textrm{LN}}};
\node [anchor=west] (x2) at ([xshift=4em]ln1.east) {$\mathbi{x}_{l+1}$}; \node [anchor=west] (x2) at ([xshift=4em]ln1.east) {$\mathbi{x}_{l+1}$};
\node [anchor=north] (x3) at ([yshift=-5em]x1.south) {$\mathbi{x}_l$}; \node [anchor=north] (x3) at ([yshift=-5em]x1.south) {$\mathbi{x}_l$};
\node [anchor=west,draw,fill=green!20,inner xsep=5pt,rounded corners=2pt,thick] (F2) at ([xshift=4em]x3.east){\small{\textrm{LN}}}; \node [anchor=west,draw,fill=green!20,inner xsep=5pt,rounded corners=2pt,thick] (F2) at ([xshift=4em]x3.east){\small{\textrm{LN}}};
\node [anchor=west,draw,fill=red!20,inner xsep=5pt,rounded corners=2pt,thick] (ln2) at ([xshift=4em]F2.east){\small{$F$}}; \node [anchor=west,draw,fill=red!20,inner xsep=5pt,rounded corners=2pt,thick] (ln2) at ([xshift=4em]F2.east){\small{$F$}};
\node [anchor=west,circle,draw,,minimum size=1em] (n2) at ([xshift=4em]ln2.east){}; \node [anchor=west,circle,draw,,minimum size=1em,thick] (n2) at ([xshift=4em]ln2.east){};
\node [anchor=west] (x4) at ([xshift=4em]n2.east) {$\mathbi{x}_{l+1}$}; \node [anchor=west] (x4) at ([xshift=4em]n2.east) {$\mathbi{x}_{l+1}$};
\draw[->, line width=1pt] ([xshift=-0.1em]x1.east)--(F1.west); \draw[->, line width=1pt] ([xshift=-0.1em]x1.east)--(F1.west);
...@@ -27,10 +27,10 @@ ...@@ -27,10 +27,10 @@
\draw[->, line width=1pt] (n2.east)--(x4.west); \draw[->, line width=1pt] (n2.east)--(x4.west);
\draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x1.north) -- ([yshift=1em]x1.north) -- ([yshift=1.4em]n1.north) -- (n1.north); \draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x1.north) -- ([yshift=1em]x1.north) -- ([yshift=1.4em]n1.north) -- (n1.north);
\draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x3.north) -- ([yshift=1em]x3.north) -- ([yshift=1.4em]n2.north) -- (n2.north); \draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x3.north) -- ([yshift=1em]x3.north) -- ([yshift=1.4em]n2.north) -- (n2.north);
\draw[-] (n1.west)--(n1.east); \draw[-,thick] (n1.west)--(n1.east);
\draw[-] (n1.north)--(n1.south); \draw[-,thick] (n1.north)--(n1.south);
\draw[-] (n2.west)--(n2.east); \draw[-,thick] (n2.west)--(n2.east);
\draw[-] (n2.north)--(n2.south); \draw[-,thick] (n2.north)--(n2.south);
\node [anchor=south] (k1) at ([yshift=-0.1em]x1.north){}; \node [anchor=south] (k1) at ([yshift=-0.1em]x1.north){};
\node [anchor=south] (k2) at ([yshift=-0.1em]x3.north){}; \node [anchor=south] (k2) at ([yshift=-0.1em]x3.north){};
......
...@@ -108,6 +108,6 @@ ...@@ -108,6 +108,6 @@
\node [rectangle,inner sep=1em,draw=black,very thick,rounded corners=8pt] [fit = (label) (box1) (box2) (box3)] (box4) {}; \node [rectangle,inner sep=1em,draw=black,very thick,rounded corners=8pt] [fit = (label) (box1) (box2) (box3)] (box4) {};
\node[anchor=south east,word,text=ublue] (l4) at ([xshift=-0em,yshift=0em]box4.north east){颜色越深表示模型对当前任务的建模能力越强}; \node[anchor=south east,word,text=ublue] (l4) at ([xshift=-0em,yshift=0em]box4.north east){颜色越深表示模型对当前任务的建模能力越强};
\end{tikzpicture} \end{tikzpicture}
\ No newline at end of file
...@@ -133,9 +133,9 @@ ...@@ -133,9 +133,9 @@
\draw[->,standard] ([yshift=-0.3em]sa2.south) -- ([xshift=-4em,yshift=-0.3em]sa2.south) -- ([xshift=-4em,yshift=2em]sa2.south) -- ([xshift=-3.5em,yshift=2em]sa2.south); \draw[->,standard] ([yshift=-0.3em]sa2.south) -- ([xshift=-4em,yshift=-0.3em]sa2.south) -- ([xshift=-4em,yshift=2em]sa2.south) -- ([xshift=-3.5em,yshift=2em]sa2.south);
\draw[->,standard] ([yshift=0.2em]res3.north) -- ([xshift=-4em,yshift=0.2em]res3.north) -- ([xshift=-4em,yshift=2.5em]res3.north) -- ([xshift=-3.5em,yshift=2.5em]res3.north); \draw[->,standard] ([yshift=0.2em]res3.north) -- ([xshift=-4em,yshift=0.2em]res3.north) -- ([xshift=-4em,yshift=2.5em]res3.north) -- ([xshift=-3.5em,yshift=2.5em]res3.north);
\draw[->,standard] ([xshift=0em]wi.east) -- ([xshift=3.2em,yshift=0em]wi.east) -- ([xshift=-0em,yshift=0em]pos2.south); \draw[->,standard] ([xshift=0em]wi.east) -- ([xshift=3.25em,yshift=0em]wi.east) -- ([xshift=-0em,yshift=0em]pos2.south);
\draw[->,standard] ([xshift=0em]wi.east) -- ([xshift=6.7em,yshift=0em]wi.east) -- ([xshift=-0em,yshift=0em]pos3.south); \draw[->,standard] ([xshift=0em]wi.east) -- ([xshift=6.78em,yshift=0em]wi.east) -- ([xshift=-0em,yshift=0em]pos3.south);
\draw[->,standard] ([xshift=0em]wi.east) -- ([xshift=10.2em,yshift=0em]wi.east) -- ([xshift=-0em,yshift=0em]pos4.south); \draw[->,standard] ([xshift=0em]wi.east) -- ([xshift=10.3em,yshift=0em]wi.east) -- ([xshift=-0em,yshift=0em]pos4.south);
\draw[->,standard] ([xshift=0em]pos2.north) -- ([xshift=0em,yshift=2.1em]pos2.north) -- ([xshift=-0em,yshift=0em]sa1.east); \draw[->,standard] ([xshift=0em]pos2.north) -- ([xshift=0em,yshift=2.1em]pos2.north) -- ([xshift=-0em,yshift=0em]sa1.east);
\draw[->,standard] ([xshift=0em]pos3.north) -- ([xshift=0em,yshift=9.6em]pos3.north) -- ([xshift=-0em,yshift=0em]dot1.east); \draw[->,standard] ([xshift=0em]pos3.north) -- ([xshift=0em,yshift=9.6em]pos3.north) -- ([xshift=-0em,yshift=0em]dot1.east);
\draw[->,standard] ([xshift=0em]pos4.north) -- ([xshift=0em,yshift=12.3em]pos4.north) -- ([xshift=-0em,yshift=0em]sa2.east); \draw[->,standard] ([xshift=0em]pos4.north) -- ([xshift=0em,yshift=12.3em]pos4.north) -- ([xshift=-0em,yshift=0em]sa2.east);
......
...@@ -8,11 +8,11 @@ ...@@ -8,11 +8,11 @@
\node [anchor=east] (x1) at (-0.5em, 0) {$\mathbi{x}_l$}; \node [anchor=east] (x1) at (-0.5em, 0) {$\mathbi{x}_l$};
\node [anchor=west,draw,fill=red!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (ln1) at ([xshift=1em]x1.east){\small{\textrm{LN}}}; \node [anchor=west,draw,fill=red!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (ln1) at ([xshift=1em]x1.east){\small{\textrm{LN}}};
\node [anchor=west,draw,fill=green!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (f1) at ([xshift=0.6em]ln1.east){\small{$F$}}; \node [anchor=west,draw,fill=green!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (f1) at ([xshift=0.6em]ln1.east){\small{$F$}};
\node [anchor=west,circle,draw,,minimum size=1em] (n1) at ([xshift=3em]f1.east){}; \node [anchor=west,circle,draw,,minimum size=1em,thick] (n1) at ([xshift=3em]f1.east){};
\node [anchor=west] (x2) at ([xshift=1em]n1.east) {$\mathbi{x}_{l+1}$}; \node [anchor=west] (x2) at ([xshift=1em]n1.east) {$\mathbi{x}_{l+1}$};
\node [anchor=west,draw,fill=red!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (ln12) at ([xshift=1em]x2.east){\small{\textrm{LN}}}; \node [anchor=west,draw,fill=red!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (ln12) at ([xshift=1em]x2.east){\small{\textrm{LN}}};
\node [anchor=west,draw,fill=green!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (f12) at ([xshift=0.6em]ln12.east){\small{$F$}}; \node [anchor=west,draw,fill=green!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (f12) at ([xshift=0.6em]ln12.east){\small{$F$}};
\node [anchor=west,circle,draw,,minimum size=1em] (n12) at ([xshift=3em]f12.east){}; \node [anchor=west,circle,draw,,minimum size=1em,thick] (n12) at ([xshift=3em]f12.east){};
\node [anchor=west] (x22) at ([xshift=1em]n12.east) {$\mathbi{x}_{l+2}$}; \node [anchor=west] (x22) at ([xshift=1em]n12.east) {$\mathbi{x}_{l+2}$};
\node [anchor=north] (x3) at ([yshift=-5em]x1.south) {$\mathbi{x}_l$}; \node [anchor=north] (x3) at ([yshift=-5em]x1.south) {$\mathbi{x}_l$};
...@@ -20,13 +20,13 @@ ...@@ -20,13 +20,13 @@
\node [anchor=west,draw,fill=green!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (f2) at ([xshift=0.6em]ln2.east){\small{$F$}}; \node [anchor=west,draw,fill=green!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (f2) at ([xshift=0.6em]ln2.east){\small{$F$}};
\node [anchor=west,minimum size=1em] (p1) at ([xshift=1em]f2.east){}; \node [anchor=west,minimum size=1em] (p1) at ([xshift=1em]f2.east){};
\node [anchor=north] (m1) at ([yshift=0.6em]p1.south){\footnotesize{\red{Mask=1}}}; \node [anchor=north] (m1) at ([yshift=0.6em]p1.south){\footnotesize{\red{Mask=1}}};
\node [anchor=west,circle,draw,,minimum size=1em] (n2) at ([xshift=3em]f2.east){}; \node [anchor=west,circle,draw,,minimum size=1em,thick] (n2) at ([xshift=3em]f2.east){};
\node [anchor=west] (x4) at ([xshift=1em]n2.east) {$\mathbi{x}_{l+1}$}; \node [anchor=west] (x4) at ([xshift=1em]n2.east) {$\mathbi{x}_{l+1}$};
\node [anchor=west,draw,fill=red!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (ln22) at ([xshift=1em]x4.east){\small{\textrm{LN}}}; \node [anchor=west,draw,fill=red!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (ln22) at ([xshift=1em]x4.east){\small{\textrm{LN}}};
\node [anchor=west,draw,fill=green!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (f22) at ([xshift=0.6em]ln22.east){\small{$F$}}; \node [anchor=west,draw,fill=green!30,inner xsep=5pt,rounded corners=2pt,draw,thick] (f22) at ([xshift=0.6em]ln22.east){\small{$F$}};
\node [anchor=west,minimum size=1em] (p2) at ([xshift=1em]f22.east){}; \node [anchor=west,minimum size=1em] (p2) at ([xshift=1em]f22.east){};
\node [anchor=north] (m2) at ([yshift=0.6em]p2.south){\footnotesize{\red{Mask=0}}}; \node [anchor=north] (m2) at ([yshift=0.6em]p2.south){\footnotesize{\red{Mask=0}}};
\node [anchor=west,circle,draw,,minimum size=1em] (n22) at ([xshift=3em]f22.east){}; \node [anchor=west,circle,draw,,minimum size=1em,thick] (n22) at ([xshift=3em]f22.east){};
\node [anchor=west] (x42) at ([xshift=1em]n22.east) {$\mathbi{x}_{l+2}$}; \node [anchor=west] (x42) at ([xshift=1em]n22.east) {$\mathbi{x}_{l+2}$};
\draw[->, line width=1pt] ([xshift=-0.1em]x1.east)--(ln1.west); \draw[->, line width=1pt] ([xshift=-0.1em]x1.east)--(ln1.west);
...@@ -41,10 +41,10 @@ ...@@ -41,10 +41,10 @@
\draw[->, line width=1pt] (n2.east)--(x4.west); \draw[->, line width=1pt] (n2.east)--(x4.west);
\draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x1.north) -- ([yshift=1em]x1.north) -- ([yshift=1.4em]n1.north) -- (n1.north); \draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x1.north) -- ([yshift=1em]x1.north) -- ([yshift=1.4em]n1.north) -- (n1.north);
\draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x3.north) -- ([yshift=1em]x3.north) -- ([yshift=1.4em]n2.north) -- (n2.north); \draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x3.north) -- ([yshift=1em]x3.north) -- ([yshift=1.4em]n2.north) -- (n2.north);
\draw[-] (n1.west)--(n1.east); \draw[-,thick] (n1.west)--(n1.east);
\draw[-] (n1.north)--(n1.south); \draw[-,thick] (n1.north)--(n1.south);
\draw[-] (n2.west)--(n2.east); \draw[-,thick] (n2.west)--(n2.east);
\draw[-] (n2.north)--(n2.south); \draw[-,thick] (n2.north)--(n2.south);
\draw[->, line width=1pt] ([xshift=-0.1em]x2.east)--(ln12.west); \draw[->, line width=1pt] ([xshift=-0.1em]x2.east)--(ln12.west);
\draw[->, line width=1pt] ([xshift=-0.1em]ln12.east)--(f12.west); \draw[->, line width=1pt] ([xshift=-0.1em]ln12.east)--(f12.west);
...@@ -58,10 +58,10 @@ ...@@ -58,10 +58,10 @@
\draw[->, line width=1pt] (n22.east)--(x42.west); \draw[->, line width=1pt] (n22.east)--(x42.west);
\draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x2.north) -- ([yshift=1em]x2.north) -- ([yshift=1.4em]n12.north) -- (n12.north); \draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x2.north) -- ([yshift=1em]x2.north) -- ([yshift=1.4em]n12.north) -- (n12.north);
\draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x4.north) -- ([yshift=1em]x4.north) -- ([yshift=1.4em]n22.north) -- (n22.north); \draw[->,rounded corners,line width=1pt] ([yshift=-0.2em]x4.north) -- ([yshift=1em]x4.north) -- ([yshift=1.4em]n22.north) -- (n22.north);
\draw[-] (n12.west)--(n12.east); \draw[-,thick] (n12.west)--(n12.east);
\draw[-] (n12.north)--(n12.south); \draw[-,thick] (n12.north)--(n12.south);
\draw[-] (n22.west)--(n22.east); \draw[-,thick] (n22.west)--(n22.east);
\draw[-] (n22.north)--(n22.south); \draw[-,thick] (n22.north)--(n22.south);
\node [anchor=south] (k1) at ([yshift=-0.1em]x1.north){}; \node [anchor=south] (k1) at ([yshift=-0.1em]x1.north){};
\node [anchor=south] (k2) at ([yshift=-0.1em]x3.north){}; \node [anchor=south] (k2) at ([yshift=-0.1em]x3.north){};
......
...@@ -44,7 +44,7 @@ ...@@ -44,7 +44,7 @@
\node [anchor=east,font=\small] (r1) at ([xshift=-2em,yshift=0em]box1.west) {混合RNN}; \node [anchor=east,font=\small] (r1) at ([xshift=-2em,yshift=0em]box1.west) {混合RNN};
{\small {\small
\node [anchor=south west,wnode] (l1) at ([xshift=1em,yshift=5em]r1.north west) {先序遍历句法树,得到序列:}; \node [anchor=south west,wnode] (l1) at ([xshift=0em,yshift=5em]r1.north west) {先序遍历句法树,得到序列:};
\node [anchor=north west,wnode,align=center] (l2) at ([xshift=0.5em,yshift=-0.6em]l1.north east) {S\\[0.5em]$l_1$}; \node [anchor=north west,wnode,align=center] (l2) at ([xshift=0.5em,yshift=-0.6em]l1.north east) {S\\[0.5em]$l_1$};
\node [anchor=north west,wnode,align=center] (l3) at ([xshift=0.5em,yshift=0em]l2.north east) {NP\\[0.5em]$l_2$}; \node [anchor=north west,wnode,align=center] (l3) at ([xshift=0.5em,yshift=0em]l2.north east) {NP\\[0.5em]$l_2$};
\node [anchor=north west,wnode,align=center] (l4) at ([xshift=0.5em,yshift=0em]l3.north east) {PRN\\[0.5em]$l_3$}; \node [anchor=north west,wnode,align=center] (l4) at ([xshift=0.5em,yshift=0em]l3.north east) {PRN\\[0.5em]$l_3$};
......
...@@ -46,13 +46,13 @@ ...@@ -46,13 +46,13 @@
\parinterval 但是,Transformer模型中的自注意力机制本身并不具有这种性质,而且它直接忽略了输入单元之间的位置关系。虽然,Transformer中引入了基于正余弦函数的绝对位置编码(见{\chaptertwelve}),但是该方法仍然无法显性区分局部依赖与长距离依赖\footnote[1]{局部依赖指当前位置与局部的相邻位置之间的联系。} \parinterval 但是,Transformer模型中的自注意力机制本身并不具有这种性质,而且它直接忽略了输入单元之间的位置关系。虽然,Transformer中引入了基于正余弦函数的绝对位置编码(见{\chaptertwelve}),但是该方法仍然无法显性区分局部依赖与长距离依赖\footnote[1]{局部依赖指当前位置与局部的相邻位置之间的联系。}
\parinterval 针对上述问题,研究人员尝试引入“相对位置”信息,对原有的“绝对位置”信息进行补充,强化了局部依赖\upcite{Dai2019TransformerXLAL,Shaw2018SelfAttentionWR}。此外,由于模型中每一层均存在自注意力机制计算,因此模型捕获位置信息的能力也逐渐减弱,这种现象在深层模型中尤为明显。而利用相对位置编码能够把位置信息显性加入到每一层的注意力机制的计算中,进而强化深层模型的位置表示能力\upcite{li2020shallow}。图\ref{fig:15-1}对比了Transformer中绝对位置编码和相对位置编码方法。 \parinterval 针对上述问题,研究人员尝试引入“相对位置”信息,对原有的“绝对位置”信息进行补充,强化了局部依赖\upcite{Dai2019TransformerXLAL,Shaw2018SelfAttentionWR}。此外,由于模型中每一层均存在自注意力机制计算,因此模型捕获位置信息的能力也逐渐减弱,这种现象在深层模型中尤为明显。而利用相对位置表示能够把位置信息显性加入到每一层的注意力机制的计算中,进而强化深层模型的位置表示能力\upcite{li2020shallow}。图\ref{fig:15-1}对比了Transformer中绝对位置编码和相对位置表示方法。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter15/Figures/figure-relative-position-coding-and-absolute-position-coding} \input{./Chapter15/Figures/figure-relative-position-coding-and-absolute-position-coding}
\caption{绝对位置编码和相对位置编码} \caption{绝对位置编码和相对位置表示}
\label{fig:15-1} \label{fig:15-1}
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
...@@ -63,7 +63,7 @@ ...@@ -63,7 +63,7 @@
\subsubsection{1. 位置编码}\label{subsubsec-15.1.1} \subsubsection{1. 位置编码}\label{subsubsec-15.1.1}
\parinterval 在介绍相对位置编码之前,首先简要回顾一下自注意力机制的计算流程(见{\chaptertwelve})。对于Transformer模型中的某一层神经网络,可以定义: \parinterval 在介绍相对位置表示之前,首先简要回顾一下自注意力机制的计算流程(见{\chaptertwelve})。对于Transformer模型中的某一层神经网络,可以定义:
\begin{eqnarray} \begin{eqnarray}
\mathbi{Q} & = & \mathbi{x} \mathbi{W}_Q \\ \mathbi{Q} & = & \mathbi{x} \mathbi{W}_Q \\
\mathbi{K} & = & \mathbi{x} \mathbi{W}_K \\ \mathbi{K} & = & \mathbi{x} \mathbi{W}_K \\
...@@ -79,23 +79,23 @@ ...@@ -79,23 +79,23 @@
\noindent 这里,$\mathbi{z}_{i}$可以被看做是输入序列的线性加权表示结果。权重$\alpha_{ij}$通过Softmax函数得到: \noindent 这里,$\mathbi{z}_{i}$可以被看做是输入序列的线性加权表示结果。权重$\alpha_{ij}$通过Softmax函数得到:
\begin{eqnarray} \begin{eqnarray}
\alpha_{ij} &=& \frac{\exp (\mathbi{e}_{ij})}{\sum_{k=1}^{m}\exp (\mathbi{e}_{ik})} \alpha_{ij} &=& \frac{\exp ({e}_{ij})}{\sum_{k=1}^{m}\exp ({e}_{ik})}
\label{eq:15-5} \label{eq:15-5}
\end{eqnarray} \end{eqnarray}
\noindent 进一步,$\mathbi{e}_{ij}$被定义为: \noindent 进一步,${e}_{ij}$被定义为:
\begin{eqnarray} \begin{eqnarray}
\mathbi{e}_{ij} &=& \frac{(\mathbi{x}_i \mathbi{W}_Q){(\mathbi{x}_j \mathbi{W}_K)}^{\textrm{T}}}{\sqrt{d_k}} {e}_{ij} &=& \frac{(\mathbi{x}_i \mathbi{W}_Q){(\mathbi{x}_j \mathbi{W}_K)}^{\textrm{T}}}{\sqrt{d_k}}
\label{eq:15-6} \label{eq:15-6}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$d_k$为模型中隐层的维度\footnote[3]{在多头注意力中,$d_k$为经过多头分割后每个头的维度。}$\mathbi{e}_{ij}$实际上就是$\mathbi{Q}$$\mathbi{K}$的向量积缩放后的一个结果。 \noindent 其中,$d_k$为模型中隐藏层的维度\footnote[3]{在多头注意力中,$d_k$为经过多头分割后每个头的维度。}${e}_{ij}$实际上就是$\mathbi{Q}$$\mathbi{K}$的向量积缩放后的一个结果。
\parinterval 基于上述描述,相对位置模型可以按如下方式实现: \parinterval 基于上述描述,相对位置模型可以按如下方式实现:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{相对位置编码}}\index{相对位置编码}(Relative Positional Representation)\index{Relative Positional Representation}\upcite{Shaw2018SelfAttentionWR}。核心思想是在能够捕获全局依赖的自注意力机制中引入相对位置信息。该方法可以有效补充绝对位置编码的不足,甚至完全取代绝对位置编码。对于Transformer模型中的任意一层,假设$\mathbi{x}_i$$\mathbi{x}_j$是位置$i$$j$的输入向量(也就是来自上一层位置$i$$j$的输出向量),二者的位置关系可以通过向量$\mathbi{a}_{ij}^V$$\mathbi{a}_{ij}^K$来表示,定义如下: \item {\small\bfnew{相对位置表示}}\index{相对位置表示}(Relative Positional Representation)\index{Relative Positional Representation}\upcite{Shaw2018SelfAttentionWR}。核心思想是在能够捕获全局依赖的自注意力机制中引入相对位置信息。该方法可以有效补充绝对位置编码的不足,甚至完全取代绝对位置编码。对于Transformer模型中的任意一层,假设$\mathbi{x}_i$$\mathbi{x}_j$是位置$i$$j$的输入向量(也就是来自上一层位置$i$$j$的输出向量),二者的位置关系可以通过向量$\mathbi{a}_{ij}^V$$\mathbi{a}_{ij}^K$来表示,定义如下:
\begin{eqnarray} \begin{eqnarray}
\mathbi{a}_{ij}^K &=& \mathbi{w}^K_{\textrm{clip}(j-i,k)} \label{eq:15-7} \\ \mathbi{a}_{ij}^K &=& \mathbi{w}^K_{\textrm{clip}(j-i,k)} \label{eq:15-7} \\
\mathbi{a}_{ij}^V &=& \mathbi{w}^V_{\textrm{clip}(j-i,k)} \label{eq:15-8} \\ \mathbi{a}_{ij}^V &=& \mathbi{w}^V_{\textrm{clip}(j-i,k)} \label{eq:15-8} \\
...@@ -150,13 +150,13 @@ A_{ij}^{\rm rel} &=& \underbrace{\mathbi{E}_{x_i}\mathbi{W}_Q\mathbi{W}_{K}^{\te ...@@ -150,13 +150,13 @@ A_{ij}^{\rm rel} &=& \underbrace{\mathbi{E}_{x_i}\mathbi{W}_Q\mathbi{W}_{K}^{\te
\label{eq:15-14} \label{eq:15-14}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$A_{ij}^{\rm rel}$为使用相对位置编码后位置$i$$j$关系的表示结果,$\mathbi{R}$是一个固定的正弦矩阵。不同于公式\eqref{eq:15-13},公式\eqref{eq:15-14}对(c)中的$\mathbi{E}_{x_j}^{\textrm{T}}$与(d)中的$\mathbi{R}_{i-j}^{\textrm{T}}$采用了不同的映射矩阵,分别为$\mathbi{W}_{K,E}^{\textrm{T}}$$\mathbi{W}_{K,R}^{\textrm{T}}$,这两项分别代表了键$\mathbi{K}$中的词嵌入表示和相对位置编码表示,并且由于此时只采用了相对位置编码,因此公式\eqref{eq:15-14}在(c)与(d)部分使用了$\mathbi{u}$$\mathbi{v}$两个可学习的矩阵代替$\mathbi{U}_i\mathbi{W}_Q$$\mathbi{U}_i\mathbi{W}_Q$,即查询$\mathbi{Q}$中的绝对位置编码部分。此时公式中各项的含义为:(a)表示位置$i$与位置$j$之间词嵌入的相关性,可以看作是基于内容的表示,(b)表示基于内容的位置偏置,(c)表示全局内容的偏置,(d)表示全局位置的偏置。公式\eqref{eq:15-13}中的(a)、(b)两项与前面介绍的绝对位置编码一致\upcite{Shaw2018SelfAttentionWR},并针对相对位置编码引入了额外的线性变换矩阵。同时,这种方法兼顾了全局内容偏置和全局位置偏置,可以更好地利用正余弦函数的归纳偏置特性。 \noindent 其中,$A_{ij}^{\rm rel}$为使用相对位置表示后位置$i$$j$关系的表示结果,$\mathbi{R}$是一个固定的正弦矩阵。不同于公式\eqref{eq:15-13},公式\eqref{eq:15-14}对(c)中的$\mathbi{E}_{x_j}^{\textrm{T}}$与(d)中的$\mathbi{R}_{i-j}^{\textrm{T}}$采用了不同的映射矩阵,分别为$\mathbi{W}_{K,E}^{\textrm{T}}$$\mathbi{W}_{K,R}^{\textrm{T}}$,这两项分别代表了键$\mathbi{K}$中的词嵌入表示和相对位置表示,并且由于此时只采用了相对位置表示,因此公式\eqref{eq:15-14}在(c)与(d)部分使用了$\mathbi{u}$$\mathbi{v}$两个可学习的矩阵代替$\mathbi{U}_i\mathbi{W}_Q$$\mathbi{U}_i\mathbi{W}_Q$,即查询$\mathbi{Q}$中的绝对位置编码部分。此时公式中各项的含义为:(a)表示位置$i$与位置$j$之间词嵌入的相关性,可以看作是基于内容的表示,(b)表示基于内容的位置偏置,(c)表示全局内容的偏置,(d)表示全局位置的偏置。公式\eqref{eq:15-13}中的(a)、(b)两项与前面介绍的绝对位置编码一致\upcite{Shaw2018SelfAttentionWR},并针对相对位置表示引入了额外的线性变换矩阵。同时,这种方法兼顾了全局内容偏置和全局位置偏置,可以更好地利用正余弦函数的归纳偏置特性。
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{结构化位置编码}}\index{基于结构化位置编码}(Structural Position Representations)\index{Structural Position Representations}\upcite{DBLP:conf/emnlp/WangTWS19a}。 通过对输入句子进行依存句法分析得到句法树,根据叶子结点在句法树中的深度来表示其绝对位置,并在此基础上利用相对位置编码的思想计算节点之间的相对位置信息。 \item {\small\bfnew{结构化位置表示}}\index{结构化位置表示}(Structural Position Representations)\index{Structural Position Representations}\upcite{DBLP:conf/emnlp/WangTWS19a}。 通过对输入句子进行依存句法分析得到句法树,根据叶子结点在句法树中的深度来表示其绝对位置,并在此基础上利用相对位置表示的思想计算节点之间的相对位置信息。
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{基于连续动态系统}}\index{基于连续动态系统}(Continuous Dynamic Model)\index{Continuous Dynamic Model}{\small\bfnew{的位置编码}}\upcite{Liu2020LearningTE}。使用神经常微分方程{\small\bfnew{求解器}}\index{求解器}(Solver)\index{Solver}来建模位置信息\upcite{DBLP:conf/nips/ChenRBD18},模型具有更好的归纳偏置能力,可以处理变长的输入序列,同时能够从不同的数据中进行自适应学习。 \item {\small\bfnew{基于连续动态系统}}\index{连续动态系统}(Continuous Dynamic Model)\index{Continuous Dynamic Model}{\small\bfnew{的位置编码}}\upcite{Liu2020LearningTE}。使用神经常微分方程{\small\bfnew{求解器}}\index{求解器}(Solver)\index{Solver}来建模位置信息\upcite{DBLP:conf/nips/ChenRBD18},模型具有更好的归纳偏置能力,可以处理变长的输入序列,同时能够从不同的数据中进行自适应学习。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -345,7 +345,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i) ...@@ -345,7 +345,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i)
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{跨步注意力}}:该模型是一种稀疏的注意力机制,通常会设置一个固定的间隔,也就是说在计算注意力表示时,每次跳过固定数量的词,并将下一个词纳入注意力计算的考虑范围内\upcite{DBLP:journals/corr/abs-2004-05150}。和分片段进行注意力计算类似,假设最终参与注意力计算的间隔长度为$N/B$,每次参与注意力计算的单词数为$B$,那么注意力的计算复杂度将从$O(N^2)$缩减为$O(N/B \times B^2)$,即$O(NB)$ \item {\small\bfnew{跨步注意力}}:该模型是一种稀疏的注意力机制,通常会设置一个固定的间隔,也就是说在计算注意力表示时,每次跳过固定数量的词,并将下一个词纳入注意力计算的考虑范围内\upcite{DBLP:journals/corr/abs-2004-05150}。和分片段进行注意力计算类似,假设最终参与注意力计算的间隔长度为$N/B$,每次参与注意力计算的单词数为$B$,那么注意力的计算复杂度将从$O(N^2)$缩减为$O(N/B \times B^2)$,即$O(NB)$
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{内存压缩注意力}}:这种方式的主要的思想是使用一些操作,如卷积、池化等对序列进行下采样,来缩短序列长度。例如,使用{\small\bfnew{跨步卷积}}\index{跨步卷积}(Stride Convolution)\index{Stride Convolution}来减少Key和Value的数量,即减少表示序列长度的维度的大小,Query的数量保持不变,从而减少了注意力权重计算时的复杂度\upcite{DBLP:conf/iclr/LiuSPGSKS18}。其计算复杂度取决于跨步卷积时步幅的大小$K$,形式上可以理解为每$K$个单元做一次特征融合后,将关注的目标缩减为$N/K$,整体的计算复杂度为$N^2/K$。相比于使用前两种方式对局部进行注意力计算,该方式仍是对全局的建模。 \item {\small\bfnew{内存压缩注意力}}:这种方式的主要的思想是使用一些操作,如卷积、池化等对序列进行{\small\bfnew{下采样}}\index{下采样}(subsampled)\index{subsampled},来缩短序列长度。例如,使用{\small\bfnew{跨步卷积}}\index{跨步卷积}(Stride Convolution)\index{Stride Convolution}来减少Key和Value的数量,即减少表示序列长度的维度的大小,Query的数量保持不变,从而减少了注意力权重计算时的复杂度\upcite{DBLP:conf/iclr/LiuSPGSKS18}。其计算复杂度取决于跨步卷积时步幅的大小$K$,形式上可以理解为每$K$个单元做一次特征融合后,将关注的目标缩减为$N/K$,整体的计算复杂度为$N^2/K$。相比于使用前两种方式对局部进行注意力计算,该方式仍是对全局的建模。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -355,7 +355,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i) ...@@ -355,7 +355,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i)
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item Reformer模型在计算Key和Value时使用相同的线性映射,共享Key和Value的值\upcite{Kitaev2020ReformerTE},降低了自注意力机制的复杂度。进一步,Reformer引入了一种{\small\bfnew{局部哈希敏感注意力机制}}\index{局部哈希敏感注意力机制}(LSH Attention)\index{LSH Attention},其提高效率的方式和固定模式中的局部建模一致,减少注意力机制的计算范围。对于每一个Query,通过局部哈希敏感机制找出和其较为相关的Key,并进行注意力的计算。其基本思路就是距离相近的向量以较大的概率被哈希分配到一个桶内,距离较远的向量被分配到一个桶内的概率则较低。此外,Reformer中还采用了一种{\small\bfnew{可逆残差网络结构}}\index{可逆残差网络结构}(The Reversible Residual Network)\index{The Reversible Residual Network}和分块计算前馈神经网络层的机制,即将前馈层的隐层维度拆分为多个块并独立的进行计算,最后进行拼接操作,得到前馈层的输出,这种方式大幅度减少了内存(显存)占用。 \item Reformer模型在计算Key和Value时使用相同的线性映射,共享Key和Value的值\upcite{Kitaev2020ReformerTE},降低了自注意力机制的复杂度。进一步,Reformer引入了一种{\small\bfnew{局部敏感哈希注意力机制}}\index{局部敏感哈希注意力机制}(Locality Sensitive Hashing Attention\index{Locality Sensitive Hashing Attention},LSH Attention),其提高效率的方式和固定模式中的局部建模一致,减少注意力机制的计算范围。对于每一个Query,通过局部哈希敏感机制找出和其较为相关的Key,并进行注意力的计算。其基本思路就是距离相近的向量以较大的概率被哈希分配到一个桶内,距离较远的向量被分配到一个桶内的概率则较低。此外,Reformer中还采用了一种{\small\bfnew{可逆残差网络结构}}\index{可逆残差网络结构}(The Reversible Residual Network)\index{The Reversible Residual Network}和分块计算前馈神经网络层的机制,即将前馈层的隐藏层维度拆分为多个块并独立的进行计算,最后进行拼接操作,得到前馈层的输出,这种方式大幅度减少了内存(显存)占用。
\vspace{0.5em} \vspace{0.5em}
\item Routing Transformer通过聚类算法对序列中的不同单元进行分组,分别在组内进行自注意力机制的计算\upcite{DBLP:journals/corr/abs-2003-05997}。该方法是将Query和Key映射到聚类矩阵$\mathbi{S}$ \item Routing Transformer通过聚类算法对序列中的不同单元进行分组,分别在组内进行自注意力机制的计算\upcite{DBLP:journals/corr/abs-2003-05997}。该方法是将Query和Key映射到聚类矩阵$\mathbi{S}$
...@@ -364,7 +364,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i) ...@@ -364,7 +364,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i)
\label{eq:15-24} \label{eq:15-24}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$\mathbi{W}$为映射矩阵。为了保证每个簇内的单词数量一致,利用聚类算法将$\mathbi{S}$中的向量分配到$\sqrt{N}$个簇中,其中$N$为序列长度,即分别计算$\mathbi{S}$中每个向量与质心的距离,并对每个质心取距离最近的若干个节点。 \noindent 其中,$\mathbi{W}$为映射矩阵。为了保证每个簇内的单词数量一致,利用聚类算法将$\mathbi{S}$中的向量分配到$\sqrt{N}$个簇中,其中$N$为序列长度,即分别计算$\mathbi{S}$中每个向量与质心(聚类中心)的距离,并对每个质心取距离最近的若干个节点。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -398,7 +398,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i) ...@@ -398,7 +398,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i)
\subsection{Post-Norm vs Pre-Norm} \subsection{Post-Norm vs Pre-Norm}
\label{sec:post-pre-norm} \label{sec:post-pre-norm}
\parinterval 为了探究为何深层Transformer模型很难直接训练,首先对Transformer的模型结构进行简单的回顾,详细内容可以参考{\chaptertwelve}。以Transformer的编码器为例,在多头自注意力和前馈神经网络中间,Transformer模型利用残差连接\upcite{DBLP:journals/corr/HeZRS15}和层标准化操作\upcite{Ba2016LayerN}来提高信息的传递效率。Transformer模型大致分为图\ref{fig:15-9}中的两种结构\ \dash \ 后作方式的残差单元(Post-Norm)和前作方式的残差单元(Pre-Norm) \parinterval 为了探究为何深层Transformer模型很难直接训练,首先对Transformer的模型结构进行简单的回顾,详细内容可以参考{\chaptertwelve}。以Transformer的编码器为例,在多头自注意力和前馈神经网络中间,Transformer模型利用残差连接\upcite{DBLP:journals/corr/HeZRS15}和层标准化操作\upcite{Ba2016LayerN}来提高信息的传递效率。Transformer模型大致分为图\ref{fig:15-9}中的两种结构\ \dash \ 后作方式(Post-Norm)的残差单元和前作方式(Pre-Norm)的残差单元
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -500,13 +500,13 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i) ...@@ -500,13 +500,13 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i)
\noindent 其中,$[\cdot]$表示级联操作。这种方式具有比权重平均更强的拟合能力。 \noindent 其中,$[\cdot]$表示级联操作。这种方式具有比权重平均更强的拟合能力。
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{基于多跳的自注意力机制}}。如图\ref{fig:15-11}所示,其做法与前馈神经网络类似,首先将不同层的表示拼接成2维的句子级矩阵表示\upcite{DBLP:journals/corr/LinFSYXZB17}。之后利用类似于前馈神经网络的思想将维度为$\mathbb{R}^{d_{\textrm{model}} \times L}$的矩阵映射到维度为$\mathbb{R}^{d_{\textrm{model}} \times n_{\rm hop}}$的矩阵,如下: \item {\small\bfnew{基于多跳注意力}}\index{多跳注意力}(Multi-hop Attention)\index{Multi-hop Self-attention}{\small\bfnew{机制}}。如图\ref{fig:15-11}所示,其做法与前馈神经网络类似,首先将不同层的表示拼接成2维的句子级矩阵表示\upcite{DBLP:journals/corr/LinFSYXZB17}。之后利用类似于前馈神经网络的思想将维度为$\mathbb{R}^{d_{\textrm{model}} \times L}$的矩阵映射到维度为$\mathbb{R}^{d_{\textrm{model}} \times n_{\rm hop}}$的矩阵,如下:
\begin{eqnarray} \begin{eqnarray}
\mathbi{o} &=& \sigma ([\mathbi{h}^1,\ldots,\mathbi{h}^L]^{\textrm{T}} \cdot \mathbi{W}_1)\mathbi{W}_2 \mathbi{o} &=& \sigma ([\mathbi{h}^1,\ldots,\mathbi{h}^L]^{\textrm{T}} \cdot \mathbi{W}_1)\mathbi{W}_2
\label{eq:15-33} \label{eq:15-33}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$[\mathbi{h}^1,\ldots,\mathbi{h}^L]$是输入矩阵,$\mathbi{o}$是输出矩阵,$\mathbi{W}_1 \in \mathbb{R}^{d_{\textrm{model}} \times d_{\rm a}}$$\mathbi{W}_2 \in \mathbb{R}^{d_{\rm a}\times n_{\rm hop}}$$d_{\rm a}$表示前馈神经网络隐层大小,$n_{\rm hop}$表示跳数。 之后使用Softmax 函数计算不同层沿相同维度上的归一化结果$\mathbi{u}_l$ \noindent 其中,$[\mathbi{h}^1,\ldots,\mathbi{h}^L]$是输入矩阵,$\mathbi{o}$是输出矩阵,$\mathbi{W}_1 \in \mathbb{R}^{d_{\textrm{model}} \times d_{\rm a}}$$\mathbi{W}_2 \in \mathbb{R}^{d_{\rm a}\times n_{\rm hop}}$$d_{\rm a}$表示前馈神经网络隐层大小,$n_{\rm hop}$表示跳数。 之后使用Softmax 函数计算不同层沿相同维度上的归一化结果$\mathbi{u}_l$
\begin{eqnarray} \begin{eqnarray}
\mathbi{u}_l &=& \frac{\textrm{exp}(\mathbi{o}_l)}{\sum_{i=1}^L{\textrm{exp}(\mathbi{o}_i)}} \mathbi{u}_l &=& \frac{\textrm{exp}(\mathbi{o}_l)}{\sum_{i=1}^L{\textrm{exp}(\mathbi{o}_i)}}
\label{eq:15-34} \label{eq:15-34}
...@@ -616,20 +616,20 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i) ...@@ -616,20 +616,20 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i)
\noindent 其中,$u(-\gamma,\gamma)$表示$-\gamma$$\gamma$间的均匀分布,$n_i$$n_o$分别为线性变换$\mathbi{W}$中输入和输出的维度,也就是上一层神经元的数量和下一层神经元的数量。通过使用这种初始化方式,即可维持神经网络在前向与反向计算过程中,每一层的输入与输出方差的一致性\upcite{DBLP:conf/iccv/HeZRS15} \noindent 其中,$u(-\gamma,\gamma)$表示$-\gamma$$\gamma$间的均匀分布,$n_i$$n_o$分别为线性变换$\mathbi{W}$中输入和输出的维度,也就是上一层神经元的数量和下一层神经元的数量。通过使用这种初始化方式,即可维持神经网络在前向与反向计算过程中,每一层的输入与输出方差的一致性\upcite{DBLP:conf/iccv/HeZRS15}
\parinterval 令模型中某层神经元的输出表示为$\mathbi{Z}=\sum_{j=1}^{n_i}{w_j x_j}$。可以看出,$\mathbi{Z}$的核心是计算两个变量$w_j$$x_j$乘积。两个变量乘积的方差的展开式为: \parinterval 令模型中某层神经元的输出表示为$Z=\sum_{j=1}^{n_i}{w_j x_j}$。可以看出,$Z$的核心是计算两个变量$w_j$$x_j$乘积。两个变量乘积的方差的展开式为:
\begin{eqnarray} \begin{eqnarray}
\textrm{Var}(w_j x_j) &=& E[w_j]^2 \textrm{Var}(x_j) + E[x_j]^2 \textrm{Var}(w_j) + \textrm{Var}(w_j)\textrm{Var}(x_j) \textrm{Var}(w_j x_j) &=& E[w_j]^2 \textrm{Var}(x_j) + E[x_j]^2 \textrm{Var}(w_j) + \textrm{Var}(w_j)\textrm{Var}(x_j)
\label{eq:15-41} \label{eq:15-41}
\end{eqnarray} \end{eqnarray}
\parinterval 其中$\textrm{Var}(\cdot)$表示求方差操作,由于在大多数情况下,现有模型中的各种标准化方法可以维持$E[w_j]^2$$E[x_j]^2$等于或者近似为0。因此,模型中一层神经元输出的方差可以表示为: \parinterval 其中$\textrm{Var}(\cdot)$表示求方差操作,由于在大多数情况下,现有模型中的各种标准化方法可以维持$E[w_j]^2$$E[x_j]^2$等于或者近似为0。由于输入$x_j(1<j<n_i)$独立同分布,此处可以使用$x$表示输入服从的分布,对于参数$w_j$也可以有同样的表示$w$因此,模型中一层神经元输出的方差可以表示为:
\begin{eqnarray} \begin{eqnarray}
\textrm{Var}(\mathbi{Z}) &=& \sum_{j=1}^{n_i}{\textrm{Var}(x_j) \textrm{Var}(w_j)} \nonumber \\ \textrm{Var}(Z) &=& \sum_{j=1}^{n_i}{\textrm{Var}(x_j) \textrm{Var}(w_j)} \nonumber \\
&=& {n_i}\textrm{Var}(\mathbi{W})\textrm{Var}(\mathbi{X}) &=& {n_i}\textrm{Var}({w})\textrm{Var}({x})
\label{eq:15-42} \label{eq:15-42}
\end{eqnarray} \end{eqnarray}
\parinterval 通过观察公式\eqref{eq:15-42}可以发现,在前向传播的过程中,当$\textrm{Var}(\mathbi{W})=\frac{1}{n_i}$时,可以保证每层的输入和输出的方差一致。类似的,通过相关计算可以得知,为了保证模型中每一层的输入和输出的方差一致,反向传播时应有$\textrm{Var}(\mathbi{W})=\frac{1}{n_o}$,通过对两种情况取平均值,控制参数$\mathbi{W}$的方差为$\frac{2}{n_i+n_o}$,则可以维持神经网络在前向与反向计算过程中,每一层的输入与输出方差的一致性。若将参数初始化为一个服从边界为$[-a,b]$的均匀分布,那么其方差为$\frac{{(b+a)}^2}{12}$,为了达到$\mathbi{W}$的取值要求,初始化时应有$a=b=\sqrt{\frac{6}{n_i+n_o}}$ \parinterval 通过观察公式\eqref{eq:15-42}可以发现,在前向传播的过程中,当$\textrm{Var}(w)=\frac{1}{n_i}$时,可以保证每层的输入和输出的方差一致。类似的,通过相关计算可以得知,为了保证模型中每一层的输入和输出的方差一致,反向传播时应有$\textrm{Var}(w)=\frac{1}{n_o}$,通过对两种情况取平均值,控制参数$w$的方差为$\frac{2}{n_i+n_o}$,则可以维持神经网络在前向与反向计算过程中,每一层的输入与输出方差的一致性。若将参数初始化为一个服从边界为$[-a,b]$的均匀分布,那么其方差为$\frac{{(b+a)}^2}{12}$,为了达到$w$的取值要求,初始化时应有$a=b=\sqrt{\frac{6}{n_i+n_o}}$
\parinterval 但是随着神经网络层数的增加,上述初始化方法已经不能很好地约束基于Post-Norm的Transformer模型的输出方差。当神经网络堆叠很多层时,模型顶层输出的方差较大,同时反向传播时顶层的梯度范数也要大于底层。因此,一个自然的想法是根据网络的深度对不同层的参数矩阵采取不同的初始化方式,进而强化对各层输出方差的约束,可以描述为: \parinterval 但是随着神经网络层数的增加,上述初始化方法已经不能很好地约束基于Post-Norm的Transformer模型的输出方差。当神经网络堆叠很多层时,模型顶层输出的方差较大,同时反向传播时顶层的梯度范数也要大于底层。因此,一个自然的想法是根据网络的深度对不同层的参数矩阵采取不同的初始化方式,进而强化对各层输出方差的约束,可以描述为:
\begin{eqnarray} \begin{eqnarray}
...@@ -688,9 +688,9 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i) ...@@ -688,9 +688,9 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i)
\vspace{0.5em} \vspace{0.5em}
\item 类似于标准的Transformer初始化方式,使用Xavier初始化方式来初始化除了词嵌入以外的所有参数矩阵。词嵌入矩阵服从$\mathbb{N}(0,d^{-\frac{1}{2}})$的高斯分布,其中$d$代表词嵌入的维度。 \item 类似于标准的Transformer初始化方式,使用Xavier初始化方式来初始化除了词嵌入以外的所有参数矩阵。词嵌入矩阵服从$\mathbb{N}(0,d^{-\frac{1}{2}})$的高斯分布,其中$d$代表词嵌入的维度。
\vspace{0.5em} \vspace{0.5em}
\item 对编码器中自注意力机制的参数矩阵以及前馈神经网络中所有参数矩阵进行缩放因子为$0.67 {L}^{-\frac{1}{4}}$的缩放,$L$为编码器层数。 \item 对编码器中部分自注意力机制的参数矩阵以及前馈神经网络的参数矩阵进行缩放因子为$0.67 {L}^{-\frac{1}{4}}$的缩放,$L$为编码器层数。
\vspace{0.5em} \vspace{0.5em}
\item 对解码器中全部注意力机制的参数矩阵以及前馈神经网络中所有参数矩阵进行缩放因子为$(9 {M})^{-\frac{1}{4}}$的缩放,其中$M$为解码器层数。 \item 对解码器中部分注意力机制的参数矩阵、前馈神经网络的参数矩阵以及前馈神经网络的嵌入式输入进行缩放因子为$(9 {M})^{-\frac{1}{4}}$的缩放,其中$M$为解码器层数。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -799,7 +799,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i) ...@@ -799,7 +799,7 @@ v_i &=& \mathbi{I}_d^{\textrm{T}}\textrm{Tanh}(\mathbi{W}_d\mathbi{Q}_i)
lr &=& d_{\textrm{model}}^{-0.5}\cdot step\_num \cdot warmup\_steps^{-0.5} lr &=& d_{\textrm{model}}^{-0.5}\cdot step\_num \cdot warmup\_steps^{-0.5}
\label{eq:15-49} \label{eq:15-49}
\end{eqnarray} \end{eqnarray}
\noindent 这里,$step\_num$表示参数更新的次数,$warmup\_step$表示预热的更新次数,$d_{\textrm{model}}$表示Transformer模型的隐层大小,$lr$是学习率。 \noindent 这里,$step\_num$表示参数更新的次数,$warmup\_step$表示预热的更新次数,$d_{\textrm{model}}$表示Transformer模型的隐层大小,$lr$是学习率。
\vspace{0.5em} \vspace{0.5em}
\item 在之后的训练过程中,每当增加模型深度时,学习率都会重置到峰值,之后进行相应的衰减: \item 在之后的训练过程中,每当增加模型深度时,学习率都会重置到峰值,之后进行相应的衰减:
\begin{eqnarray} \begin{eqnarray}
...@@ -914,7 +914,7 @@ lr &=& d_{\textrm{model}}^{-0.5}\cdot step\_num^{-0.5} ...@@ -914,7 +914,7 @@ lr &=& d_{\textrm{model}}^{-0.5}\cdot step\_num^{-0.5}
\label{eq:15-53} \label{eq:15-53}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$\mathbi{h}_l$$\mathbi{h}_r$分别代表了左孩子节点和右孩子节点的神经网络输出(隐层状态),通过一个非线性函数$f_\textrm{tree}(\cdot,\cdot)$得到父节点的状态$\mathbi{h}_p$。 图\ref{fig:15-20} 展示了一个基于树结构的循环神经网络编码器\upcite{DBLP:conf/acl/EriguchiHT16}。这些编码器由下自上组成了一个树型结构,这种树结构的具体连接形式由句法分析决定。其中$\{\mathbi{h}_1,\ldots,\mathbi{h}_m\}$是输入序列所对应的循环神经单元(绿色部分),$\{\mathbi{h}_{m+1},\ldots,\mathbi{h}_{2m-1}\}$对应着树中的节点(红色部分),它的输出由其左右子节点通过公式\eqref{eq:15-53}计算得到。对于注意力模型,图中所有的节点都会参与上下文向量的计算,因此仅需要对{\chapterten}所描述的计算方式稍加修改,如下: \noindent 其中,$\mathbi{h}_l$$\mathbi{h}_r$分别代表了左孩子节点和右孩子节点的神经网络输出(隐层状态),通过一个非线性函数$f_\textrm{tree}(\cdot,\cdot)$得到父节点的状态$\mathbi{h}_p$。 图\ref{fig:15-20} 展示了一个基于树结构的循环神经网络编码器\upcite{DBLP:conf/acl/EriguchiHT16}。这些编码器由下自上组成了一个树型结构,这种树结构的具体连接形式由句法分析决定。其中$\{\mathbi{h}_1,\ldots,\mathbi{h}_m\}$是输入序列所对应的循环神经单元(绿色部分),$\{\mathbi{h}_{m+1},\ldots,\mathbi{h}_{2m-1}\}$对应着树中的节点(红色部分),它的输出由其左右子节点通过公式\eqref{eq:15-53}计算得到。对于注意力模型,图中所有的节点都会参与上下文向量的计算,因此仅需要对{\chapterten}所描述的计算方式稍加修改,如下:
\begin{eqnarray} \begin{eqnarray}
\mathbi{C}_j &=& \sum_{i=1}^{m}\alpha_{i,j}\mathbi{h}_i + \sum_{i=m+1}^{2m-1}\alpha_{i,j}\mathbi{h}_i \mathbi{C}_j &=& \sum_{i=1}^{m}\alpha_{i,j}\mathbi{h}_i + \sum_{i=m+1}^{2m-1}\alpha_{i,j}\mathbi{h}_i
\label{eq:15-54} \label{eq:15-54}
...@@ -941,7 +941,7 @@ lr &=& d_{\textrm{model}}^{-0.5}\cdot step\_num^{-0.5} ...@@ -941,7 +941,7 @@ lr &=& d_{\textrm{model}}^{-0.5}\cdot step\_num^{-0.5}
\parinterval 在标准的英语到日语的翻译中,英语短语“a cup of green tea”只会被翻译为“緑茶”一词。在加入句法树后,“a cup of green tea”会作为树中一个节点,这样可以更容易地把这个英语短语作为一个整体进行翻译。 \parinterval 在标准的英语到日语的翻译中,英语短语“a cup of green tea”只会被翻译为“緑茶”一词。在加入句法树后,“a cup of green tea”会作为树中一个节点,这样可以更容易地把这个英语短语作为一个整体进行翻译。
\parinterval 只是,这种自底向上的树结构表示方法也存在问题:每个树节点的状态并不能包含树中其它位置的信息。也就是说,从每个节点上看,其表示结果没有很好地利用句法树中的上下文信息。因此,可以同时使用自下而上和自上而下的信息传递方式进行句法树的表示\upcite{Yang2017TowardsBH,DBLP:conf/acl/ChenHCC17},这样增加了树中每个节点对其覆盖的子树以及周围上下文的建模能力。如图\ref{fig:15-21} 所示,$\mathbi{h}^\textrm{up}$$\mathbi{h}^\textrm{down}$分别代表向上传输节点和向下传输节点的状态,虚线框代表了$\mathbi{h}^\textrm{up}$$\mathbi{h}^\textrm{down}$会拼接到一起,并作为这个节点的整体表示参与注意力模型的计算。显然,自下而上的传递,可以保证句子的浅层信息(如短距离词搭配)被传递给上层节点,而自上而下的传递,可以保证句子上层结构的抽象被有效地传递给下层节点。这样,每个节点就同时含有浅层和深层句子表示的信息。 \parinterval 只是,这种自底向上的树结构表示方法也存在问题:每个树节点的状态并不能包含树中其它位置的信息。也就是说,从每个节点上看,其表示结果没有很好地利用句法树中的上下文信息。因此,可以同时使用自下而上和自上而下的信息传递方式进行句法树的表示\upcite{Yang2017TowardsBH,DBLP:conf/acl/ChenHCC17},这样增加了树中每个节点对其覆盖的子树以及周围上下文的建模能力。如图\ref{fig:15-21} 所示,$\mathbi{h}^\textrm{up}$$\mathbi{h}^\textrm{down}$分别代表向上传输节点和向下传输节点的状态,虚线框代表了$\mathbi{h}^\textrm{up}$$\mathbi{h}^\textrm{down}$会拼接到一起,并作为这个节点的整体表示参与注意力模型的计算。显然,自下而上的传递,可以保证句子的浅层信息(如短距离词搭配)被传递给上层节点,而自上而下的传递,可以保证句子上层结构的抽象被有效地传递给下层节点。这样,每个节点就同时含有浅层和深层句子表示的信息。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -1041,7 +1041,7 @@ lr &=& d_{\textrm{model}}^{-0.5}\cdot step\_num^{-0.5} ...@@ -1041,7 +1041,7 @@ lr &=& d_{\textrm{model}}^{-0.5}\cdot step\_num^{-0.5}
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 不过,融合树结构和目标语言词串的方法也存在问题:它会导致目标语言端的序列过长,使得模型难以训练。为了缓解这个问题,可以使用两个模型,一个生成句子,另一个生成树结构\upcite{DBLP:conf/acl/WuZYLZ17,DBLP:journals/corr/abs-1808-09374}。以生成目标语言依存树为例,生成依存树的模型是一个生成移进-规约序列的生成模型,称为动作模型。另一个模型负责预测目标语言词序列,称为词预测模型,它只有在第一个模型进行移位操作的时候才会预测一下词,同时会将当前词的状态送入到第一个模型中。整个过程如图\ref{fig:15-26}所示,这里使用循环神经网络构建了动作模型和词预测模型。$\mathbi{h}_i^\textrm{action}$ 表示动作模型的隐藏层状态,$\mathbi{h}_i^\textrm{word}$表示词预测模型的隐藏层状态。动作模型会结合词预测模型的状态预测出“移位”,“左规约”,“右规约”三种动作,只有当动作模型预测出“移位”操作时,词预测模型才会预测下一时刻的词语;而动作模型预测“左规约”和“右规约”相当于完成了依存关系的预测(依存树见图\ref{fig:15-26}右侧)。最后词预测模型预测出结束符号<eos> 时,整个过程结束。 \parinterval 不过,融合树结构和目标语言词串的方法也存在问题:它会导致目标语言端的序列过长,使得模型难以训练。为了缓解这个问题,可以使用两个模型,一个生成句子,另一个生成树结构\upcite{DBLP:conf/acl/WuZYLZ17,DBLP:journals/corr/abs-1808-09374}。以生成目标语言依存树为例,生成依存树的模型是一个生成移进-规约序列的生成模型,称为动作模型。另一个模型负责预测目标语言词序列,称为词预测模型,它只有在第一个模型进行移位操作的时候才会预测下一个词,同时会将当前词的状态送入到第一个模型中。整个过程如图\ref{fig:15-26}所示,这里使用循环神经网络构建了动作模型和词预测模型。$\mathbi{h}_i^\textrm{action}$ 表示动作模型的隐藏层状态,$\mathbi{h}_i^\textrm{word}$表示词预测模型的隐藏层状态。动作模型会结合词预测模型的状态预测出“移位”,“左规约”,“右规约”三种动作,只有当动作模型预测出“移位”操作时,词预测模型才会预测下一时刻的词语;而动作模型预测“左规约”和“右规约”相当于完成了依存关系的预测(依存树见图\ref{fig:15-26}右侧)。最后词预测模型预测出结束符号<eos> 时,整个过程结束。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
......
...@@ -59,7 +59,7 @@ ...@@ -59,7 +59,7 @@
\node [anchor=west,fill=green!20,minimum width=1.5em](d1-1) at ([xshift=-0.0em]d1.east){}; \node [anchor=west,fill=green!20,minimum width=1.5em](d1-1) at ([xshift=-0.0em]d1.east){};
\node [anchor=west,fill=red!20,minimum width=1.5em](d2-1) at ([xshift=-0.0em]d2.east){}; \node [anchor=west,fill=red!20,minimum width=1.5em](d2-1) at ([xshift=-0.0em]d2.east){};
\node [anchor=west,fill=yellow!20,minimum width=1.5em](d3-1) at ([xshift=-0.0em]d3.east){}; \node [anchor=west,fill=yellow!20,minimum width=1.5em](d3-1) at ([xshift=-0.0em]d3.east){};
\node [anchor=north] (d4) at ([xshift=1em]d1.south) {\small{训练:}}; \node [anchor=north] (d4) at ([xshift=1.82em]d1.south) {\small{训练:}};
\node [anchor=north] (d5) at ([xshift=0.5em]d2.south) {\small{推断:}}; \node [anchor=north] (d5) at ([xshift=0.5em]d2.south) {\small{推断:}};
\draw [->,thick] ([xshift=0em]d4.east)--([xshift=1.5em]d4.east); \draw [->,thick] ([xshift=0em]d4.east)--([xshift=1.5em]d4.east);
\draw [->,thick,dashed] ([xshift=0em]d5.east)--([xshift=1.5em]d5.east); \draw [->,thick,dashed] ([xshift=0em]d5.east)--([xshift=1.5em]d5.east);
......
...@@ -22,7 +22,7 @@ ...@@ -22,7 +22,7 @@
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\chapter{低资源神经机器翻译} \chapter{低资源神经机器翻译}
\parinterval 神经机器翻译带来的性能提升是显著的,但随之而来的问题是对海量双语训练数据的依赖。不同语言可使用的数据规模是不同的。比如汉语、英语这种使用范围广泛的语言,存在着大量的双语平行句对,这些语言被称为{\small\bfnew{富资源语言}}\index{富资源语言}(High-resource Language\index{High-resource Language})。而对于其它一些使用范围稍小的语言,如斐济语、古吉拉特语等,相关的数据非常稀少,这些语言被称为{\small\bfnew{低资源语言}}\index{低资源语言}(Low-resource Language\index{Low-resource Language})。世界上现存语言超过5000种,仅有很少一部分为富资源语言,绝大多数均为低资源语言。即使在富资源语言中,对于一些特定的领域,双语平行语料也是十分稀缺的。有时,一些特殊的语种或者领域甚至会面临“零资源”的问题。因此,{\small\bfnew{低资源机器翻译}}\index{低资源机器翻译}(Low-resource Machine Translation)是当下急需解决且颇具挑战的问题。 \parinterval 神经机器翻译带来的性能提升是显著的,但随之而来的问题是对海量双语训练数据的依赖。不同语言可使用的数据规模是不同的。比如汉语、英语这种使用范围广泛的语言,存在着大量的双语平行句对,这些语言被称为{\small\bfnew{富资源语言}}\index{富资源语言}(High-resource Language\index{High-resource Language})。而对于其它一些使用范围稍小的语言,如斐济语、古吉拉特语等,相关的数据非常稀少,这些语言被称为{\small\bfnew{低资源语言}}\index{低资源语言}(Low-resource Language\index{Low-resource Language})。世界上现存语言超过5000种,仅有很少一部分为富资源语言,绝大多数均为低资源语言。即使在富资源语言中,对于一些特定的领域,双语平行语料也是十分稀缺的。有时,一些特殊的语种或者领域甚至会面临“零资源”的问题。因此,{\small\bfnew{低资源机器翻译}}\index{低资源机器翻译}(Low-resource Machine Translation)\index{Low-resource Machine Translation}是当下急需解决且颇具挑战的问题。
\parinterval 本章将对低资源神经机器翻译的相关问题、模型和方法展开介绍,内容涉及数据的有效使用、双向翻译模型、多语言翻译模型、无监督机器翻译、领域适应五个方面。 \parinterval 本章将对低资源神经机器翻译的相关问题、模型和方法展开介绍,内容涉及数据的有效使用、双向翻译模型、多语言翻译模型、无监督机器翻译、领域适应五个方面。
...@@ -154,7 +154,7 @@ ...@@ -154,7 +154,7 @@
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsection{基于语言模型的方法} \subsection{基于语言模型的方法}
\parinterval 除了构造双语数据进行数据增强,直接利用单语数据也是机器翻译中的常用方法。通常,单语数据会被用于训练语言模型(见{\chaptertwo})。对于机器翻译系统,使用语言模型也是一件十分自然的事情,在目标语言端,语言模型可以帮助系统选择更加流畅的译文;在源语言端,语言模型也可以用于句子编码,进而更好地生成句子的表示结果。在传统方法中,语言模型更多地被使用在目标语言端。不过,近些年来随着预训练技术的发展,语言模型也被使用在神经机器翻译的编码器端。下面将从语言模型在解码器端的融合、预训练词嵌入、预训练编码器和多任务学习四方面介绍基于语言模型的单语数据使用方法。 \parinterval 除了构造双语数据进行数据增强,直接利用单语数据也是机器翻译中的常用方法。通常,单语数据会被用于训练语言模型(见{\chaptertwo})。对于机器翻译系统,使用语言模型也是一件十分自然的事情,在目标语言端,语言模型可以帮助系统选择更加流畅的译文;在源语言端,语言模型也可以用于句子编码,进而更好地生成句子的表示结果。在传统方法中,语言模型更多地被使用在目标语言端。不过,近些年来随着预训练技术的发展,语言模型也被使用在神经机器翻译的编码器端。下面将从语言模型在目标语言端的融合、预训练词嵌入、预训练模型和多任务学习四方面介绍基于语言模型的单语数据使用方法。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION % NEW SUB-SUB-SECTION
...@@ -181,7 +181,7 @@ ...@@ -181,7 +181,7 @@
\parinterval 神经机器翻译模型所使用的编码器-解码器框架天然就包含了对输入(源语言)和输出(目标语言)进行表示学习的过程。在编码端,需要学习一种分布式表示来表示源语言句子的信息,这种分布式表示可以包含序列中每个位置的表示结果(见{\chapternine})。从结构上看,神经机器翻译所使用的编码器与语言模型无异,或者说神经机器翻译的编码器其实就是一个源语言的语言模型。唯一的区别在于,神经机器翻译的编码器并不直接输出源语言句子的生成概率,而传统语言模型是建立在序列生成任务上的。既然神经机器翻译的编码器可以与解码器一起在双语数据上联合训练,那为什么不使用更大规模的数据单独对编码器进行训练呢?或者说,直接使用一个预先训练好的编码器,与机器翻译的解码器配合完成翻译过程。 \parinterval 神经机器翻译模型所使用的编码器-解码器框架天然就包含了对输入(源语言)和输出(目标语言)进行表示学习的过程。在编码端,需要学习一种分布式表示来表示源语言句子的信息,这种分布式表示可以包含序列中每个位置的表示结果(见{\chapternine})。从结构上看,神经机器翻译所使用的编码器与语言模型无异,或者说神经机器翻译的编码器其实就是一个源语言的语言模型。唯一的区别在于,神经机器翻译的编码器并不直接输出源语言句子的生成概率,而传统语言模型是建立在序列生成任务上的。既然神经机器翻译的编码器可以与解码器一起在双语数据上联合训练,那为什么不使用更大规模的数据单独对编码器进行训练呢?或者说,直接使用一个预先训练好的编码器,与机器翻译的解码器配合完成翻译过程。
\parinterval 实现上述想法的一种手段是{\small\sffamily\bfnew{预训练}}\index{预训练}(Pre-training)\index{Pre-training}\upcite{DBLP:conf/nips/DaiL15,Peters2018DeepCW,radford2018improving,devlin2019bert}。预训练的做法相当于将句子的表示学习任务从目标任务中分离出来,这样可以利用额外的更大规模的数据进行学习。常用的一种方法是使用语言建模等方式在大规模单语数据上进行训练,来得到神经机器翻译模型中的一部分(比如词嵌入和编码器等)的模型参数初始值。然后,神经机器翻译模型在双语数据上进行{\small\sffamily\bfnew{微调}}\index{微调}(Fine-tuning)\index{Fine-tuning},以得到最终的翻译模型。 \parinterval 实现上述想法的一种手段是{\small\sffamily\bfnew{预训练}}\index{预训练}(Pre-training)\index{Pre-training}\upcite{DBLP:conf/nips/DaiL15,Peters2018DeepCW,radford2018improving,devlin2019bert}。预训练的做法相当于将句子的表示学习任务从目标任务中分离出来,这样可以利用额外的更大规模的数据进行学习。常用的一种方法是使用语言建模等方式在大规模单语数据上进行训练,得到神经机器翻译模型中的部分模型(如词嵌入和编码器等)的参数初始值。然后,神经机器翻译模型在双语数据上进行{\small\sffamily\bfnew{微调}}\index{微调}(Fine-tuning)\index{Fine-tuning},以得到最终的翻译模型。
\parinterval 词嵌入可以被看作是对每个独立单词进行的表示学习的结果,在自然语言处理的众多任务中都扮演着重要角色\upcite{DBLP:conf/icml/CollobertW08,2011Natural,DBLP:journals/corr/abs-1901-09069}。到目前为止已经有大量的词嵌入学习方法被提出(见{\chapternine}),因此可以直接应用这些方法在海量的单语数据上训练得到词嵌入,用来初始化神经机器翻译模型的词嵌入参数矩阵\upcite{DBLP:conf/aclwat/NeishiSTIYT17,2018When} \parinterval 词嵌入可以被看作是对每个独立单词进行的表示学习的结果,在自然语言处理的众多任务中都扮演着重要角色\upcite{DBLP:conf/icml/CollobertW08,2011Natural,DBLP:journals/corr/abs-1901-09069}。到目前为止已经有大量的词嵌入学习方法被提出(见{\chapternine}),因此可以直接应用这些方法在海量的单语数据上训练得到词嵌入,用来初始化神经机器翻译模型的词嵌入参数矩阵\upcite{DBLP:conf/aclwat/NeishiSTIYT17,2018When}
...@@ -194,7 +194,7 @@ ...@@ -194,7 +194,7 @@
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsubsection{3. 预训练模型} \subsubsection{3. 预训练模型}
\parinterval 相比固定的词嵌入,上下文词嵌入包含了在当前语境中的语义信息,丰富了模型的输入表示,降低了训练难度。但是,模型仍有大量的参数需要从零学习,来进一步提取整个句子的表示。一种可行的方案是在预训练阶段中直接得到预训练好的模型参数,在下游任务中仅仅通过任务特定的数据对模型参数进行微调,来得到一个较强的模型。基于这个想法,有大量的预训练模型被提出。比如,{\small\bfnew{生成式预训练}}(Generative Pre-training,GPT)\index{生成式预训练}\index{GPT}{\small\bfnew{来自Transformer的双向编码器表示}}(Bidirectional Encoder Representations From Transformers,BERT)\index{双向编码器表示}\index{BERT}就是两种典型的预训练模型。图\ref{fig:16-5}对比了二者的模型结构。 \parinterval 相比固定的词嵌入,上下文词嵌入包含了在当前语境中的语义信息,丰富了模型的输入表示,降低了训练难度。但是,模型仍有大量的参数需要从零学习,来进一步提取整个句子的表示。一种可行的方案是在预训练阶段中直接得到预训练好的模型参数,在下游任务中仅仅通过任务特定的数据对模型参数进行微调,来得到一个较强的模型。基于这个想法,有大量的预训练模型被提出。比如,{\small\bfnew{生成式预训练}}(Generative Pre-training,GPT)\index{生成式预训练}\index{Generative Pre-training}{\small\bfnew{来自Transformer的双向编码器表示}}(Bidirectional Encoder Representations From Transformers,BERT)\index{双向编码器表示}\index{BERT}就是两种典型的预训练模型。图\ref{fig:16-5}对比了二者的模型结构。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -207,7 +207,7 @@ ...@@ -207,7 +207,7 @@
\parinterval GPT通过Transformer模型自回归地训练单向语言模型\upcite{radford2018improving},类似于神经机器翻译模型的解码器,相比双向LSTM等模型,Tranformer模型的表示能力更强。之后提出的BERT模型更是将预训练的作用提升到了新的水平\upcite{devlin2019bert}。GPT 模型的一个缺陷在于模型只能进行单向编码,也就是前面的文本在建模时无法获取到后面的信息。而BERT提出了一种自编码的方式,使模型在预训练阶段可以通过双向编码的方式进行建模,进一步增强了模型的表示能力。 \parinterval GPT通过Transformer模型自回归地训练单向语言模型\upcite{radford2018improving},类似于神经机器翻译模型的解码器,相比双向LSTM等模型,Tranformer模型的表示能力更强。之后提出的BERT模型更是将预训练的作用提升到了新的水平\upcite{devlin2019bert}。GPT 模型的一个缺陷在于模型只能进行单向编码,也就是前面的文本在建模时无法获取到后面的信息。而BERT提出了一种自编码的方式,使模型在预训练阶段可以通过双向编码的方式进行建模,进一步增强了模型的表示能力。
\parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{MLM}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词进行掩码,之后让模型预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词<Mask>,这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。而使用掩码的方式进行训练也给神经机器翻译提供了新的思路,在本章的其它部分中也会使用到类似方法。 \parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{Masked Language Model}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词进行掩码,之后让模型预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词<Mask>,这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。而使用掩码的方式进行训练也给神经机器翻译提供了新的思路,在本章的其它部分中也会使用到类似方法。
\parinterval 在神经机器翻译任务中,预训练模型可以用于初始化编码器的模型参数\upcite{DBLP:conf/emnlp/ClinchantJN19,DBLP:conf/emnlp/ImamuraS19,DBLP:conf/naacl/EdunovBA19}。之所以用在编码器端而不是解码器端,主要原因是编码器的作用主要在于特征提取,训练难度相对较高,而解码器的作用主要在于生成,和编码器提取到的表示是强依赖的,相对比较脆弱\upcite{DBLP:journals/corr/abs-1908-06259} \parinterval 在神经机器翻译任务中,预训练模型可以用于初始化编码器的模型参数\upcite{DBLP:conf/emnlp/ClinchantJN19,DBLP:conf/emnlp/ImamuraS19,DBLP:conf/naacl/EdunovBA19}。之所以用在编码器端而不是解码器端,主要原因是编码器的作用主要在于特征提取,训练难度相对较高,而解码器的作用主要在于生成,和编码器提取到的表示是强依赖的,相对比较脆弱\upcite{DBLP:journals/corr/abs-1908-06259}
...@@ -215,7 +215,7 @@ ...@@ -215,7 +215,7 @@
\parinterval 因此,一种做法将预训练模型和翻译模型进行融合,把预训练模型作为一个独立的模块来为编码器或者解码器提供句子级表示结果\upcite{DBLP:journals/corr/abs-2002-06823,DBLP:conf/aaai/YangW0Z00020}。另外一种做法是针对生成任务进行预训练。机器翻译是一种典型的语言生成任务,不仅包含源语言表示学习的问题,还有序列到序列的映射,以及目标语言端序列生成的问题,这些知识是无法单独通过(源语言)单语数据学习到的。因此,可以使用单语数据对编码器-解码器结构进行预训练\upcite{song2019mass,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/emnlp/QiYGLDCZ020} \parinterval 因此,一种做法将预训练模型和翻译模型进行融合,把预训练模型作为一个独立的模块来为编码器或者解码器提供句子级表示结果\upcite{DBLP:journals/corr/abs-2002-06823,DBLP:conf/aaai/YangW0Z00020}。另外一种做法是针对生成任务进行预训练。机器翻译是一种典型的语言生成任务,不仅包含源语言表示学习的问题,还有序列到序列的映射,以及目标语言端序列生成的问题,这些知识是无法单独通过(源语言)单语数据学习到的。因此,可以使用单语数据对编码器-解码器结构进行预训练\upcite{song2019mass,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/emnlp/QiYGLDCZ020}
\parinterval{\small\bfnew{掩码端到端预训练}}(Masked Sequence to Sequence Pre-training,MASS)\index{掩码端到端预训练}\index{MASS}方法为例\upcite{song2019mass},其思想与BERT十分相似,也是在预训练过程中采用掩码的方式,随机选择编码器输入句子中的连续片段替换为特殊词<Mask>,然后在解码器预测这个连续片段,如图\ref{fig:16-6} 所示。这种做法可以使得编码器捕捉上下文信息,同时迫使解码器依赖于编码器进行自回归的生成,从而学习到编码器和解码器之间的注意力。为了适配下游的机器翻译任务,使预训练模型可以学习到不同语言的表示,MASS对不同语言的句子采用共享词汇表和模型参数的方法,利用同一个预训练模型来进行不同语言句子的预训练。通过这种方式,模型既学到了对源语言句子的编码,也学习到了对目标语言句子的生成方法,之后通过使用双语句对来对预训练模型进行微调,模型可以快速收敛到较好的状态。 \parinterval{\small\bfnew{掩码端到端预训练}}(Masked Sequence to Sequence Pre-training,MASS)\index{掩码端到端预训练}\index{Masked Sequence to Sequence Pre-training}方法为例\upcite{song2019mass},其思想与BERT十分相似,也是在预训练过程中采用掩码的方式,随机选择编码器输入句子中的连续片段替换为特殊词<Mask>,然后在解码器预测这个连续片段,如图\ref{fig:16-6} 所示。这种做法可以使得编码器捕捉上下文信息,同时迫使解码器依赖于编码器进行自回归的生成,从而学习到编码器和解码器之间的注意力。为了适配下游的机器翻译任务,使预训练模型可以学习到不同语言的表示,MASS对不同语言的句子采用共享词汇表和模型参数的方法,利用同一个预训练模型来进行不同语言句子的预训练。通过这种方式,模型既学到了对源语言句子的编码,也学习到了对目标语言句子的生成方法,之后通过使用双语句对来对预训练模型进行微调,模型可以快速收敛到较好的状态。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -257,7 +257,7 @@ ...@@ -257,7 +257,7 @@
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\parinterval 此外,也可以利用多任务学习的思想来训练多到一模型(多个编码器、单个解码器)、一到多模型(单个编码器、多个解码器)和多到多模型(多个编码器、多个解码器),从而借助单语数据或其他数据来使编码器或解码器训练得更加充分\upcite{DBLP:journals/corr/LuongLSVK15},任务的形式包括翻译任务、句法分析任务、图像分类等。另外一种策略是利用多任务学习的思想同时训练多个语言的翻译任务\upcite{DBLP:conf/acl/DongWHYW15,DBLP:journals/tacl/JohnsonSLKWCTVW17},同样包括多到一翻译(多个语种到一个语种)、一到多翻译(一个语种到多个语种)以及多到多翻译(多个语种到多个语种),这种方法可以利用多种语言的训练数据进行学习,具有较大的潜力,逐渐受到了研究人员们的关注,具体内容可以参考\ref{multilingual-translation-model}节。 \parinterval 此外,一种策略是利用多任务学习的思想来训练多到一模型(多个编码器、单个解码器)、一到多模型(单个编码器、多个解码器)和多到多模型(多个编码器、多个解码器),从而借助单语数据或其他数据来使编码器或解码器训练得更加充分\upcite{DBLP:journals/corr/LuongLSVK15},任务的形式包括翻译任务、句法分析任务、图像分类等。另外一种策略是利用多任务学习的思想同时训练多个语言的翻译任务\upcite{DBLP:conf/acl/DongWHYW15,DBLP:journals/tacl/JohnsonSLKWCTVW17},同样包括多到一翻译(多个语种到一个语种)、一到多翻译(一个语种到多个语种)以及多到多翻译(多个语种到多个语种),这种方法可以利用多种语言的训练数据进行学习,具有较大的潜力,逐渐受到了研究人员们的关注,具体内容可以参考\ref{multilingual-translation-model}节。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SECTION 16.2 % NEW SECTION 16.2
...@@ -301,7 +301,7 @@ ...@@ -301,7 +301,7 @@
目前,对偶学习的思想已经广泛应用于低资源机器翻译领域,它不仅能够提升在有限双语资源下的翻译模型性能,而且能够利用未标注的单语数据来进行学习。下面将针对{\small\bfnew{有监督对偶学习}}(Dual Supervised Learning\index{Dual Supervised Learning}\upcite{DBLP:conf/icml/XiaQCBYL17,DBLP:conf/icml/XiaTTQYL18}{\small\bfnew{无监督对偶学习}}(Dual Unsupervised Learning\index{Dual Unsupervised Learning}\upcite{qin2020dual,DBLP:conf/nips/HeXQWYLM16,zhao2020dual}两方面,对对偶学习的思想进行介绍。 目前,对偶学习的思想已经广泛应用于低资源机器翻译领域,它不仅能够提升在有限双语资源下的翻译模型性能,而且能够利用未标注的单语数据来进行学习。下面将针对{\small\bfnew{有监督对偶学习}}\index{有监督对偶学习}(Dual Supervised Learning\index{Dual Supervised Learning}\upcite{DBLP:conf/icml/XiaQCBYL17,DBLP:conf/icml/XiaTTQYL18}{\small\bfnew{无监督对偶学习}}\index{无监督对偶学习}(Dual Unsupervised Learning\index{Dual Unsupervised Learning}\upcite{qin2020dual,DBLP:conf/nips/HeXQWYLM16,zhao2020dual}两方面,对对偶学习的思想进行介绍。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION % NEW SUB-SUB-SECTION
...@@ -472,7 +472,7 @@ ...@@ -472,7 +472,7 @@
\parinterval 另外,使用多语言单模型系统进行零资源翻译的一个优势在于,它可以最大程度上利用其它语言的数据。还是以上面提到法语到德语的零资源翻译任务为例,除了使用法语到英语、英语到德语的数据之外,所有法语到其它语言、其它语言到德语的数据都是有价值的,这些数据可以强化对法语句子的表示能力,同时强化对德语句子的生成能力。这个优点也是\ref{sec:pivot-based-translation}节所介绍的传统基于枢轴语言方法所不具备的。 \parinterval 另外,使用多语言单模型系统进行零资源翻译的一个优势在于,它可以最大程度上利用其它语言的数据。还是以上面提到法语到德语的零资源翻译任务为例,除了使用法语到英语、英语到德语的数据之外,所有法语到其它语言、其它语言到德语的数据都是有价值的,这些数据可以强化对法语句子的表示能力,同时强化对德语句子的生成能力。这个优点也是\ref{sec:pivot-based-translation}节所介绍的传统基于枢轴语言方法所不具备的。
\parinterval 不过,多语言单模型系统经常面临脱靶翻译问题,即把源语言翻译成错误的目标语言,比如要求翻译成英语,结果却是汉语或者英语夹杂其他语言的字符。这是因为多语言单模型系统对所有语言都使用一样的参数,导致不同语言字符混合时不容易让模型进行区分。针对这个问题,可以在原来共享参数的基础上为每种语言添加额外的独立的参数,使得每种语言拥有足够的建模能力,以便于更好地完成特定语言的翻译\upcite{DBLP:conf/acl/ZhangWTS20,DBLP:journals/corr/abs-2010-11125} \parinterval 不过,多语言单模型系统经常面临脱靶翻译问题,即把源语言翻译成错误的目标语言,比如要求翻译成英语,结果却是汉语或者英语夹杂其他语言的字符。这是因为多语言单模型系统对所有语言都使用一样的参数,导致模型不容易区分出来不同语言字符混合的句子属于哪种语言。针对这个问题,可以在原来共享参数的基础上为每种语言添加额外的独立的参数,使得每种语言拥有足够的建模能力,以便于更好地完成特定语言的翻译\upcite{DBLP:conf/acl/ZhangWTS20,DBLP:journals/corr/abs-2010-11125}
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SECTION 16.4 % NEW SECTION 16.4
...@@ -492,7 +492,7 @@ ...@@ -492,7 +492,7 @@
\subsection{无监督词典归纳}\label{unsupervised-dictionary-induction} \subsection{无监督词典归纳}\label{unsupervised-dictionary-induction}
\parinterval {\small\bfnew{词典归纳}}\index{词典归纳}(Bilingual Dictionary Induction,BDI\index{Bilingual Dictionary Induction})可用于处理不同语言间单词级别的翻译任务。在统计机器翻译中,词典归纳是一项核心的任务,它从双语平行语料中发掘互为翻译的单词,是翻译知识的主要来源\upcite{黄书剑0统计机器翻译中的词对齐研究}。在神经机器翻译中,词典归纳通常被用在无监督机器翻译、多语言机器翻译等任务中。这里,单词通过实数向量进行表示,即词嵌入。所有单词分布在一个多维空间中,而且研究人员发现:词嵌入空间在一些语言中显示出类似的结构,这使得直接利用词嵌入来构建双语词典成为可能\upcite{DBLP:journals/corr/MikolovLS13}。其基本想法是先将来自不同语言的词嵌入投影到共享嵌入空间中,然后在这个共享空间中归纳出双语词典,原理如图\ref{fig:16-16}所示。较早的尝试是使用一个包含数千词对的种子词典作为锚点来学习从源语言到目标语词言嵌入空间的线性映射,将两个语言的单词投影到共享的嵌入空间之后,执行一些对齐算法即可得到双语词典\upcite{DBLP:journals/corr/MikolovLS13}。最近的研究表明,词典归纳可以在更弱的监督信号下完成,这些监督信号来自更小的种子词典\upcite{DBLP:conf/acl/VulicK16}、 相同的字符串\upcite{DBLP:conf/iclr/SmithTHH17},甚至仅仅是共享的数字\upcite{DBLP:conf/acl/ArtetxeLA17} \parinterval {\small\bfnew{双语词典归纳}}\index{词典归纳或双语词典归纳}(Bilingual Dictionary Induction,BDI\index{Bilingual Dictionary Induction})可用于处理不同语言间单词级别的翻译任务。在统计机器翻译中,词典归纳是一项核心的任务,它从双语平行语料中发掘互为翻译的单词,是翻译知识的主要来源\upcite{黄书剑0统计机器翻译中的词对齐研究}。在神经机器翻译中,词典归纳通常被用在无监督机器翻译、多语言机器翻译等任务中。这里,单词通过实数向量进行表示,即词嵌入。所有单词分布在一个多维空间中,而且研究人员发现:词嵌入空间在一些语言中显示出类似的结构,这使得直接利用词嵌入来构建双语词典成为可能\upcite{DBLP:journals/corr/MikolovLS13}。其基本想法是先将来自不同语言的词嵌入投影到共享嵌入空间中,然后在这个共享空间中归纳出双语词典,原理如图\ref{fig:16-16}所示。较早的尝试是使用一个包含数千词对的种子词典作为锚点来学习从源语言到目标语词言嵌入空间的线性映射,将两个语言的单词投影到共享的嵌入空间之后,执行一些对齐算法即可得到双语词典\upcite{DBLP:journals/corr/MikolovLS13}。最近的研究表明,词典归纳可以在更弱的监督信号下完成,这些监督信号来自更小的种子词典\upcite{DBLP:conf/acl/VulicK16}、 相同的字符串\upcite{DBLP:conf/iclr/SmithTHH17},甚至仅仅是共享的数字\upcite{DBLP:conf/acl/ArtetxeLA17}
%---------------------------------------------- %----------------------------------------------
\begin{figure}[h] \begin{figure}[h]
\centering \centering
...@@ -569,7 +569,7 @@ ...@@ -569,7 +569,7 @@
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsubsection{2. 健壮性问题} \subsubsection{2. 健壮性问题}
\parinterval 目前很多无监督词典归纳方法在相似语言对比如英-法、英-德上已经取得不错的结果,然而在远距离语言对比如英-中,英-日上的性能仍然很差\upcite{DBLP:conf/emnlp/VulicGRK19,A2020Li}。研发健壮的无监督词典归纳方法仍然存在挑战。这有多个层面的原因 \parinterval 目前很多无监督词典归纳方法在相似语言对比如英-法、英-德上已经取得不错的结果,然而在远距离语言对比如英-中,英-日上的性能仍然很差\upcite{DBLP:conf/emnlp/VulicGRK19,A2020Li}。研发健壮的无监督词典归纳方法仍然存在挑战。因此研发健壮的无监督词典归纳方法仍然面临许多挑战
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -613,7 +613,7 @@ ...@@ -613,7 +613,7 @@
\parinterval 经过上述的无监督模型调优后,就获得了一个效果更好的翻译模型。这时候,可以使用这个翻译模型去产生质量更高的数据,再用这些数据来继续对翻译模型进行调优,如此反复迭代一定次数后停止。这个方法也被称为{\small\bfnew{迭代优化}}\index{迭代优化}(Iterative Refinement\index{Iterative Refinement}\upcite{DBLP:conf/emnlp/ArtetxeLA18} \parinterval 经过上述的无监督模型调优后,就获得了一个效果更好的翻译模型。这时候,可以使用这个翻译模型去产生质量更高的数据,再用这些数据来继续对翻译模型进行调优,如此反复迭代一定次数后停止。这个方法也被称为{\small\bfnew{迭代优化}}\index{迭代优化}(Iterative Refinement\index{Iterative Refinement}\upcite{DBLP:conf/emnlp/ArtetxeLA18}
\parinterval 迭代优化也会带来另外一个问题:在每一次迭代中都会产生新的模型,应该什么时候停止生成新模型,挑选哪一个模型呢?因为在无监督的场景当中,没有任何真实的双语数据可以使用,所以无法使用监督学习里的校验集来对每个模型进行检验并筛选。另外,即使有很少量的双语数据(比如数百条双语句对),直接在上面挑选模型和调整超参数会导致过拟合问题,使得最后结果越来越差。一个经验上非常高效的模型选择方法是:事先从训练集里挑选一部分句子作为校验集不参与训练,再使用当前的模型把这些句子翻译过去之后再翻译回来(源语言$\to $目标语言$\to$源语言,或者目标语言$\to$源语言$\to$目标语言),得到的结果跟原始的结果计算BLEU,得分越高则效果越好。这种方法已被证明跟使用大规模双语校验集的结果是高度相关的\upcite{DBLP:conf/emnlp/LampleOCDR18} \parinterval 迭代优化也会带来另外一个问题:在每一次迭代中都会产生新的模型,应该什么时候停止生成新模型,挑选哪一个模型呢?因为在无监督的场景当中,没有任何真实的双语数据可以使用,所以无法使用监督学习里的校验集来对每个模型进行检验并筛选。另外,即使有很少量的双语数据(比如数百条双语句对),直接在上面挑选模型和调整超参数会导致过拟合问题,使得最后结果越来越差。一个经验上非常高效的模型选择方法是:事先从训练集里挑选一部分句子作为校验集不参与训练,再使用当前的模型把这些句子翻译过去之后再翻译回来(源语言$\to $目标语言$\to$源语言,或者目标语言$\to$源语言$\to$目标语言),得到的结果跟原始的结果计算BLEU的值,得分越高则效果越好。这种方法已被证明跟使用大规模双语校验集的结果是高度相关的\upcite{DBLP:conf/emnlp/LampleOCDR18}
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -669,7 +669,7 @@ ...@@ -669,7 +669,7 @@
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsubsection{4. 其它问题} \subsubsection{4. 其它问题}
\parinterval 一般可以认为,在生成的伪数据上优化模型会使模型变得更好,这时候对这个更好的模型使用数据增强的手段(如回译等)就可以生成更好的训练数据。这样的一个数据优化过程依赖于一个假设:模型经过优化后会生成比原始数据更好的数据。而在数据优化和参数优化的共同影响下,模型非常容易拟合数据中的简单模式,使得模型倾向产生包含这种简单模式的数据,造成模型对这种类型数据过拟合的现象。一个常见的问题就是模型对任何输入都输出相同的译文,这时候翻译模型无法产生任何有意义的结果,也就是,数据优化产生的数据里无论什么目标语言对应的源语言都是同一个句子。这种情况下翻译模型虽然能降低损失,但是它不能学会任何源语言跟目标语言之间的对应关系,也就无法进行正确翻译。这个现象也反映出无监督机器翻译训练的脆弱性。 \parinterval 一般可以认为,在生成的伪数据上优化模型会使模型变得更好,这时候对这个更好的模型使用数据增强的手段(如回译等)就可以生成更好的训练数据。这样的一个数据优化过程依赖于一个假设:模型经过优化后会生成比原始数据更好的数据。而在数据优化和参数优化的共同影响下,模型非常容易拟合数据中的简单模式,使得模型倾向产生包含这种简单模式的数据,造成模型对这种类型数据过拟合的现象。一个常见的问题就是模型对任何输入都输出相同的译文,这时候翻译模型无法产生任何有意义的结果,也就是,数据优化产生的数据里无论什么目标语言对应的源语言都是同一个句子。这种情况下翻译模型虽然能降低过拟合现象造成的损失,但是它不能学会任何源语言跟目标语言之间的对应关系,也就无法进行正确翻译。这个现象也反映出无监督机器翻译训练的脆弱性。
\parinterval 比较常见的解决方案是在双语数据对应的目标函数外增加一个语言模型的目标函数。因为,在初始阶段,由于数据中存在大量不通顺的句子,额外的语言模型目标函数能把部分句子纠正过来,使得模型逐渐生成更好的数据\upcite{DBLP:conf/emnlp/LampleOCDR18}。这个方法在实际应用中非常有效,尽管目前还没有太多理论上的支持。 \parinterval 比较常见的解决方案是在双语数据对应的目标函数外增加一个语言模型的目标函数。因为,在初始阶段,由于数据中存在大量不通顺的句子,额外的语言模型目标函数能把部分句子纠正过来,使得模型逐渐生成更好的数据\upcite{DBLP:conf/emnlp/LampleOCDR18}。这个方法在实际应用中非常有效,尽管目前还没有太多理论上的支持。
...@@ -699,7 +699,7 @@ ...@@ -699,7 +699,7 @@
\noindent{\small\bfnew{2)语言模型的使用}} \noindent{\small\bfnew{2)语言模型的使用}}
\parinterval 无监督神经机器翻译的一个重要部分就是来自语言模型的目标函数。因为翻译模型本质上是在完成文本生成任务,所以只有文本生成类型的语言模型建模方法才可以应用到无监督神经机器翻译里。比如,给定前文预测下一词就是一个典型的自回归生成任务(见{\chaptertwo}),因此可以用到无监督神经机器翻译里。但是,目前在预训练里流行的BERT等模型是掩码语言模型\upcite{devlin2019bert},不能直接在无监督神经机器翻译里使用。 \parinterval 无监督神经机器翻译的一个重要部分就是来自语言模型的目标函数。因为翻译模型本质上是在完成文本生成任务,所以只有文本生成类型的语言模型建模方法才可以应用到无监督神经机器翻译里。比如,给定前文预测下一词就是一个典型的自回归生成任务(见{\chaptertwo}),因此可以用到无监督神经机器翻译里。但是,目前在预训练里流行的BERT等模型是掩码语言模型\upcite{devlin2019bert},不能直接在无监督神经机器翻译里使用。
\parinterval 另外一个在无监督神经机器翻译中比较常见的语言模型目标函数则是降噪自编码器。它也是文本生成类型的语言模型建模方法。对于一个句子$\seq{x}$,首先使用一个噪声函数$\seq{x}'=\mathrm{noise}(\seq{x})$ 来对$\seq{x}$注入噪声,产生一个质量较差的句子$\seq{x}'$。然后,让模型学习如何从$\seq{x}'$还原出$\seq{x}$。这样的目标函数比预测下一词更贴近翻译任务,因为它是一个序列到序列的映射,并且输入、输出两个序列在语义上是等价的。这里之所以采用$\seq{x}'$而不是$\seq{x}$自己来预测$\seq{x}$,是因为模型可以通过简单的复制输入作为输出来完成从$\seq{x}$预测$\seq{x}$的任务,很难学到有价值的信息。并且在输入中注入噪声会让模型更加健壮,因此模型可以学会如何利用句子中噪声以外的信息来得到正确的输出。通常来说,噪声函数有三种形式,如表\ref{tab:16-1}所示。 \parinterval 另外一个在无监督神经机器翻译中比较常见的语言模型目标函数则是降噪自编码器。它也是文本生成类型的语言模型建模方法。对于一个句子$\seq{x}$,首先使用一个噪声函数$\seq{x}'=\mathrm{noise}(\seq{x})$ 来对$\seq{x}$注入噪声,产生一个质量较差的句子$\seq{x}'$。然后,让模型学习如何从$\seq{x}'$还原出$\seq{x}$。这样的目标函数比预测下一词更贴近翻译任务,因为它是一个序列到序列的映射,并且输入、输出两个序列在语义上是等价的。这里之所以采用$\seq{x}'$而不是$\seq{x}$自己来预测$\seq{x}$,是因为模型可以通过简单的复制输入作为输出来完成从$\seq{x}$预测$\seq{x}$的任务,很难学到有价值的信息。并且在输入中注入噪声会让模型更加健壮,因此模型可以学会如何利用句子中噪声以外的信息来得到正确的输出。通常来说,噪声函数有三种形式,如表\ref{tab:16-1}所示。
%---------------------------------------------- %----------------------------------------------
...@@ -813,7 +813,7 @@ ...@@ -813,7 +813,7 @@
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsubsection{1. 多目标学习} \subsubsection{1. 多目标学习}
\parinterval 在使用多领域数据时,混合多个相差较大的领域数据进行训练会使单个领域的翻译性能下降\upcite{DBLP:conf/eacl/NegriTFBF17}。 为了解决这一问题,可以对所有训练数据的来源领域进行区分,一个比较典型的做法是在使用多领域数据训练时,在神经机器翻译模型的编码器顶部中添加一个判别器\upcite{britz2017effective},该判别器使用源语言句子$x$的编码器表示作为输入,预测句子所属的领域标签$d$,如图\ref{fig:16-21}所示。为了使预测领域标签$d$的正确概率$\funp{P(d|\mathbi{H})}$最大(其中$\mathbi{H}$为编码器的隐藏状态),模型在训练过程中最小化如下损失函数$\funp{L}_{\rm{disc}}$ \parinterval 在使用多领域数据时,混合多个相差较大的领域数据进行训练会使单个领域的翻译性能下降\upcite{DBLP:conf/eacl/NegriTFBF17}。 为了解决这一问题,可以对所有训练数据的来源领域进行区分,一个比较典型的做法是在使用多领域数据训练时,在神经机器翻译模型的编码器顶部中添加一个判别器\upcite{britz2017effective},该判别器使用源语言句子$x$的编码器表示作为输入,预测句子所属的领域标签$d$,如图\ref{fig:16-21}所示。为了使预测领域标签$d$的正确概率$\funp{P(d|\mathbi{H})}$最大(其中$\mathbi{H}$为编码器的隐藏状态),模型在训练过程中应该最小化如下损失函数$\funp{L}_{\rm{disc}}$
\begin{eqnarray} \begin{eqnarray}
\funp{L}_{\rm{disc}}& = &-\log\funp{P}(d|\mathbi{H}) \funp{L}_{\rm{disc}}& = &-\log\funp{P}(d|\mathbi{H})
...@@ -887,7 +887,7 @@ ...@@ -887,7 +887,7 @@
\item 预训练模型也是自然语言处理的重要突破之一,也给低资源机器翻译提供了新的思路。除了基于语言模型或掩码语言模型的方法,也有很多新的架构和模型被提出,如排列语言模型、降噪自编码器等\upcite{DBLP:conf/nips/YangDYCSL19,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/iclr/LanCGGSS20,DBLP:conf/acl/ZhangHLJSL19}。预训练技术也逐渐向多语言领域扩展\upcite{DBLP:conf/nips/ConneauL19,DBLP:conf/emnlp/HuangLDGSJZ19,song2019mass},甚至不再只局限于文本任务\upcite{DBLP:conf/iccv/SunMV0S19,DBLP:conf/nips/LuBPL19,DBLP:conf/interspeech/ChuangLLL20}。对于如何将预训练模型高效地应用到下游任务中,也进行了很多的经验性对比与分析\upcite{Peters2018DeepCW,DBLP:conf/rep4nlp/PetersRS19,DBLP:conf/cncl/SunQXH19} \item 预训练模型也是自然语言处理的重要突破之一,也给低资源机器翻译提供了新的思路。除了基于语言模型或掩码语言模型的方法,也有很多新的架构和模型被提出,如排列语言模型、降噪自编码器等\upcite{DBLP:conf/nips/YangDYCSL19,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/iclr/LanCGGSS20,DBLP:conf/acl/ZhangHLJSL19}。预训练技术也逐渐向多语言领域扩展\upcite{DBLP:conf/nips/ConneauL19,DBLP:conf/emnlp/HuangLDGSJZ19,song2019mass},甚至不再只局限于文本任务\upcite{DBLP:conf/iccv/SunMV0S19,DBLP:conf/nips/LuBPL19,DBLP:conf/interspeech/ChuangLLL20}。对于如何将预训练模型高效地应用到下游任务中,也进行了很多的经验性对比与分析\upcite{Peters2018DeepCW,DBLP:conf/rep4nlp/PetersRS19,DBLP:conf/cncl/SunQXH19}
\vspace{0.5em} \vspace{0.5em}
\item 多任务学习是多语言翻译的一种典型方法。通过共享编码器模块或是注意力模块来进行一对多\upcite{DBLP:conf/acl/DongWHYW15}或多对一\upcite{DBLP:journals/tacl/LeeCH17}或多对多\upcite{DBLP:conf/naacl/FiratCB16} 的学习,然而这些方法需要为每个翻译语言对设计单独的编码器和解码器,限制了其扩展性。为了解决以上问题,研究人员进一步探索了用于多语言翻译的单个机器翻译模型的方法,也就是本章提到的多语言单模型系统\upcite{DBLP:journals/corr/HaNW16,DBLP:journals/tacl/JohnsonSLKWCTVW17}。为了弥补多语言单模型系统中缺乏语言表示多样性的问题,可以重新组织多语言共享模块,设计特定任务相关模块\upcite{DBLP:conf/coling/BlackwoodBW18,DBLP:conf/wmt/SachanN18,DBLP:conf/wmt/LuKLBZS18,DBLP:conf/acl/WangZZZXZ19};也可以将多语言单词编码和语言聚类分离,用一种多语言词典编码框架共享词汇级别的信息,有助于语言间的泛化\upcite{DBLP:conf/iclr/WangPAN19};还可以将语言聚类为不同的组,并为每个聚类单独训练一个多语言模型\upcite{DBLP:conf/emnlp/TanCHXQL19} \item 多任务学习是多语言翻译的一种典型方法。通过共享编码器模块或是注意力模块来进行一对多\upcite{DBLP:conf/acl/DongWHYW15}或多对一\upcite{DBLP:journals/tacl/LeeCH17}或多对多\upcite{DBLP:conf/naacl/FiratCB16} 的学习,然而这些方法需要为每个翻译语言对设计单独的编码器和解码器,限制了其扩展性。为了解决以上问题,研究人员进一步探索了用于多语言翻译的单个机器翻译模型的方法,也就是本章提到的多语言单模型系统\upcite{DBLP:journals/corr/HaNW16,DBLP:journals/tacl/JohnsonSLKWCTVW17}。为了弥补多语言单模型系统中缺乏语言表示多样性的问题,可以重新组织多语言共享模块,设计特定任务相关模块\upcite{DBLP:conf/coling/BlackwoodBW18,DBLP:conf/wmt/SachanN18,DBLP:conf/wmt/LuKLBZS18,DBLP:conf/acl/WangZZZXZ19};也可以将多语言单词编码和语言聚类分离,用一种多语言词典编码框架共享单词级别的信息,有助于语言间的泛化\upcite{DBLP:conf/iclr/WangPAN19};还可以将语言聚类为不同的组,并为每个聚类单独训练一个多语言模型\upcite{DBLP:conf/emnlp/TanCHXQL19}
\vspace{0.5em} \vspace{0.5em}
\item 零资源翻译也是近几年受到广泛关注的研究方向\upcite{firat2016zero,DBLP:journals/corr/abs-1805-10338}。在零资源翻译中,仅使用少量并行语料库(覆盖$k$个语言),一个模型就能在任何$k(k-1)$ 个语言对之间进行翻译\upcite{DBLP:conf/naacl/Al-ShedivatP19}。 但是,零资源翻译的性能通常很不稳定并且明显落后于有监督的翻译方法。为了改善零资源翻译,可以开发新的跨语言正则化方法,例如对齐正则化方法\upcite{DBLP:journals/corr/abs-1903-07091},一致性正则化方法\upcite{DBLP:conf/naacl/Al-ShedivatP19};也可以通过反向翻译或基于枢轴语言的翻译生成伪数据\upcite{DBLP:conf/acl/GuWCL19,firat2016zero,DBLP:conf/emnlp/CurreyH19} \item 零资源翻译也是近几年受到广泛关注的研究方向\upcite{firat2016zero,DBLP:journals/corr/abs-1805-10338}。在零资源翻译中,仅使用少量并行语料库(覆盖$k$个语言),一个模型就能在任何$k(k-1)$ 个语言对之间进行翻译\upcite{DBLP:conf/naacl/Al-ShedivatP19}。 但是,零资源翻译的性能通常很不稳定并且明显落后于有监督的翻译方法。为了改善零资源翻译,可以开发新的跨语言正则化方法,例如对齐正则化方法\upcite{DBLP:journals/corr/abs-1903-07091},一致性正则化方法\upcite{DBLP:conf/naacl/Al-ShedivatP19};也可以通过反向翻译或基于枢轴语言的翻译生成伪数据\upcite{DBLP:conf/acl/GuWCL19,firat2016zero,DBLP:conf/emnlp/CurreyH19}
......
...@@ -63,9 +63,9 @@ ...@@ -63,9 +63,9 @@
\draw[->,thick] ([yshift=0.1em]n1.135) .. controls ([xshift=-2em]n1.130) and ([xshift=2em]qw.0) .. ([xshift=0.1em]qw.0); \draw[->,thick] ([yshift=0.1em]n1.135) .. controls ([xshift=-2em]n1.130) and ([xshift=2em]qw.0) .. ([xshift=0.1em]qw.0);
\draw[->,thick] ([yshift=0.1em]n1.120) .. controls ([xshift=-2em,yshift=1em]n1.120) and ([xshift=3em]qs.0) .. ([xshift=0.1em]qs.0); \draw[->,thick] ([yshift=0.1em]n1.120) .. controls ([xshift=-2em,yshift=1em]n1.120) and ([xshift=3em]qs.0) .. ([xshift=0.1em]qs.0);
\draw[->,thick] ([yshift=0.1em]n1.90) node[yshift=0.5em,right]{$ {\mathbi{h}}_{\textrm{t}}$}-- ([yshift=-0.1em]sigma.-90); \draw[->,thick] ([yshift=0.1em]n1.90) node[yshift=0.5em,right]{$ {\mathbi{h}}_t$}-- ([yshift=-0.1em]sigma.-90);
\draw[->,thick] ([yshift=0.1em]sigma.90) -- ([yshift=-0.1em]n2.-90); \draw[->,thick] ([yshift=0.1em]sigma.90) -- ([yshift=-0.1em]n2.-90);
\draw[->,thick] ([yshift=0.1em]n2.90) -- node[right]{$ \widetilde{\mathbi{h}}_{\textrm{t}}$}([yshift=2em]n2.90); \draw[->,thick] ([yshift=0.1em]n2.90) -- node[right]{$ \widetilde{\mathbi{h}}_t$}([yshift=2em]n2.90);
\draw[decorate,decoration={brace, mirror},gray, thick] ([yshift=-2em]hh.-180) -- node[font=\footnotesize,text=black,below]{前几个句子}([yshift=-2em]box2.0); \draw[decorate,decoration={brace, mirror},gray, thick] ([yshift=-2em]hh.-180) -- node[font=\footnotesize,text=black,below]{前几个句子}([yshift=-2em]box2.0);
\draw[decorate,decoration={brace, mirror},gray, thick] ([yshift=-2em]box3.-180) -- node[font=\footnotesize,text=black,below]{当前句子}([yshift=-2em]box3.0); \draw[decorate,decoration={brace, mirror},gray, thick] ([yshift=-2em]box3.-180) -- node[font=\footnotesize,text=black,below]{当前句子}([yshift=-2em]box3.0);
......
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
\draw[->,thick](encoder-2.north)to(decoder_1-2.south); \draw[->,thick](encoder-2.north)to(decoder_1-2.south);
\draw[->,thick](decoder_1-2.north)to(decoder_2-2.south); \draw[->,thick](decoder_1-2.north)to(decoder_2-2.south);
\draw[->,thick](decoder_2-2.north)to(y-2.south); \draw[->,thick](decoder_2-2.north)to(y-2.south);
\node [anchor=north,scale = 1.2](pos2) at (s-2.south) {(b) 级联码器}; \node [anchor=north,scale = 1.2](pos2) at (s-2.south) {(b) 级联码器};
%%%%%%%%%%%%%%%%%%%%%%%%联合 %%%%%%%%%%%%%%%%%%%%%%%%联合
\node(encoder-3)[coder]at([xshift=10.0em]encoder-2.east){\large{编码器}}; \node(encoder-3)[coder]at([xshift=10.0em]encoder-2.east){\large{编码器}};
\node(decoder_1-3)[coder,above of =encoder-3,xshift=-1.6cm,yshift=2.8cm,fill=blue!20]{\large{解码器}}; \node(decoder_1-3)[coder,above of =encoder-3,xshift=-1.6cm,yshift=2.8cm,fill=blue!20]{\large{解码器}};
...@@ -43,5 +43,5 @@ ...@@ -43,5 +43,5 @@
\draw[->,thick](decoder_2-3.north)to(y-3.south); \draw[->,thick](decoder_2-3.north)to(y-3.south);
\draw[->,thick](encoder-3.north)--([yshift=0.7cm]encoder-3.north)--([xshift=-4.16em,yshift=0.7cm]encoder-3.north)--(decoder_1-3.south); \draw[->,thick](encoder-3.north)--([yshift=0.7cm]encoder-3.north)--([xshift=-4.16em,yshift=0.7cm]encoder-3.north)--(decoder_1-3.south);
\draw[->,thick](encoder-3.north)--([yshift=0.7cm]encoder-3.north)--([xshift=4.16em,yshift=0.7cm]encoder-3.north)--(decoder_2-3.south); \draw[->,thick](encoder-3.north)--([yshift=0.7cm]encoder-3.north)--([xshift=4.16em,yshift=0.7cm]encoder-3.north)--(decoder_2-3.south);
\node [anchor=north,scale = 1.2](pos3) at (s-3.south) {(c) 联合编码器}; \node [anchor=north,scale = 1.2](pos3) at (s-3.south) {(c) 联合编码器};
\end{tikzpicture} \end{tikzpicture}
\ No newline at end of file
...@@ -63,7 +63,7 @@ ...@@ -63,7 +63,7 @@
\subsection{音频处理} \subsection{音频处理}
\parinterval 为了保证对相关内容描述的完整性,这里对语音处理的基本知识作简要介绍。不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散的数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,采样的结果与原始的语音越相像。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。 经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。音频处理的整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战} \parinterval 为了保证对相关内容描述的完整性,这里对语音处理的基本知识作简要介绍。不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}\index{波形}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散的数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,采样的结果与原始的语音越相像。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。 经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。音频处理的整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战}
%---------------------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -76,7 +76,7 @@ ...@@ -76,7 +76,7 @@
\parinterval 经过上面的描述可以看出,音频的表示实际上是一个非常长的采样点序列,这导致了直接使用现有的深度学习技术处理音频序列较为困难。并且,原始的音频信号中可能包含着较多的噪声、环境声或冗余信息,也会对模型产生干扰。因此,一般会对音频序列进行处理来提取声学特征,具体为将长序列的采样点序列转换为短序列的特征向量序列,再用于下游系统。虽然已有一些工作不依赖特征提取,直接在原始的采样点序列上进行声学建模和模型训练\upcite{DBLP:conf/interspeech/SainathWSWV15},但目前的主流方法仍然是基于声学特征进行建模\upcite{DBLP:conf/icassp/MohamedHP12} \parinterval 经过上面的描述可以看出,音频的表示实际上是一个非常长的采样点序列,这导致了直接使用现有的深度学习技术处理音频序列较为困难。并且,原始的音频信号中可能包含着较多的噪声、环境声或冗余信息,也会对模型产生干扰。因此,一般会对音频序列进行处理来提取声学特征,具体为将长序列的采样点序列转换为短序列的特征向量序列,再用于下游系统。虽然已有一些工作不依赖特征提取,直接在原始的采样点序列上进行声学建模和模型训练\upcite{DBLP:conf/interspeech/SainathWSWV15},但目前的主流方法仍然是基于声学特征进行建模\upcite{DBLP:conf/icassp/MohamedHP12}
\parinterval 声学特征提取的第一步是预处理。其流程主要是对音频进行{\small\bfnew{预加重}}(Pre-emphasis)\index{预加重}\index{Pre-emphasis}{\small\bfnew{分帧}}\index{分帧}(Framing)\index{Framing}{\small\bfnew{加窗}}\index{加窗}(Windowing)\index{Windowing}。预加重是通过增强音频信号中的高频部分来减弱语音中对高频信号的抑制,使频谱更加顺滑。分帧(原理如图\ref{fig:17-3}所示)是基于短时平稳假设,即根据生物学特征,语音信号是一个缓慢变化的过程,10ms$\thicksim$30ms的信号片段是相对平稳的。基于这个假设,一般将每25ms作为一帧来提取特征,这个时间称为{\small\bfnew{帧长}}\index{帧长}(Frame Length)\index{Frame Length}。同时,为了保证不同帧之间的信号平滑性,使每两个相邻帧之间存在一定的重合部分。一般每隔10ms取一帧,这个时长称为{\small\bfnew{帧移}}\index{帧移}(Frame Shift)\index{Frame Shift}。为了缓解分帧带来的频谱泄漏问题,需要对每帧的信号进行加窗处理使其幅度在两段渐变到0,一般采用的是{\small\bfnew{汉明窗}}\index{汉明窗}(Hamming)\index{Hamming}\upcite{洪青阳2020语音识别原理与应用} \parinterval 声学特征提取的第一步是预处理。其流程主要是对音频进行{\small\bfnew{预加重}}(Pre-emphasis)\index{预加重}\index{Pre-emphasis}{\small\bfnew{分帧}}\index{分帧}(Framing)\index{Framing}{\small\bfnew{加窗}}\index{加窗}(Windowing)\index{Windowing}。预加重是通过增强音频信号中的高频部分来减弱语音中对高频信号的抑制,使频谱更加顺滑。分帧(原理如图\ref{fig:17-3}所示)是基于短时平稳假设,即根据生物学特征,语音信号是一个缓慢变化的过程,10ms$\thicksim$30ms的信号片段是相对平稳的。基于这个假设,一般将每25ms作为一帧来提取特征,这个时间称为{\small\bfnew{帧长}}\index{帧长}(Frame Length)\index{Frame Length}。同时,为了保证不同帧之间的信号平滑性,使每两个相邻帧之间存在一定的重合部分。一般每隔10ms取一帧,这个时长称为{\small\bfnew{帧移}}\index{帧移}(Frame Shift)\index{Frame Shift}。为了缓解分帧带来的频谱泄漏问题,需要对每帧的信号进行加窗处理使其幅度在两端渐变到0,一般采用的是{\small\bfnew{汉明窗}}\index{汉明窗}(Hamming Window)\index{Hamming Window}\upcite{洪青阳2020语音识别原理与应用}
%---------------------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
...@@ -86,7 +86,7 @@ ...@@ -86,7 +86,7 @@
\end{figure} \end{figure}
%---------------------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------------------
\parinterval 经过了上述的预处理操作,可以得到音频对应的帧序列,之后通过不同的操作来提取不同类型的声学特征。在语音翻译中,比较常用的声学特征为{\small\bfnew{滤波器组}}\index{滤波器组}(Filter-bank,Fbank)\index{Filter-bank}{\small\bfnew{Mel频率倒谱系数}}\index{Mel频率倒谱系数}(Mel-frequency Cepstral Coefficient,MFCC)\upcite{洪青阳2020语音识别原理与应用}。实际上,提取到的声学特征可以类比于计算机视觉中的像素特征,或者自然语言处理中的词嵌入表示。不同之处在于,声学特征更加复杂多变,可能存在着较多的噪声和冗余信息。此外,相比对应的文字序列,音频提取到的特征序列长度要大十倍以上。比如,人类正常交流中每秒钟一般可以说2-3个字,而每秒钟的语音可以提取得到100帧的特征序列。巨大的长度比差异也为声学特征建模带来了挑战。 \parinterval 经过了上述的预处理操作,可以得到音频对应的帧序列,之后通过不同的操作来提取不同类型的声学特征。在语音翻译中,比较常用的声学特征为{\small\bfnew{滤波器组}}\index{滤波器组}(Filter-bank,Fbank)\index{Filter-bank}{\small\bfnew{Mel频率倒谱系数}}\index{Mel频率倒谱系数}(Mel-frequency Cepstral Coefficient,MFCC)\index{Mel-frequency Cepstral Coefficient}\upcite{洪青阳2020语音识别原理与应用}。实际上,提取到的声学特征可以类比于计算机视觉中的像素特征,或者自然语言处理中的词嵌入表示。不同之处在于,声学特征更加复杂多变,可能存在着较多的噪声和冗余信息。此外,相比对应的文字序列,音频提取到的特征序列长度要大十倍以上。比如,人类正常交流中每秒钟一般可以说2-3个字,而每秒钟的语音可以提取得到100帧的特征序列。巨大的长度比差异也为声学特征建模带来了挑战。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -120,7 +120,7 @@ ...@@ -120,7 +120,7 @@
%---------------------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------------------
\vspace{-1em} \vspace{-1em}
\parinterval 语音识别目前广泛使用基于Transformer的模型结构(见{\chaptertwelve}),如图\ref{fig:17-5}所示。可以看出,相比文本翻译,语音识别模型结构上唯一的区别在于编码器的输入为声学特征,以及编码器底层会使用额外的卷积层来减小输入序列的长度。这是由于语音对应的特征序列过长,在计算注意力模型的时候,会占用大量的内存/显存,并增加训练时间。因此,一个常用的做法是在语音特征上进行两层步长为2的卷积操作,从而将输入序列的长度缩小为之前的1/4。通过使用大量的语音-标注平行数据对模型进行训练,可以得到高质量的语音识别模型。 \parinterval 语音识别目前广泛使用基于Transformer的模型结构(见{\chaptertwelve}),如图\ref{fig:17-5}所示。可以看出,相比文本翻译,语音识别模型结构上唯一的区别在于编码器的输入为声学特征,以及编码器底层会使用额外的卷积层来减小输入序列的长度。这是由于语音对应的特征序列过长,在计算注意力模型的时候,会占用大量的内存显存,并增加训练时间。因此,一个常用的做法是在语音特征上进行两层步长为2的卷积操作,从而将输入序列的长度缩小为之前的1/4。通过使用大量的语音-标注平行数据对模型进行训练,可以得到高质量的语音识别模型。
\parinterval 为了降低语音识别的错误对下游系统的影响,通常也会用词格来取代One-best语音识别结果。除此之外,另一种思路是通过一个后处理模型修正识别结果中的错误,再送给文本翻译模型进行翻译。也可以进一步对文本做{\small\bfnew{顺滑}}\index{顺滑}(Disfluency Detection\index{Disfluency Detection})处理,使得送给翻译系统的文本更加干净、流畅,比如除去一些导致停顿的语气词。这一做法在工业界得到了广泛应用,但由于每个模型只能串行地计算,也会带来额外的计算代价以及运算时间。第三种思路是训练更加健壮的文本翻译模型,使其可以处理输入中存在的噪声或误差\upcite{DBLP:conf/acl/LiuTMCZ18} \parinterval 为了降低语音识别的错误对下游系统的影响,通常也会用词格来取代One-best语音识别结果。除此之外,另一种思路是通过一个后处理模型修正识别结果中的错误,再送给文本翻译模型进行翻译。也可以进一步对文本做{\small\bfnew{顺滑}}\index{顺滑}(Disfluency Detection\index{Disfluency Detection})处理,使得送给翻译系统的文本更加干净、流畅,比如除去一些导致停顿的语气词。这一做法在工业界得到了广泛应用,但由于每个模型只能串行地计算,也会带来额外的计算代价以及运算时间。第三种思路是训练更加健壮的文本翻译模型,使其可以处理输入中存在的噪声或误差\upcite{DBLP:conf/acl/LiuTMCZ18}
...@@ -175,7 +175,7 @@ ...@@ -175,7 +175,7 @@
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{训练数据稀缺}}。虽然语音识别和文本翻译的训练数据都很多,但是直接由源语言语音到目标语言文本的平行数据十分有限,因此端到端语音翻译天然地就是一种低资源翻译任务。 \item {\small\bfnew{训练数据稀缺}}。虽然语音识别和文本翻译的训练数据都很多,但是直接由源语言语音到目标语言文本的平行数据十分有限,因此端到端语音翻译天然地就是一种低资源翻译任务。
\vspace{0.5em} \vspace{0.5em}
\item {\small\bfnew{建模复杂度更高}}。在语音识别中,模型是学习如何生成语音对应的文字序列,输入和输出的对齐比较简单,不涉及到调序的问题。在文本翻译中,模型要学习如何生成源语言序列对应的目标语言序列,仅需要学习不同语言之间的映射,不涉及到模态的转换。而语音翻译模型需要学习从语音到目标语言文本的生成,任务更加复杂。 \item {\small\bfnew{建模复杂度更高}}。在语音识别中,模型需要学习如何生成语音对应的文字序列,而输入和输出的对齐比较简单,并不涉及调序的问题。在文本翻译中,模型要学习如何生成源语言序列对应的目标语言序列,仅需要学习不同语言之间的映射,不涉及到模态的转换。而语音翻译模型需要学习从语音到目标语言文本的生成,任务更加复杂。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
%---------------------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------------------
...@@ -223,7 +223,7 @@ ...@@ -223,7 +223,7 @@
\end{figure} \end{figure}
%---------------------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------------------
\parinterval 另外一种多任务学习的思想是通过两个解码器,分别预测语音对应的源语言句子和目标语言句子,具体有图\ref{fig:17-10}展示的三种方式\upcite{DBLP:conf/naacl/AnastasopoulosC18,DBLP:conf/asru/BaharBN19}。图\ref{fig:17-10}(a)中采用单编码器-双解码器的方式,两个解码器根据编码器的表示,分别预测源语言句子和目标语言句子,从而使编码器训练地更加充分。这种做法的好处在于源语言的文本生成任务可以辅助翻译过程,相当于为源语言语音提供了额外的“模态”信息。图\ref{fig:17-10}(b)则通过使用两个级联的解码器,先利用第一个解码器生成源语言句子,然后再利用第一个解码器的表示,通过第二个解码器生成目标语言句子。这种方法通过增加一个中间输出,降低了模型的训练难度,但同时也会带来额外的解码耗时,因为两个解码器需要串行地进行生成。图\ref{fig:17-10}(c) 中模型更进一步,第二个编码器联合编码器和第一个解码器的表示进行生成,更充分地利用了已有信息。 \parinterval 另外一种多任务学习的思想是通过两个解码器,分别预测语音对应的源语言句子和目标语言句子,具体有图\ref{fig:17-10}展示的三种方式\upcite{DBLP:conf/naacl/AnastasopoulosC18,DBLP:conf/asru/BaharBN19}。图\ref{fig:17-10}(a)中采用单编码器-双解码器的方式,两个解码器根据编码器的表示,分别预测源语言句子和目标语言句子,从而使编码器训练地更加充分。这种做法的好处在于源语言的文本生成任务可以辅助翻译过程,相当于为源语言语音提供了额外的“模态”信息。图\ref{fig:17-10}(b)则通过使用两个级联的解码器,先利用第一个解码器生成源语言句子,然后再利用它的表示,通过第二个解码器生成目标语言句子。这种方法通过增加一个中间输出,降低了模型的训练难度,但同时也会带来额外的解码耗时,因为两个解码器需要串行地进行生成。图\ref{fig:17-10}(c)中的模型更进一步利用编码器的输出结果,第二个解码器联合编码器和第一个解码器的表示进行生成,更充分地利用了已有信息。
%---------------------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
...@@ -238,14 +238,14 @@ ...@@ -238,14 +238,14 @@
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsubsection{2. 迁移学习} \subsubsection{2. 迁移学习}
\parinterval 相比语音识别和文本翻译,端到端语音翻译的训练数据量要小很多,因此,如何利用其它数据来增加可用的数据量是语音翻译的一个重要方向。和文本翻译中的方法相似,一种思路是利用迁移学习或预训练,利用其他语言的双语数据预训练模型参数,然后迁移到生成目标语言的任务上\upcite{DBLP:conf/naacl/BansalKLLG19},或者是利用语音识别数据或文本翻译数据,分别预训练编码器和解码器的参数,用于初始化语音翻译模型的参数\upcite{DBLP:conf/icassp/BerardBKP18}。预训练的编码器对语音翻译模型的学习尤为重要\upcite{DBLP:conf/naacl/BansalKLLG19},相比文本数据,语音数据的复杂性更高,仅使用小规模语音翻译数据很难学习充分。此外,模型对声学特征的学习与语言并不是强相关的,其他语种预训练的编码器对模型学习也是有帮助的。 \parinterval 相比语音识别和文本翻译,端到端语音翻译的训练数据量要小很多,因此,如何利用其它数据来增加可用的数据量是语音翻译的一个重要方向。和文本翻译中的方法相似,一种思路是利用迁移学习或预训练,利用其他语言的双语数据预训练模型参数,然后迁移到生成目标语言的任务上\upcite{DBLP:conf/naacl/BansalKLLG19},或者是利用语音识别数据或文本翻译数据,分别预训练编码器和解码器的参数,用于初始化语音翻译模型的参数\upcite{DBLP:conf/icassp/BerardBKP18}。预训练的编码器对语音翻译模型的学习尤为重要\upcite{DBLP:conf/naacl/BansalKLLG19},相比文本数据,语音数据的复杂性更高,仅使用小规模语音翻译数据很难学习充分。此外,模型对声学特征的学习与语言并不是强相关的,使用其他语种预训练得到的编码器对模型学习也是有帮助的。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsubsection{3. 数据增强} \subsubsection{3. 数据增强}
\parinterval 数据增强是增加训练数据最直接的一种方法。不同于文本翻译的回译等方法(见{\chaptersixteen}),语音翻译并不具有简单的“可逆性”。如果要利用回译的思想,需要通过一个模型,将目标语言文本转化为源语言语音,但实际上这种模型是不能简单得到的。因此,一个简单的思路是通过一个反向翻译模型和语音合成模型级联来生成伪数据\upcite{DBLP:conf/icassp/JiaJMWCCALW19}。 另外,正向翻译模型生成的伪数据在文本翻译中也被验证了对模型训练有一定的帮助,因此同样可以利用语音识别和文本翻译模型,将源语言语音翻译成目标语言文本,得到伪平行语料。 \parinterval 数据增强是增加训练数据最直接的一种方法。不同于文本翻译的回译等方法(见{\chaptersixteen}),语音翻译并不具有直接的“可逆性”。如果要利用回译的思想,需要通过一个模型,将目标语言文本转化为源语言语音,但实际上这种模型是不能直接得到的。因此,一个直接的思路是通过一个反向翻译模型和语音合成模型级联来生成伪数据\upcite{DBLP:conf/icassp/JiaJMWCCALW19}。 另外,正向翻译模型生成的伪数据在文本翻译中也被验证了对模型训练有一定的帮助,因此同样可以利用语音识别和文本翻译模型,将源语言语音翻译成目标语言文本,得到伪平行语料。
%---------------------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------------------
...@@ -310,7 +310,7 @@ ...@@ -310,7 +310,7 @@
\centerline{中午/没/吃饭/,/又/刚/打/了/ 一/下午/篮球/,/我/现在/很/饿/ ,/我/想\underline{\quad \quad}} \centerline{中午/没/吃饭/,/又/刚/打/了/ 一/下午/篮球/,/我/现在/很/饿/ ,/我/想\underline{\quad \quad}}
\vspace{0.8em} \vspace{0.8em}
\parinterval 想在横线处填写“吃饭”,“吃东西”的原因是在读句子的过程中,关注到了“没/吃饭”,“很/饿”等关键息。这是在语言生成中注意力机制所解决的问题,即对于要生成的目标语言单词,相关性更高的语言片段应该更加“重要”,而不是将所有单词一视同仁。同样的,注意力机制也应用在多模态机器翻译中,即在生成目标单词时,更应该关注与目标单词相关的图像部分,而弱化对其他部分的关注。另外,注意力机制的引入,也使图像信息更加直接地参与目标语言的生成,解决了在不使用注意力机制的方法中图像信息传递损失的问题。 \parinterval 想在横线处填写“吃饭”,“吃东西”的原因是在读句子的过程中,关注到了“没/吃饭”,“很/饿”等关键息。这是在语言生成中注意力机制所解决的问题,即对于要生成的目标语言单词,相关性更高的语言片段应该更加“重要”,而不是将所有单词一视同仁。同样的,注意力机制也应用在多模态机器翻译中,即在生成目标单词时,更应该关注与目标单词相关的图像部分,而弱化对其他部分的关注。另外,注意力机制的引入,也使图像信息更加直接地参与目标语言的生成,解决了在不使用注意力机制的方法中图像信息传递损失的问题。
%---------------------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -435,7 +435,7 @@ ...@@ -435,7 +435,7 @@
\subsection{篇章级翻译的挑战} \subsection{篇章级翻译的挑战}
\parinterval “篇章”在这里是指一系列连续的段落或句子所构成的整体,其中各个句子间从形式和内容上都具有一定的连贯性和一致性\upcite{jurafsky2000speech}。这些联系主要体现在衔接以及连贯两个方面。其中衔接体现在显性的语言成分和结构上,包括篇章中句子间的语法和词汇的联系,而连贯体现在各个句子之间的逻辑和语义的联系上。因此,篇章级翻译就是要将这些上下文之间的联系考虑在内,从而生成比句子级翻译更连贯和准确的翻译结果。实例\ref{eg:17-1}就展示了一个使用篇章信息进行机器翻译的实例。 \parinterval “篇章”在这里是指一系列连续的段落或句子所构成的整体,从形式和内容上,篇章中的各个句子间都具有一定的连贯性和一致性\upcite{jurafsky2000speech}。这些联系主要体现在衔接以及连贯两个方面。其中衔接体现在显性的语言成分和结构上,包括篇章中句子间的语法和词汇的联系,而连贯体现在各个句子之间的逻辑和语义的联系上。因此,篇章级翻译就是要将这些上下文之间的联系考虑在内,从而生成比句子级翻译更连贯和准确的翻译结果。实例\ref{eg:17-1}就展示了一个使用篇章信息进行机器翻译的实例。
\begin{example} \begin{example}
上下文句子:我/上周/针对/这个/问题/做出/解释/并/咨询/了/他的/意见/。 上下文句子:我/上周/针对/这个/问题/做出/解释/并/咨询/了/他的/意见/。
...@@ -453,7 +453,7 @@ ...@@ -453,7 +453,7 @@
\parinterval 正是这种上下文现象的多样性,使评价篇章级翻译模型的性能变得相对困难。目前篇章级机器翻译主要针对一些常见的上下文现象进行优化,比如代词翻译、省略、连接和词汇衔接等,而{\chapterfour}介绍的BLEU等通用自动评价指标通常对这些上下文依赖现象不敏感,因此篇章级翻译需要采用一些专用方法来对这些具体现象进行评价。 \parinterval 正是这种上下文现象的多样性,使评价篇章级翻译模型的性能变得相对困难。目前篇章级机器翻译主要针对一些常见的上下文现象进行优化,比如代词翻译、省略、连接和词汇衔接等,而{\chapterfour}介绍的BLEU等通用自动评价指标通常对这些上下文依赖现象不敏感,因此篇章级翻译需要采用一些专用方法来对这些具体现象进行评价。
\parinterval 在统计机器翻译时代就已经有大量的研究工作专注于篇章信息的建模,这些工作大多针对某一具体的上下文现象,比如,篇章结构\upcite{DBLP:conf/anlp/MarcuCW00,foster2010translating,DBLP:conf/eacl/LouisW14}、代词回指\upcite{DBLP:conf/iwslt/HardmeierF10,DBLP:conf/wmt/NagardK10,DBLP:conf/eamt/LuongP16,}、词汇衔接\upcite{tiedemann2010context,DBLP:conf/emnlp/GongZZ11,DBLP:conf/ijcai/XiongBZLL13,xiao2011document}和篇章连接词\upcite{DBLP:conf/sigdial/MeyerPZC11,DBLP:conf/hytra/MeyerP12,}等。区别于篇章级统计机器翻译,篇章级神经机器翻译不需要针对某一具体的上下文现象构造相应的特征,而是通过翻译模型从上下文句子中抽取并融合上下文信息。通常情况下,篇章级机器翻译可以采用局部建模的手段将前一句或者周围几句作为上下文送入模型。针对需要长距离上下文的情况,也可以使用全局建模的手段直接从篇章的所有句子中提取上下文信息。近几年多数研究工作都在探索更有效的局部建模或全局建模方法,主要包括改进输入\upcite{DBLP:conf/discomt/TiedemannS17,DBLP:conf/naacl/BawdenSBH18,DBLP:conf/wmt/GonzalesMS17,DBLP:journals/corr/abs-1910-07481}、多编码器结构\upcite{DBLP:journals/corr/JeanLFC17,DBLP:journals/corr/abs-1805-10163,DBLP:conf/emnlp/ZhangLSZXZL18}、层次结构\upcite{DBLP:conf/naacl/MarufMH19,DBLP:conf/acl/HaffariM18,DBLP:conf/emnlp/YangZMGFZ19,DBLP:conf/ijcai/ZhengYHCB20}以及基于缓存的方法\upcite{DBLP:conf/coling/KuangXLZ18,DBLP:journals/tacl/TuLSZ18}等。 \parinterval 在统计机器翻译时代就已经有大量的研究工作专注于篇章信息的建模,这些工作大多针对某一具体的上下文现象,比如,篇章结构\upcite{DBLP:conf/anlp/MarcuCW00,foster2010translating,DBLP:conf/eacl/LouisW14}、代词回指\upcite{DBLP:conf/iwslt/HardmeierF10,DBLP:conf/wmt/NagardK10,DBLP:conf/eamt/LuongP16,}、词汇衔接\upcite{tiedemann2010context,DBLP:conf/emnlp/GongZZ11,DBLP:conf/ijcai/XiongBZLL13,xiao2011document}和篇章连接词\upcite{DBLP:conf/sigdial/MeyerPZC11,DBLP:conf/hytra/MeyerP12,}等。区别于篇章级统计机器翻译,篇章级神经机器翻译不需要针对某一具体的上下文现象构造相应的特征,而是通过翻译模型从上下文句子中抽取并融合上下文信息。通常情况下,篇章级机器翻译可以采用局部建模的手段将前一句或者周围几句作为上下文送入模型。如果篇章翻译中需要利用长距离的上下文信息,也可以使用全局建模的手段直接从篇章的所有句子中提取上下文信息。近几年多数研究工作都在探索更有效的局部建模或全局建模方法,主要包括改进输入\upcite{DBLP:conf/discomt/TiedemannS17,DBLP:conf/naacl/BawdenSBH18,DBLP:conf/wmt/GonzalesMS17,DBLP:journals/corr/abs-1910-07481}、多编码器结构\upcite{DBLP:journals/corr/JeanLFC17,DBLP:journals/corr/abs-1805-10163,DBLP:conf/emnlp/ZhangLSZXZL18}、层次结构\upcite{DBLP:conf/naacl/MarufMH19,DBLP:conf/acl/HaffariM18,DBLP:conf/emnlp/YangZMGFZ19,DBLP:conf/ijcai/ZhengYHCB20}以及基于缓存的方法\upcite{DBLP:conf/coling/KuangXLZ18,DBLP:journals/tacl/TuLSZ18}等。
\parinterval 此外,篇章级机器翻译面临的另外一个挑战是数据稀缺。篇章级机器翻译所需要的双语数据需要保留篇章边界,数量相比于句子级双语数据要少很多。除了在之前提到的端到端方法中采用预训练或者参数共享的手段(见{\chaptersixteen}),也可以采用新的建模手段来缓解数据稀缺问题。这类方法通常将篇章级翻译流程进行分离:先训练一个句子级的翻译模型,再通过一些额外的模块来引入上下文信息。比如,在句子级翻译模型的推断过程中,通过在目标端结合篇章级语言模型引入上下文信息\upcite{DBLP:conf/discomt/GarciaCE19,DBLP:journals/tacl/YuSSLKBD20,DBLP:journals/corr/abs-2010-12827},或者基于句子级的翻译结果,使用两阶段解码等手段引入上下文信息,进而对句子级翻译结果进行修正\upcite{DBLP:conf/aaai/XiongH0W19,DBLP:conf/acl/VoitaST19,DBLP:conf/emnlp/VoitaST19} \parinterval 此外,篇章级机器翻译面临的另外一个挑战是数据稀缺。篇章级机器翻译所需要的双语数据需要保留篇章边界,数量相比于句子级双语数据要少很多。除了在之前提到的端到端方法中采用预训练或者参数共享的手段(见{\chaptersixteen}),也可以采用新的建模手段来缓解数据稀缺问题。这类方法通常将篇章级翻译流程进行分离:先训练一个句子级的翻译模型,再通过一些额外的模块来引入上下文信息。比如,在句子级翻译模型的推断过程中,通过在目标端结合篇章级语言模型引入上下文信息\upcite{DBLP:conf/discomt/GarciaCE19,DBLP:journals/tacl/YuSSLKBD20,DBLP:journals/corr/abs-2010-12827},或者基于句子级的翻译结果,使用两阶段解码等手段引入上下文信息,进而对句子级翻译结果进行修正\upcite{DBLP:conf/aaai/XiongH0W19,DBLP:conf/acl/VoitaST19,DBLP:conf/emnlp/VoitaST19}
...@@ -465,7 +465,7 @@ ...@@ -465,7 +465,7 @@
\parinterval BLEU等自动评价指标能够在一定程度上反映译文的整体质量,但是并不能有效地评估篇章级翻译模型的性能。这是由于很多标准测试集中需要篇章上下文的情况相对较少。而且,$n$-gram的匹配很难检测到一些具体的语言现象,这使得研究人员很难通过BLEU得分来判断篇章级翻译模型的效果。 \parinterval BLEU等自动评价指标能够在一定程度上反映译文的整体质量,但是并不能有效地评估篇章级翻译模型的性能。这是由于很多标准测试集中需要篇章上下文的情况相对较少。而且,$n$-gram的匹配很难检测到一些具体的语言现象,这使得研究人员很难通过BLEU得分来判断篇章级翻译模型的效果。
\parinterval 为此,研究人员总结了机器翻译任务中存在的上下文现象,并基于此设计了相应的自动评价指标。比如针对篇章中代词的翻译问题,首先借助词对齐工具确定源语言中的代词在译文和参考答案中的对应位置,然后通过计算译文中代词的准确率和召回率等指标对代词翻译质量进行评价\upcite{DBLP:conf/iwslt/HardmeierF10,DBLP:conf/discomt/WerlenP17}。针对篇章中的词汇衔接,使用{\small\sffamily\bfseries{词汇链}}\index{词汇链}(Lexical Chain\index{Lexical Chain}\footnote{词汇链指篇章中语义相关的词所构成的序列。}来获取能够反映词汇衔接质量的分数,然后通过加权的方式与常规的BLEU或METEOR等指标结合在一起\upcite{DBLP:conf/emnlp/WongK12,DBLP:conf/discomt/GongZZ15}。针对篇章中的连接词,使用候选词典和词对齐工具对源文中连接词的正确翻译结果进行计数,计算其准确率\upcite{DBLP:conf/cicling/HajlaouiP13} \parinterval 为此,研究人员总结了机器翻译任务中存在的上下文现象,并基于此设计了相应的自动评价指标。比如针对篇章中代词的翻译问题,首先借助词对齐工具确定源语言中的代词在译文和参考答案中的对应位置,然后通过计算译文中代词的准确率和召回率等指标对代词翻译质量进行评价\upcite{DBLP:conf/iwslt/HardmeierF10,DBLP:conf/discomt/WerlenP17}。针对篇章中的词汇衔接,使用{\small\sffamily\bfseries{词汇链}}\index{词汇链}(Lexical Chain\index{Lexical Chain}\footnote{词汇链指篇章中语义相关的词所构成的序列。}来获取能够反映词汇衔接质量的分数,然后通过加权的方式与常规的BLEU或METEOR等指标结合在一起\upcite{DBLP:conf/emnlp/WongK12,DBLP:conf/discomt/GongZZ15}。针对篇章中的连接词,使用候选词典和词对齐工具对源文中连接词的正确翻译结果进行计数,计算其准确率\upcite{DBLP:conf/cicling/HajlaouiP13}
\parinterval 除了直接对译文打分,也有一些工作针对特有的上下文现象手工构造了相应的测试套件用于评价翻译质量。测试套件中每一个测试样例都包含一个正确翻译的结果,以及多个错误结果,一个理想的翻译模型应该对正确的翻译结果评价最高,排名在所有错误结果之上,此时就可以根据模型是否能挑选出正确翻译结果来评估其性能。这种方法可以很好地衡量翻译模型在某一特定上下文现象上的处理能力,比如词义消歧\upcite{DBLP:conf/wmt/RiosMS18}、代词翻译\upcite{DBLP:conf/naacl/BawdenSBH18,DBLP:conf/wmt/MullerRVS18}和一些衔接问题\upcite{DBLP:conf/acl/VoitaST19}等。但是该方法也存在使用范围受限于测试集的语种和规模的缺点,因此扩展性较差。 \parinterval 除了直接对译文打分,也有一些工作针对特有的上下文现象手工构造了相应的测试套件用于评价翻译质量。测试套件中每一个测试样例都包含一个正确翻译的结果,以及多个错误结果,一个理想的翻译模型应该对正确的翻译结果评价最高,排名在所有错误结果之上,此时就可以根据模型是否能挑选出正确翻译结果来评估其性能。这种方法可以很好地衡量翻译模型在某一特定上下文现象上的处理能力,比如词义消歧\upcite{DBLP:conf/wmt/RiosMS18}、代词翻译\upcite{DBLP:conf/naacl/BawdenSBH18,DBLP:conf/wmt/MullerRVS18}和一些衔接问题\upcite{DBLP:conf/acl/VoitaST19}等。但是该方法也存在使用范围受限于测试集的语种和规模的缺点,因此扩展性较差。
...@@ -484,7 +484,7 @@ ...@@ -484,7 +484,7 @@
\end{eqnarray} \end{eqnarray}
其中,$\seq{X}$$\seq{Y}$分别为源语言篇章和目标语言篇章,$X_i$$Y_i$分别为源语言篇章和目标语言篇章中的第$i$个句子,$T$表示篇章中句子的数目。为了简化问题,这里假设源语言和目标语言具有相同的句子数目$T$,而且两个篇章间句子是顺序对应的。$D_i$表示翻译第$i$个句子时所对应的上下文句子集合,理想情况下,$D_i$中包含源语言篇章和目标语言篇章中所有除第$i$句之外的句子,但实践中通常仅使用其中的部分句子作为上下文。 其中,$\seq{X}$$\seq{Y}$分别为源语言篇章和目标语言篇章,$X_i$$Y_i$分别为源语言篇章和目标语言篇章中的第$i$个句子,$T$表示篇章中句子的数目。为了简化问题,这里假设源语言和目标语言具有相同的句子数目$T$,而且两个篇章间句子是顺序对应的。$D_i$表示翻译第$i$个句子时所对应的上下文句子集合,理想情况下,$D_i$中包含源语言篇章和目标语言篇章中所有除第$i$句之外的句子,但实践中通常仅使用其中的部分句子作为上下文。
\parinterval 上下文范围的选取是篇章级神经机器翻译需要着重考虑的问题,比如上下文句子的多少\upcite{agrawal2018contextual,Werlen2018DocumentLevelNM,DBLP:conf/naacl/MarufMH19},是否考虑目标端上下文句子\upcite{DBLP:conf/discomt/TiedemannS17,agrawal2018contextual}等。此外,不同的上下文范围也对应着不同的建模方法,接下来将对一些典型的方法进行介绍,包括改进输入\upcite{DBLP:conf/discomt/TiedemannS17,DBLP:conf/naacl/BawdenSBH18,DBLP:conf/wmt/GonzalesMS17,DBLP:journals/corr/abs-1910-07481}、多编码器模型\upcite{DBLP:journals/corr/JeanLFC17,DBLP:journals/corr/abs-1805-10163,DBLP:conf/emnlp/ZhangLSZXZL18}、层次结构模型\upcite{DBLP:conf/emnlp/WangTWL17,DBLP:conf/emnlp/TanZXZ19,Werlen2018DocumentLevelNM}以及基于缓存的方法\upcite{DBLP:conf/coling/KuangXLZ18,DBLP:journals/tacl/TuLSZ18} \parinterval 上下文范围的选取是篇章级神经机器翻译需要着重考虑的问题,比如上下文句子的多少\upcite{agrawal2018contextual,Werlen2018DocumentLevelNM,DBLP:conf/naacl/MarufMH19},是否考虑目标端上下文句子\upcite{DBLP:conf/discomt/TiedemannS17,agrawal2018contextual}等。此外,不同的上下文范围也对应着不同的建模方法,接下来将对一些典型的方法进行介绍,包括改进输入形式\upcite{DBLP:conf/discomt/TiedemannS17,DBLP:conf/naacl/BawdenSBH18,DBLP:conf/wmt/GonzalesMS17,DBLP:journals/corr/abs-1910-07481}、多编码器结构\upcite{DBLP:journals/corr/JeanLFC17,DBLP:journals/corr/abs-1805-10163,DBLP:conf/emnlp/ZhangLSZXZL18}、层次结构模型\upcite{DBLP:conf/emnlp/WangTWL17,DBLP:conf/emnlp/TanZXZ19,Werlen2018DocumentLevelNM}以及基于缓存的方法\upcite{DBLP:conf/coling/KuangXLZ18,DBLP:journals/tacl/TuLSZ18}
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -492,7 +492,7 @@ ...@@ -492,7 +492,7 @@
\subsubsection{1. 输入形式} \subsubsection{1. 输入形式}
\parinterval 一种简单的方法是直接复用传统的序列到序列模型,将篇章中待翻译句子与其上下文句子拼接后作为模型输入。如实例\ref{eg:17-3-1}所示,这种做法不需要改动模型结构,操作简单,适用于大多数神经机器翻译系统\upcite{DBLP:conf/discomt/TiedemannS17,agrawal2018contextual,DBLP:conf/discomt/ScherrerTL19}。但是由于过长的序列会导致模型难以训练,通常只会选取局部的上下文句子进行拼接,比如只拼接源语言端前一句或者周围几句\upcite{DBLP:conf/discomt/TiedemannS17}。此外,也可以引入目标语言端的上下文\upcite{DBLP:conf/naacl/BawdenSBH18,agrawal2018contextual,DBLP:conf/discomt/ScherrerTL19},在解码时拼接目标语言端上下文和当前句同样会带来一定的性能提升。但是过大的窗口会造成推断速度的下降\upcite{agrawal2018contextual},因此通常只考虑前一个目标语言句子。 \parinterval 一种简单的方法是直接复用传统的序列到序列模型,将篇章中待翻译句子与其上下文句子拼接后作为模型输入。如实例\ref{eg:17-3-1}所示,这种做法不需要改动模型结构,操作简单,适用于大多数神经机器翻译系统\upcite{DBLP:conf/discomt/TiedemannS17,agrawal2018contextual,DBLP:conf/discomt/ScherrerTL19}。但是由于过长的序列会导致模型难以训练,通常只会选取局部的上下文句子进行拼接,比如只拼接源语言端前一句或者周围几句\upcite{DBLP:conf/discomt/TiedemannS17}。此外,也可以引入目标语言端的上下文\upcite{DBLP:conf/naacl/BawdenSBH18,agrawal2018contextual,DBLP:conf/discomt/ScherrerTL19},在解码时,将目标语言端的当前句与上下文拼接在一起,同样会带来一定的性能提升。但是过大的窗口会造成推断速度的下降\upcite{agrawal2018contextual},因此通常只考虑前一个目标语言句子。
\begin{example} \begin{example}
传统模型训练输入: 传统模型训练输入:
...@@ -527,7 +527,7 @@ ...@@ -527,7 +527,7 @@
\end{eqnarray} \end{eqnarray}
其中,$\mathbi{h}$为Query(查询),$\mathbi{h}^{\textrm {pre}}$为Key(键)和Value(值)。然后通过门控机制将待翻译句子中每个位置的编码表示和该位置对应的上下文信息进行融合,具体方式如下: 其中,$\mathbi{h}$为Query(查询),$\mathbi{h}^{\textrm {pre}}$为Key(键)和Value(值)。然后通过门控机制将待翻译句子中每个位置的编码表示和该位置对应的上下文信息进行融合,具体方式如下:
\begin{eqnarray} \begin{eqnarray}
\lambda_{t}&=&\sigma(\mathbi{W}_{\lambda}[\mathbi{h}_{t};\mathbi{d}_{t}]+\mathbi{b}_{\lambda}) \lambda_{t}&=&\sigma([\mathbi{h}_{t};\mathbi{d}_{t}]\mathbi{W}_{\lambda}+\mathbi{b}_{\lambda})
\label{eq:17-3-5}\\ \label{eq:17-3-5}\\
\widetilde{\mathbi{h}_{t}}&=&\lambda_{t}\mathbi{h}_{t}+(1-\lambda_{t})\mathbi{d}_{t} \widetilde{\mathbi{h}_{t}}&=&\lambda_{t}\mathbi{h}_{t}+(1-\lambda_{t})\mathbi{d}_{t}
\label{eq:17-3-4} \label{eq:17-3-4}
...@@ -568,9 +568,9 @@ ...@@ -568,9 +568,9 @@
\parinterval 为了增强模型的表示能力,层次注意力中并未直接使用当前句子第$t$个位置的编码表示$\mathbi{h}_{t}$作为注意力操作的Query(查询),而是通过两个线性变换分别获取词级注意力和句子级注意力的查询$\mathbi{q}_{w}$$\mathbi{q}_{s}$,定义如公式\eqref{eq:17-3-6}\eqref{eq:17-3-8},其中${\mathbi W}_w$${\mathbi W}_s$${\mathbi b}_w$${\mathbi b}_s$分别是两个线性变换的权重和偏置。 \parinterval 为了增强模型的表示能力,层次注意力中并未直接使用当前句子第$t$个位置的编码表示$\mathbi{h}_{t}$作为注意力操作的Query(查询),而是通过两个线性变换分别获取词级注意力和句子级注意力的查询$\mathbi{q}_{w}$$\mathbi{q}_{s}$,定义如公式\eqref{eq:17-3-6}\eqref{eq:17-3-8},其中${\mathbi W}_w$${\mathbi W}_s$${\mathbi b}_w$${\mathbi b}_s$分别是两个线性变换的权重和偏置。
\begin{eqnarray} \begin{eqnarray}
\mathbi{q}_{w}&=&{\mathbi W}_w \mathbi{h}_t+{\mathbi b}_w \mathbi{q}_{w}&=&\mathbi{h}_t{\mathbi W}_w +{\mathbi b}_w
\label{eq:17-3-6}\\ \label{eq:17-3-6}\\
\mathbi{q}_{s}&=&{\mathbi W}_s \mathbi{h}_t+{\mathbi b}_s \mathbi{q}_{s}&=&\mathbi{h}_t{\mathbi W}_s +{\mathbi b}_s
\label{eq:17-3-8} \label{eq:17-3-8}
\end{eqnarray} \end{eqnarray}
...@@ -586,7 +586,7 @@ ...@@ -586,7 +586,7 @@
\noindent 其中,$\textrm{WordAttention}(\cdot)$$\textrm{SentAttention}(\cdot)$都是标准的自注意力模型。在得到最终的上下文信息$\mathbi{d}$后,模型同样采用门控机制(如公式\eqref{eq:17-3-4} 和公式\eqref{eq:17-3-5})与$\mathbi{h}$进行融合来得到一个上下文相关的当前句子表示$\widetilde{\mathbi{h}}$ \noindent 其中,$\textrm{WordAttention}(\cdot)$$\textrm{SentAttention}(\cdot)$都是标准的自注意力模型。在得到最终的上下文信息$\mathbi{d}$后,模型同样采用门控机制(如公式\eqref{eq:17-3-4} 和公式\eqref{eq:17-3-5})与$\mathbi{h}$进行融合来得到一个上下文相关的当前句子表示$\widetilde{\mathbi{h}}$
\parinterval 通过层次注意力,模型可以在词级和句子级两个维度从多个句子中提取更充分的上下文信息,除了用于编码器,也可以用于解码器来获取目标语言的上下文信息。基于层次注意力,为了进一步编码整个篇章的上下文信息,研究人员提出选择性注意力来对篇章中整体上下文进行有选择的信息提取\upcite{DBLP:conf/naacl/MarufMH19}。此外,也有研究人员使用循环神经网络\upcite{DBLP:conf/emnlp/WangTWL17}、 记忆网络\upcite{DBLP:conf/acl/HaffariM18}、胶囊网络\upcite{DBLP:conf/emnlp/YangZMGFZ19}和片段级相对注意力\upcite{DBLP:conf/ijcai/ZhengYHCB20}等结构来对多个上下文句子进行上下文信息提取。 \parinterval 通过层次注意力,模型可以在词级和句子级两个维度从多个句子中提取更充分的上下文信息,除了使用编码器,也可以使用解码器来获取目标语言的上下文信息。为了进一步编码整个篇章的上下文信息,研究人员提出选择性注意力来对篇章的整体上下文有选择地进行信息提取\upcite{DBLP:conf/naacl/MarufMH19}。此外,也有研究人员使用循环神经网络\upcite{DBLP:conf/emnlp/WangTWL17}、 记忆网络\upcite{DBLP:conf/acl/HaffariM18}、胶囊网络\upcite{DBLP:conf/emnlp/YangZMGFZ19}和片段级相对注意力\upcite{DBLP:conf/ijcai/ZhengYHCB20}等结构来对多个上下文句子进行上下文信息提取。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -639,7 +639,7 @@ ...@@ -639,7 +639,7 @@
\sectionnewpage \sectionnewpage
\section{小结及拓展阅读} \section{小结及拓展阅读}
\parinterval 使用更多的上下文进行机器翻译建模是极具潜力的研究方向,包括多模态翻译在内的多个领域也非常活跃。有许多问题值得进一步思考与讨论: \parinterval 使用更多的上下文进行机器翻译建模是极具潜力的研究方向,在包括多模态翻译在内的多个领域中也非常活跃。有许多问题值得进一步思考与讨论:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
......
...@@ -258,7 +258,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x ...@@ -258,7 +258,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x
\label{eq:2-14} \label{eq:2-14}
\end{eqnarray} \end{eqnarray}
\parinterval 一个分布的信息熵也就是从该分布中得到的一个事件的期望信息量。比如,$a$$b$$c$$d$四支球队,四支队伍夺冠的概率分别是$\funp{P}_1$$\funp{P}_2$$\funp{P}_3$$\funp{P}_4$某个人对比赛不感兴趣但是又想知道哪只球队夺冠,使用2次二分法就能确定哪支球队夺冠了。但假设这四只球队中$c$的实力可以碾压其他球队,那么猜1次就可以确定。所以对于前面这种情况,哪只球队夺冠的信息量较高,信息熵也相对较高;对于后面这种情况,因为结果是容易猜到的,信息量和信息熵也就相对较低。因此可以得知:分布越尖锐熵越低,分布越均匀熵越高。 \parinterval 一个分布的信息熵也就是从该分布中得到的一个事件的期望信息量。比如,$a$$b$$c$$d$四支球队,四支队伍夺冠的概率分别是$\funp{P}_1$$\funp{P}_2$$\funp{P}_3$$\funp{P}_4$假设四只队伍的实力未知或者实力相当,那么人们就很难对比赛结果做出预测。但是,如果这四只球队中某一支球队的实力可以碾压其他球队,那么人们对比赛结果的预测就会很明确。所以对于前面这种情况,预测球队夺冠的问题的信息量较高,信息熵也相对较高;对于后面这种情况,因为结果是容易猜到的,信息量和信息熵也就相对较低。因此可以得知:分布越尖锐熵越低,分布越均匀熵越高。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -521,7 +521,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x ...@@ -521,7 +521,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x
\end{itemize} \end{itemize}
\vspace{0.5em} \vspace{0.5em}
\parinterval 极大似然估计方法(基于频次的方法)和掷骰子游戏中介绍的统计词汇概率的方法是一致的,它的核心是使用$n$-gram出现的频次进行参数估计。基于人工神经网络的方法在近些年也非常受关注,它直接利用多层神经网络对问题的输入$w_{m-n+1} \ldots w_{m-1}$和输出$\funp{P}(w_m|w_{m-n+1} \ldots w_{m-1})$进行建模,而模型的参数通过网络中神经元之间连接的权重进行体现。严格来说,基于人工神经网络的方法并不算基于$n$-gram的方法,或者说它并没有显性记录$n$-gram的生成概率,也不依赖$n$-gram的频次进行参数估计。为了保证内容的连贯性,接下来仍以传统$n$-gram语言模型为基础进行讨论,基于人工神经网络的方法将会在{\chapternine}进行详细介绍。 \parinterval 极大似然估计方法(基于频次的方法)和掷骰子游戏中介绍的统计单词概率的方法是一致的,它的核心是使用$n$-gram出现的频次进行参数估计。基于人工神经网络的方法在近些年也非常受关注,它直接利用多层神经网络对问题的输入$w_{m-n+1} \ldots w_{m-1}$和输出$\funp{P}(w_m|w_{m-n+1} \ldots w_{m-1})$进行建模,而模型的参数通过网络中神经元之间连接的权重进行体现。严格来说,基于人工神经网络的方法并不算基于$n$-gram的方法,或者说它并没有显性记录$n$-gram的生成概率,也不依赖$n$-gram的频次进行参数估计。为了保证内容的连贯性,接下来仍以传统$n$-gram语言模型为基础进行讨论,基于人工神经网络的方法将会在{\chapternine}进行详细介绍。
\parinterval $n$-gram语言模型的使用非常简单。可以直接用它来对词序列出现的概率进行计算。比如,可以使用一个2-gram语言模型计算一个句子出现的概率,其中单词之间用斜杠分隔,如下: \parinterval $n$-gram语言模型的使用非常简单。可以直接用它来对词序列出现的概率进行计算。比如,可以使用一个2-gram语言模型计算一个句子出现的概率,其中单词之间用斜杠分隔,如下:
\begin{eqnarray} \begin{eqnarray}
...@@ -555,7 +555,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x ...@@ -555,7 +555,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter2/Figures/figure-word-frequency-distribution} \input{./Chapter2/Figures/figure-word-frequency-distribution}
\caption{词汇出现频次的分布} \caption{单词出现频次的分布}
\label{fig:2-10} \label{fig:2-10}
\end{figure} \end{figure}
%--------------------------- %---------------------------
...@@ -579,7 +579,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x ...@@ -579,7 +579,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x
\label{eq:2-27} \label{eq:2-27}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$V$表示词表,$|V|$为词表中单词的个数,$w$为词表中的一个词,c表示统计单词或短语出现的次数。有时候,加法平滑方法会将$\theta$取1,这时称之为加一平滑或是拉普拉斯平滑。这种方法比较容易理解,也比较简单,因此也往往被用于对系统的快速原型中 \noindent 其中,$V$表示词表,$|V|$为词表中单词的个数,$w$为词表中的一个词,c表示统计单词或短语出现的次数。有时候,加法平滑方法会将$\theta$取1,这时称之为加一平滑或是拉普拉斯平滑。这种方法比较容易理解,也比较简单,因此常被用于对系统的快速实现上
\parinterval 举一个例子。假设在一个英语文档中随机采样一些单词(词表大小$|V|=20$),各个单词出现的次数为:“look”出现4次,“people”出现3次,“am”出现2次,“what”出现1次,“want”出现1次,“do”出现1次。图\ref{fig:2-11} 给出了在平滑之前和平滑之后的概率分布。 \parinterval 举一个例子。假设在一个英语文档中随机采样一些单词(词表大小$|V|=20$),各个单词出现的次数为:“look”出现4次,“people”出现3次,“am”出现2次,“what”出现1次,“want”出现1次,“do”出现1次。图\ref{fig:2-11} 给出了在平滑之前和平滑之后的概率分布。
...@@ -803,7 +803,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\ ...@@ -803,7 +803,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\
\parinterval 从词序列建模的角度看,这两类预测问题本质上是一样的。因为,它们都在使用语言模型对词序列进行概率评估。但是,从实现上看,词序列的生成问题更难。因为,它不仅要对所有可能的词序列进行打分,同时要“找到”最好的词序列。由于潜在的词序列不计其数,因此这个“找”最优词序列的过程并不简单。 \parinterval 从词序列建模的角度看,这两类预测问题本质上是一样的。因为,它们都在使用语言模型对词序列进行概率评估。但是,从实现上看,词序列的生成问题更难。因为,它不仅要对所有可能的词序列进行打分,同时要“找到”最好的词序列。由于潜在的词序列不计其数,因此这个“找”最优词序列的过程并不简单。
\parinterval 实际上,生成最优词序列的问题也是自然语言处理中的一大类问题\ \dash\ {\small\bfnew{序列生成}}\index{序列生成}(Sequence Generation)\index{Sequence Generation}。机器翻译就是一个非常典型的序列生成问题:在机器翻译任务中,需要根据源语言词序列生成与之相对应的目标语言词序列。但是语言模型本身并不能“制造”单词序列的。因此,严格地说,序列生成问题的本质并非让语言模型凭空“生成”序列,而是使用语言模型在所有候选的单词序列中“找出”最佳序列。这个过程对应着经典的{\small\bfnew{搜索问题}}\index{搜索问题}(Search Problem)\index{Search Problem}。下面将着重介绍序列生成背后的建模方法,以及在序列生成里常用的搜索技术。 \parinterval 实际上,生成最优词序列的问题也是自然语言处理中的一大类问题\ \dash\ {\small\bfnew{序列生成}}\index{序列生成}(Sequence Generation)\index{Sequence Generation}。机器翻译就是一个非常典型的序列生成任务:在机器翻译任务中,需要根据源语言词序列生成与之相对应的目标语言词序列。但是语言模型本身并不能“制造”单词序列的。因此,严格地说,序列生成任务的本质并非让语言模型凭空“生成”序列,而是使用语言模型在所有候选的单词序列中“找出”最佳序列。这个过程对应着经典的{\small\bfnew{搜索问题}}\index{搜索问题}(Search Problem)\index{Search Problem}。下面将着重介绍序列生成任务背后的建模方法,以及在序列生成任务里常用的搜索技术。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -811,7 +811,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\ ...@@ -811,7 +811,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\
\subsection{搜索问题的建模} \subsection{搜索问题的建模}
\parinterval 基于语言模型的序列生成问题可以被定义为:在无数任意排列的单词序列中找到概率最高的序列。这里单词序列$w = w_1 w_2 \ldots w_m$的语言模型得分$\funp{P}(w)$度量了这个序列的合理性和流畅性。在序列生成任务中,基于语言模型的搜索问题可以被描述为: \parinterval 基于语言模型的序列生成任务可以被定义为:在无数任意排列的单词序列中找到概率最高的序列。这里单词序列$w = w_1 w_2 \ldots w_m$的语言模型得分$\funp{P}(w)$度量了这个序列的合理性和流畅性。在序列生成任务中,基于语言模型的搜索问题可以被描述为:
\begin{eqnarray} \begin{eqnarray}
\hat{w} = \argmax_{w \in \chi}\funp{P}(w) \hat{w} = \argmax_{w \in \chi}\funp{P}(w)
\label{eq:2-42} \label{eq:2-42}
...@@ -819,7 +819,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\ ...@@ -819,7 +819,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\
\noindent 这里$\arg$即argument(参数),$\argmax_x f(x)$表示返回使$f(x)$达到最大的$x$$\argmax_{w \in \chi}$\\$\funp{P}(w)$表示找到使语言模型得分$\funp{P}(w)$达到最大的单词序列$w$$\chi$ 是搜索问题的解空间,它是所有可能的单词序列$w$的集合。$\hat{w}$可以被看做该搜索问题中的“最优解”,即概率最大的单词序列。 \noindent 这里$\arg$即argument(参数),$\argmax_x f(x)$表示返回使$f(x)$达到最大的$x$$\argmax_{w \in \chi}$\\$\funp{P}(w)$表示找到使语言模型得分$\funp{P}(w)$达到最大的单词序列$w$$\chi$ 是搜索问题的解空间,它是所有可能的单词序列$w$的集合。$\hat{w}$可以被看做该搜索问题中的“最优解”,即概率最大的单词序列。
\parinterval 在序列生成任务中,最简单的策略就是对词表中的词汇进行任意组合,通过这种枚举的方式得到全部可能的序列。但是,很多时候待生成序列的长度是无法预先知道的。比如,机器翻译中目标语序列的长度是任意的。那么怎样判断一个序列何时完成了生成过程呢?这里借用现代人类书写中文和英文的过程:句子的生成首先从一片空白开始,然后从左到右逐词生成,除了第一个单词,所有单词的生成都依赖于前面已经生成的单词。为了方便计算机实现,通常定义单词序列从一个特殊的符号<sos>后开始生成。同样地,一个单词序列的结束也用一个特殊的符号<eos>来表示。 \parinterval 在序列生成任务中,最简单的策略就是对词表中的单词进行任意组合,通过这种枚举的方式得到全部可能的序列。但是,很多时候待生成序列的长度是无法预先知道的。比如,机器翻译中目标语言序列的长度是任意的。那么怎样判断一个序列何时完成了生成过程呢?这里借用现代人类书写中文和英文的过程:句子的生成首先从一片空白开始,然后从左到右逐词生成,除了第一个单词,所有单词的生成都依赖于前面已经生成的单词。为了方便计算机实现,通常定义单词序列从一个特殊的符号<sos>后开始生成。同样地,一个单词序列的结束也用一个特殊的符号<eos>来表示。
\parinterval 对于一个序列$<$sos$>$\ I\ agree\ $<$eos$>$,图\ref{fig:2-12}展示语言模型视角下该序列的生成过程。该过程通过在序列的末尾不断附加词表中的单词来逐渐扩展序列,直到这段序列结束。这种生成单词序列的过程被称作{\small\bfnew{自左向右生成}}\index{自左向右生成}(Left-to-Right Generation)\index{Left-to-Right Generation}。注意,这种序列生成策略与$n$-gram的思想天然契合,因为$n$-gram语言模型中,每个词的生成概率依赖前面(左侧)若干词,因此$n$-gram语言模型也是一种自左向右的计算模型。 \parinterval 对于一个序列$<$sos$>$\ I\ agree\ $<$eos$>$,图\ref{fig:2-12}展示语言模型视角下该序列的生成过程。该过程通过在序列的末尾不断附加词表中的单词来逐渐扩展序列,直到这段序列结束。这种生成单词序列的过程被称作{\small\bfnew{自左向右生成}}\index{自左向右生成}(Left-to-Right Generation)\index{Left-to-Right Generation}。注意,这种序列生成策略与$n$-gram的思想天然契合,因为$n$-gram语言模型中,每个词的生成概率依赖前面(左侧)若干词,因此$n$-gram语言模型也是一种自左向右的计算模型。
...@@ -832,7 +832,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\ ...@@ -832,7 +832,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 在这种序列生成方式的基础上,实现搜索通常有两种方法\ \dash\ 深度优先遍历和宽度优先遍历\upcite{DBLP:books/mg/CormenLR89}。在深度优先遍历中,每次从词表中可重复地选择一个单词,然后从左至右地生成序列,直到<eos>被选择,此时一个完整的单词序列被生成出来。然后从<eos>回退到上一个单词,选择之前词表中未被选择到的候选单词代替<eos>,并继续挑选下一个单词直到<eos>被选到,如果上一个单词的所有可能都被枚举过,那么回退到上上一个单词继续枚举,直到回退到<sos>,这时候枚举结束。在宽度优先遍历中,每次不是只选择一个单词,而是枚举所有单词。 \parinterval 在这种序列生成策略的基础上,实现搜索通常有两种方法\ \dash\ 深度优先遍历和宽度优先遍历\upcite{DBLP:books/mg/CormenLR89}。在深度优先遍历中,每次从词表中选择一个单词(可重复),然后从左至右地生成序列,直到<eos>被选择,此时一个完整的单词序列被生成出来。然后从<eos>回退到上一个单词,选择之前词表中未被选择到的候选单词代替<eos>,并继续挑选下一个单词直到<eos>被选到,如果上一个单词的所有可能都被枚举过,那么回退到上上一个单词继续枚举,直到回退到<sos>,这时候枚举结束。在宽度优先遍历中,每次不是只选择一个单词,而是枚举所有单词。
\parinterval 有一个简单的例子。假设词表只含两个单词$\{a, b\}$,从<sos>开始枚举所有候选,有三种可能: \parinterval 有一个简单的例子。假设词表只含两个单词$\{a, b\}$,从<sos>开始枚举所有候选,有三种可能:
\begin{eqnarray} \begin{eqnarray}
...@@ -916,7 +916,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\ ...@@ -916,7 +916,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 这样,语言模型的打分与解空间树的遍历就融合在一起了。于是,序列生成的问题可以被重新描述为:寻找所有单词序列组成的解空间树中权重总和最大的一条路径。在这个定义下,前面提到的两种枚举词序列的方法就是经典的{\small\bfnew{深度优先搜索}}\index{深度优先搜索}(Depth-first Search)\index{Depth-first Search}{\small\bfnew{宽度优先搜索}}\index{宽度优先搜索}(Breadth-first Search)\index{Breadth-first Search}的雏形\upcite{even2011graph,tarjan1972depth}。在后面的内容中,从遍历解空间树的角度出发,可以对这些原始的搜索策略的效率进行优化。 \parinterval 这样,语言模型的打分与解空间树的遍历就融合在一起了。于是,序列生成任务可以被重新描述为:寻找所有单词序列组成的解空间树中权重总和最大的一条路径。在这个定义下,前面提到的两种枚举词序列的方法就是经典的{\small\bfnew{深度优先搜索}}\index{深度优先搜索}(Depth-first Search)\index{Depth-first Search}{\small\bfnew{宽度优先搜索}}\index{宽度优先搜索}(Breadth-first Search)\index{Breadth-first Search}的雏形\upcite{even2011graph,tarjan1972depth}。在后面的内容中,从遍历解空间树的角度出发,可以对这些原始的搜索策略的效率进行优化。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -1044,7 +1044,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\ ...@@ -1044,7 +1044,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\
\vspace{0.5em} \vspace{0.5em}
\item$n$-gram语言模型中,由于语料中往往存在大量的低频词以及未登录词,模型会产生不合理的概率预测结果。因此本章介绍了三种平滑方法,以解决上述问题。实际上,平滑方法是语言建模中的重要研究方向。除了上文中介绍的三种平滑方法之外,还有如Jelinek–Mercer平滑\upcite{jelinek1980interpolated}、Katz 平滑\upcite{katz1987estimation}以及Witten–Bell平滑等等\upcite{bell1990text,witten1991the}的平滑方法。相关工作也对这些平滑方法进行了详细对比\upcite{chen1999empirical,goodman2001a} \item$n$-gram语言模型中,由于语料中往往存在大量的低频词以及未登录词,模型会产生不合理的概率预测结果。因此本章介绍了三种平滑方法,以解决上述问题。实际上,平滑方法是语言建模中的重要研究方向。除了上文中介绍的三种平滑方法之外,还有如Jelinek–Mercer平滑\upcite{jelinek1980interpolated}、Katz 平滑\upcite{katz1987estimation}以及Witten–Bell平滑等等\upcite{bell1990text,witten1991the}的平滑方法。相关工作也对这些平滑方法进行了详细对比\upcite{chen1999empirical,goodman2001a}
\vspace{0.5em} \vspace{0.5em}
\item 除了平滑方法,也有很多工作对$n$-gram语言模型进行改进。比如,对于形态学丰富的语言,可以考虑对单词的形态变化进行建模。这类语言模型在一些机器翻译系统中也体现出了很好的潜力\upcite{kirchhoff2005improved,sarikaya2007joint,koehn2007factored}。此外,如何使用超大规模数据进行语言模型训练也是备受关注的研究方向。比如,有研究者探索了对超大语言模型进行压缩和存储的方法\upcite{federico2007efficient,federico2006how,heafield2011kenlm}。另一个有趣的方向是,利用随机存储算法对大规模语言模型进行有效存储\upcite{talbot2007smoothed,talbot2007randomised},比如,在语言模型中使用Bloom\ Filter等随机存储的数据结构。 \item 除了平滑方法,也有很多工作对$n$-gram语言模型进行改进。比如,对于形态学丰富的语言,可以考虑对单词的形态变化进行建模。这类语言模型在一些机器翻译系统中也体现出了很好的潜力\upcite{kirchhoff2005improved,sarikaya2007joint,koehn2007factored}。此外,如何使用超大规模数据进行语言模型训练也是备受关注的研究方向。比如,有研究者探索了对超大语言模型进行压缩和存储的方法\upcite{federico2007efficient,federico2006how,heafield2011kenlm}。另一个有趣的方向是,利用随机存储算法对大规模语言模型进行有效存储\upcite{talbot2007smoothed,talbot2007randomised},比如,在语言模型中使用Bloom\ Filter等随机存储的数据结构。
\vspace{0.5em} \vspace{0.5em}
\item 本章更多地关注了语言模型的基本问题和求解思路,但是基于$n$-gram的方法并不是语言建模的唯一方法。从现在自然语言处理的前沿看,端到端的深度学习方法在很多任务中都取得了领先的性能。语言模型同样可以使用这些方法\upcite{jing2019a},而且在近些年取得了巨大成功。例如,最早提出的前馈神经语言模型\upcite{bengio2003a}和后来的基于循环单元的语言模型\upcite{mikolov2010recurrent}、基于长短期记忆单元的语言模型\upcite{sundermeyer2012lstm}以及现在非常流行的Transformer\upcite{vaswani2017attention}。 关于神经语言模型的内容,会在{\chapternine}进行进一步介绍。 \item 本章更多地关注了语言模型的基本问题和求解思路,但是基于$n$-gram的方法并不是语言建模的唯一方法。从现在自然语言处理的前沿看,端到端的深度学习方法在很多任务中都取得了领先的性能。语言模型同样可以使用这些方法\upcite{jing2019a},而且在近些年取得了巨大成功。例如,最早提出的前馈神经语言模型\upcite{bengio2003a}和后来的基于循环单元的语言模型\upcite{mikolov2010recurrent}、基于长短期记忆单元的语言模型\upcite{sundermeyer2012lstm}以及现在非常流行的Transformer\upcite{vaswani2017attention}。 关于神经语言模型的内容,会在{\chapternine}进行进一步介绍。
\vspace{0.5em} \vspace{0.5em}
......
...@@ -74,7 +74,7 @@ ...@@ -74,7 +74,7 @@
\node [] (d1) at (-11.9em,-10em) {$d_1$}; \node [] (d1) at (-11.9em,-10em) {$d_1$};
\node [] (d2) at (-2.9em,-10em) {$d_2$}; \node [] (d2) at (-2.9em,-10em) {$d_2$};
\node [] (d3) at (6.2em,-10em) {$d_2$}; \node [] (d3) at (6.2em,-10em) {$d_3$};
\node [anchor=east] (d1p) at ([xshift=0.4em]d1.west) {$\funp{P}($}; \node [anchor=east] (d1p) at ([xshift=0.4em]d1.west) {$\funp{P}($};
\node [anchor=west] (d1p2) at ([xshift=-0.4em]d1.east) {$)=0.0123$}; \node [anchor=west] (d1p2) at ([xshift=-0.4em]d1.east) {$)=0.0123$};
......
...@@ -45,7 +45,7 @@ ...@@ -45,7 +45,7 @@
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{分词}}\index{分词}Segmentation)\index{Segmentation}:这个过程会把词串进行切分,切割成最小的具有完整功能的单元\ \dash\ {\small\sffamily\bfseries{单词}}\index{单词}(Word\index{单词})。因为只有知道了什么是单词,机器翻译系统才能完成对句子的表示、分析和生成。 \item {\small\sffamily\bfseries{分词}}\index{分词} Word Segmentation)\index{Word Segmentation}:这个过程会把词串进行切分,切割成最小的具有完整功能的单元\ \dash\ {\small\sffamily\bfseries{单词}}\index{单词}(Word\index{单词})。因为只有知道了什么是单词,机器翻译系统才能完成对句子的表示、分析和生成。
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{句法分析}}\index{句法分析}(Parsing)\index{Parsing}:这个过程会对分词的结果进行进一步分析。比如,可以对句子进行浅层分析,得到句子中实体的信息(如人名、地名等)。也可以对句子进行更深层次的分析,得到完整的句法结构,类似于图\ref{fig:3.1-2}中的结果。这种结构可以被看作是对句子的进一步抽象,被称为短语结构树,比如,NP+VP就可以表示由名词短语(Noun Phrase,NP)和动词短语(Verb Phrase,VP)构成的主谓结构。利用这些信息,机器翻译可以更加准确地对句子的结构进行分析和生成。 \item {\small\sffamily\bfseries{句法分析}}\index{句法分析}(Parsing)\index{Parsing}:这个过程会对分词的结果进行进一步分析。比如,可以对句子进行浅层分析,得到句子中实体的信息(如人名、地名等)。也可以对句子进行更深层次的分析,得到完整的句法结构,类似于图\ref{fig:3.1-2}中的结果。这种结构可以被看作是对句子的进一步抽象,被称为短语结构树,比如,NP+VP就可以表示由名词短语(Noun Phrase,NP)和动词短语(Verb Phrase,VP)构成的主谓结构。利用这些信息,机器翻译可以更加准确地对句子的结构进行分析和生成。
\vspace{0.5em} \vspace{0.5em}
...@@ -87,7 +87,7 @@ ...@@ -87,7 +87,7 @@
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 分词得到的单元序列既可以是语言学上的词序列,也可以是根据其他方式定义的基本处理单元。在本章中,把分词得到的一个个单元称为单词或词,尽管这些单元可以不是语言学上的完整单词,而这个过程也被称作{\small\sffamily\bfseries{词法分析}}\index{词法分析}(Lexical Analysis)\index{Lexical Analysis}。除了汉语,词法分析在日语、泰语等单词之间无明确分割符的语言中有着广泛的应用,芬兰语、维吾尔语等一些形态学十分丰富的语言也需要使用词法分析来解决复杂的词尾、词缀变化等形态学变化。 \parinterval 分词得到的单元序列既可以是语言学上的词序列,也可以是根据其他方式定义的基本处理单元。在本章中,把分词得到的一个个单元称为单词或词,尽管这些单元可以不是语言学上的完整单词,而这个过程也被称作{\small\sffamily\bfseries{词法分析}}\index{词法分析}(Lexical Analysis)\index{Lexical Analysis}。除了汉语,词法分析在日语、泰语等单词之间无明确分割符的语言中有着广泛的应用,芬兰语、维吾尔语等一些形态十分丰富的语言也需要使用词法分析来解决复杂的词尾、词缀变化等形态变化。
\parinterval 在机器翻译中,分词系统的好坏往往会决定译文的质量。分词的目的是定义系统处理的基本单元,那么什么叫做“词” 呢?关于词的定义有很多,比如: \parinterval 在机器翻译中,分词系统的好坏往往会决定译文的质量。分词的目的是定义系统处理的基本单元,那么什么叫做“词” 呢?关于词的定义有很多,比如:
...@@ -96,13 +96,13 @@ ...@@ -96,13 +96,13 @@
\vspace{0.5em} \vspace{0.5em}
语言里最小的可以独立运用的单位。 语言里最小的可以独立运用的单位。
\begin{flushright}——《新华字典》\end{flushright} \begin{flushright}——《新华字典》\upcite{新华字典}\end{flushright}
单词,含有语义内容或语用内容,且能被单独念出来的的最小单位。 单词,含有语义内容或语用内容,且能被单独念出来的的最小单位。
\begin{flushright}——维基百科\end{flushright} \begin{flushright}——维基百科\end{flushright}
语句中具有完整概念,能独立自由运用的基本单位。 语句中具有完整概念,能独立自由运用的基本单位。
\begin{flushright}——《国语辞典》\end{flushright} \begin{flushright}——《国语辞典》\upcite{国语辞典}\end{flushright}
\end{definition} \end{definition}
...@@ -265,7 +265,7 @@ $计算这种切分的概率值。 ...@@ -265,7 +265,7 @@ $计算这种切分的概率值。
\parinterval 对于像命名实体识别这样的任务,早期的方法主要是基于词典和规则的方法。这些方法依赖于人工构造的识别规则,通过字符串匹配的方式识别出文本中的命名实体\upcite{1995University,krupka1998isoquest,DBLP:conf/muc/BlackRM98}。严格意义上来说,那时命名实体识别还并没有被看作是一种序列标注问题。 \parinterval 对于像命名实体识别这样的任务,早期的方法主要是基于词典和规则的方法。这些方法依赖于人工构造的识别规则,通过字符串匹配的方式识别出文本中的命名实体\upcite{1995University,krupka1998isoquest,DBLP:conf/muc/BlackRM98}。严格意义上来说,那时命名实体识别还并没有被看作是一种序列标注问题。
\parinterval 序列标注这个概念更多的是出现在基于统计建模的方法中。许多统计机器学习方法都被成功应用用于命名实体识别任务,例如{\small\sffamily\bfseries{隐马尔可夫模型}}\index{隐马尔可夫模型}(Hidden Markov Model,HMM)\index{Hidden Markov Model}\upcite{1996Hidden}{\small\sffamily\bfseries{条件随机场}}\index{条件随机场}(Conditional Random Fields,CRFs\index{Conditional Random Fields}\upcite{lafferty2001conditional}{\small\sffamily\bfseries{最大熵}}\index{最大熵}(Maximum Entropy,ME)\index{Maximum Entropy}模型\upcite{kapur1989maximum}{\small\sffamily\bfseries{支持向量机}}\index{支持向量机}(Support Vector Machine,SVM)\index{Support Vector Machine}\upcite{1998Support}等。此外,近些年深度学习的兴起也给命名实体识别带来了新的思路\upcite{2011Natural}。而命名实体识别也成为了验证机器学习方法有效性的重要任务之一。本节将对序列标注中几类基础的方法进行介绍。其中会涉及概率图模型、统计分类模型等方法。特别是统计分类的概念,在后续章节中也会被使用到。 \parinterval 序列标注这个概念更多的是出现在基于统计建模的方法中。许多统计机器学习方法都被成功应用用于命名实体识别任务,例如{\small\sffamily\bfseries{隐马尔可夫模型}}\index{隐马尔可夫模型}(Hidden Markov Model,HMM)\index{Hidden Markov Model}\upcite{1996Hidden}{\small\sffamily\bfseries{条件随机场}}\index{条件随机场}(Conditional Random Fields,CRF)\index{Conditional Random Fields}\upcite{lafferty2001conditional}{\small\sffamily\bfseries{最大熵}}\index{最大熵}(Maximum Entropy,ME)\index{Maximum Entropy}模型\upcite{kapur1989maximum}{\small\sffamily\bfseries{支持向量机}}\index{支持向量机}(Support Vector Machine,SVM)\index{Support Vector Machine}\upcite{1998Support}等。此外,近些年深度学习的兴起也给命名实体识别带来了新的思路\upcite{2011Natural}。而命名实体识别也成为了验证机器学习方法有效性的重要任务之一。本节将对序列标注中几类基础的方法进行介绍。其中会涉及概率图模型、统计分类模型等方法。特别是统计分类的概念,在后续章节中也会被使用到。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -327,11 +327,11 @@ $计算这种切分的概率值。 ...@@ -327,11 +327,11 @@ $计算这种切分的概率值。
\parinterval 隐马尔可夫模型是一种经典的序列模型\upcite{Baum1966Statistical,baum1970maximization,1996Hidden}。它在语音识别、自然语言处理的很多领域得到了广泛的应用。隐马尔可夫模型的本质就是概率化的马尔可夫过程,这个过程隐含着状态间转移和可见状态生成的概率。 \parinterval 隐马尔可夫模型是一种经典的序列模型\upcite{Baum1966Statistical,baum1970maximization,1996Hidden}。它在语音识别、自然语言处理的很多领域得到了广泛的应用。隐马尔可夫模型的本质就是概率化的马尔可夫过程,这个过程隐含着状态间转移和可见状态生成的概率。
\parinterval 这里用一个简单的“抛硬币”游戏来对这些概念进行说明:假设有三枚质地不同的硬币$A$$B$$C$,已知这三个硬币抛出正面的概率分别为0.3、0.5、0.7,在游戏中,游戏发起者在上述三枚硬币中选择一枚硬币上抛,每枚硬币被挑选到的概率可能会受上次被挑选的硬币的影响,且每枚硬币正面向上的概率都各不相同。不停的重复挑选硬币、上抛硬币的过程,会得到一串硬币的正反序列,例如:抛硬币6次,得到:正正反反正反。游戏挑战者通过观察6次后获得的硬币正反序列,猜测每次选择的究竟是哪一枚硬币。 \parinterval 这里用一个简单的“抛硬币”游戏来对这些概念进行说明:假设有三枚质地不同的硬币$A$$B$$C$,已知这三个硬币抛出正面的概率分别为0.3、0.5、0.7,在游戏中,游戏发起者在上述三枚硬币中选择一枚硬币上抛,每枚硬币被挑选到的概率可能会受上次被挑选的硬币的影响,且每枚硬币正面向上的概率都各不相同。不停的重复挑选硬币、上抛硬币的过程,会得到一串硬币的正反序列,例如:抛硬币6次,得到:正正反反正反。游戏挑战者根据硬币的正反序列,猜测每次选择的究竟是哪一枚硬币。
\parinterval 在上面的例子中,每次挑选并上抛硬币后得到的“正面”或“反面”即为“可见状态”,再次挑选并上抛硬币会获得新的“可见状态”,这个过程即为“状态的转移”,经过6次反复挑选上抛后得到的硬币正反序列叫做可见状态序列,由每个回合的可见状态构成。此外,在这个游戏中还暗含着一个会对最终“可见状态序列”产生影响的“隐含状态序列”\ \dash \ 每次挑选的硬币形成的序列,例如$CBABCA$ \parinterval 在上面的例子中,每次挑选并上抛硬币后得到的“正面”或“反面”即为“可见状态”,再次挑选并上抛硬币会获得新的“可见状态”,这个过程即为“状态的转移”,经过6次反复挑选上抛后得到的硬币正反序列叫做可见状态序列,由每个回合的可见状态构成。此外,在这个游戏中还暗含着一个会对最终“可见状态序列”产生影响的“隐含状态序列”\ \dash \ 每次挑选的硬币形成的序列,例如$CBABCA$
\parinterval 实际上,隐马尔科夫模型在处理序列问题时的关键依据是两个至关重要的概率关系,并且这两个概率关系也始终贯穿于“抛硬币”的游戏中。一方面,隐马尔可夫模型中{\small\sffamily\bfseries{发射概率}}\index{发射概率}(Emission Probability)\index{Emission Probability}来描述隐含状态和可见状态之间存在的输出概率(即$A$$B$$C$抛出正面的输出概率为0.3、0.5、0.7),同样的,隐马尔可夫模型还会描述系统隐含状态的{\small\sffamily\bfseries{转移概率}}\index{转移概率}(Transition Probability)\index{Transition Probability},在这个例子中,$A$的下一个状态是$A$$B$$C$的概率都是1/3,$B$$C$的下一个状态是$A$$B$$C$的转移概率也同样是1/3。图\ref{fig:3.3-2}展示了在“抛硬币”游戏中的转移概率和发射概率,它们都可以被看做是条件概率矩阵。 \parinterval 实际上,隐马尔可夫模型在处理序列问题时的关键依据是两个至关重要的概率关系,并且这两个概率关系也始终贯穿于“抛硬币”的游戏中。一方面,隐马尔可夫模型{\small\sffamily\bfseries{发射概率}}\index{发射概率}(Emission Probability)\index{Emission Probability}来描述隐含状态和可见状态之间存在的输出概率(即$A$$B$$C$抛出正面的输出概率为0.3、0.5、0.7),同样的,隐马尔可夫模型还会描述系统隐含状态的{\small\sffamily\bfseries{转移概率}}\index{转移概率}(Transition Probability)\index{Transition Probability},在这个例子中,$A$的下一个状态是$A$$B$$C$的概率都是1/3,$B$$C$的下一个状态是$A$$B$$C$的转移概率也同样是1/3。图\ref{fig:3.3-2}展示了在“抛硬币”游戏中的转移概率和发射概率,它们都可以被看做是条件概率矩阵。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -372,17 +372,17 @@ $计算这种切分的概率值。 ...@@ -372,17 +372,17 @@ $计算这种切分的概率值。
& = & \prod_{i=1}^{m} \funp{P}(x_i|y_i) \funp{P}(y_i | y_{i-1}) \label{eq:joint-prob-xy} & = & \prod_{i=1}^{m} \funp{P}(x_i|y_i) \funp{P}(y_i | y_{i-1}) \label{eq:joint-prob-xy}
\end{eqnarray} \end{eqnarray}
\noindent 这里,$y_{0}$表示一个虚拟的隐含状态。这样,可以定义$\funp{P}(y_1|y_{0}) \equiv \funp{P}(y_1)$,它表示起始隐含状态出现的概率。隐马尔可夫模型的假设也大大化简了问题,因此可以通过式\eqref{eq:joint-prob-xy}很容易地计算隐含状态序列和可见状态序列出现的概率。值得注意的是,发射概率和转移概率都可以被看作是描述序列生成过程的“特征”。但是,这些“特征”并不是随意定义的,而是符合问题的概率解释。而这种基于事件发生的逻辑所定义的概率生成模型,通常可以被看作是一种{\small\sffamily\bfseries{生成式模型}}\index{生成式模型}(Generative Model)\index{Generative Model} \noindent 这里,$y_{0}$表示一个虚拟的隐含状态。这样,可以定义$\funp{P}(y_1|y_{0}) \equiv \funp{P}(y_1)$\footnote{数学符号$\equiv$的含义为:等价于},它表示起始隐含状态出现的概率。隐马尔可夫模型的假设也大大化简了问题,因此可以通过式\eqref{eq:joint-prob-xy}很容易地计算隐含状态序列和可见状态序列出现的概率。值得注意的是,发射概率和转移概率都可以被看作是描述序列生成过程的“特征”。但是,这些“特征”并不是随意定义的,而是符合问题的概率解释。而这种基于事件发生的逻辑所定义的概率生成模型,通常可以被看作是一种{\small\sffamily\bfseries{生成模型}}\index{生成模型}(Generative Model)\index{Generative Model}
\parinterval 一般来说,隐马尔可夫模型中包含下面三个问题: \parinterval 一般来说,隐马尔可夫模型中包含下面三个问题:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{隐含状态序列的概率计算}},即给定模型(转移概率和发射概率),根据可见状态序列(抛硬币的结果)计算在该模型下得到这个结果的概率,这个问题的求解需要用到前后向算法\upcite{baum1970maximization} \item {\small\sffamily\bfseries{隐含状态序列的概率计算}},即给定模型(转移概率和发射概率),根据可见状态序列(抛硬币的结果)计算在该模型下得到这个结果的概率,这个问题的求解需要用到{\small\sffamily\bfseries{前向后向算法}}\index{前向后向算法}(Forward-Backward Algorithm)\index{Forward-Backward Algorithm}\upcite{baum1970maximization}
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{参数学习}},即给定硬币种类(隐含状态数量),根据多个可见状态序列(抛硬币的结果)估计模型的参数(转移概率),这个问题的求解需要用到EM算法\upcite{1977Maximum} \item {\small\sffamily\bfseries{参数学习}},即给定硬币种类(隐含状态数量),根据多个可见状态序列(抛硬币的结果)估计模型的参数(转移概率),这个问题的求解需要用到EM算法\upcite{1977Maximum}
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{解码}},即给定模型(转移概率和发射概率)和可见状态序列(抛硬币的结果),计算在可见状态序列的情况下,最可能出现的对应的状态序列,这个问题的求解需要用到基于动态规划的方法,通常也被称作{\small\sffamily\bfseries{维特比算法}}\index{维特比算法}(Viterbi Algorithm)\index{Viterbi Algorithm}\upcite{1967Error} \item {\small\sffamily\bfseries{解码}},即给定模型(转移概率和发射概率)和可见状态序列(抛硬币的结果),根据可见状态序列,计算最可能出现的隐含状态序列,这个问题的求解需要用到基于{\small\sffamily\bfseries{动态规划}}\index{动态规划}(Dynamic Programming)\index{Dynamic Programming}的方法,通常也被称作{\small\sffamily\bfseries{维特比算法}}\index{维特比算法}(Viterbi Algorithm)\index{Viterbi Algorithm}\upcite{1967Error}
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -528,7 +528,7 @@ Z(\seq{x})&=&\sum_{\seq{y}}\exp(\sum_{i=1}^m\sum_{j=1}^k\lambda_{j}F_{j}(y_{i-1} ...@@ -528,7 +528,7 @@ Z(\seq{x})&=&\sum_{\seq{y}}\exp(\sum_{i=1}^m\sum_{j=1}^k\lambda_{j}F_{j}(y_{i-1}
\parinterval 与概率图模型一样,分类模型中也依赖特征定义。其定义形式与\ref{sec3:feature}节的描述一致,这里不再赘述。分类任务一般根据类别数量分为二分类任务和多分类任务,二分类任务是最经典的分类任务,只需要对输出进行非零即一的预测。多分类任务则可以有多种处理手段,比如,可以将其“拆解”为多个二分类任务求解,或者直接让模型输出多个类别中的一个。在命名实体识别中,往往会使用多类别分类模型。比如,在BIO标注下,有三个类别(B、I和O)。一般来说,类别数量越大分类的难度也越大。比如,BIOES标注包含5个类别,因此使用同样的分类器,它要比BIO标注下的分类问题难度大。此外,更多的类别有助于准确的刻画目标问题。因此在实践中需要在类别数量和分类难度之间找到一种平衡。 \parinterval 与概率图模型一样,分类模型中也依赖特征定义。其定义形式与\ref{sec3:feature}节的描述一致,这里不再赘述。分类任务一般根据类别数量分为二分类任务和多分类任务,二分类任务是最经典的分类任务,只需要对输出进行非零即一的预测。多分类任务则可以有多种处理手段,比如,可以将其“拆解”为多个二分类任务求解,或者直接让模型输出多个类别中的一个。在命名实体识别中,往往会使用多类别分类模型。比如,在BIO标注下,有三个类别(B、I和O)。一般来说,类别数量越大分类的难度也越大。比如,BIOES标注包含5个类别,因此使用同样的分类器,它要比BIO标注下的分类问题难度大。此外,更多的类别有助于准确的刻画目标问题。因此在实践中需要在类别数量和分类难度之间找到一种平衡。
\parinterval 在机器翻译和语言建模中也会遇到类似的问题,比如,生成单词的过程可以被看做是一个分类问题,类别数量就是词表的大小。显然,词表越大可以覆盖更多的单词和更多种类的单词形态变化,但是过大的词表里会包含很多低频词,其计算复杂度会显著增加。然而,过小的词表又无法包含足够多的单词。因此,在设计这类系统的时候对词表大小的选择(类别数量的选择)是十分重要的,往往要通过大量的实验得到最优的设置。 \parinterval 在机器翻译和语言建模中也会遇到类似的问题,比如,生成单词的过程可以被看做是一个分类问题,类别数量就是词表的大小。显然,词表越大可以覆盖更多的单词和更多种类的单词形态变化,但是过大的词表里会包含很多低频词,其计算复杂度会显著增加。然而,过小的词表又无法包含足够多的单词。因此,在设计这类系统的时候对词表大小的选择(类别数量的选择)是十分重要的,往往要通过大量的实验得到最优的设置。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -566,7 +566,7 @@ Z(\seq{x})&=&\sum_{\seq{y}}\exp(\sum_{i=1}^m\sum_{j=1}^k\lambda_{j}F_{j}(y_{i-1} ...@@ -566,7 +566,7 @@ Z(\seq{x})&=&\sum_{\seq{y}}\exp(\sum_{i=1}^m\sum_{j=1}^k\lambda_{j}F_{j}(y_{i-1}
\subsection{句法树} \subsection{句法树}
\parinterval {\small\sffamily\bfseries{句法}}\index{句法}(Syntax)\index{Syntax}是研究句子的每个组成部分和它们之间的组合方式。一般来说,句法和语言是相关的,比如,英文是主谓宾结构,而日语是主宾谓结构,因此不同的语言也会有不同的句法描述方式。自然语言处理领域最常用的两种句法分析形式是{\small\sffamily\bfseries{短语结构分析}}\index{短语结构分析}(Phrase Structure Parsing)\index{Phrase Structure Parsing}{\small\sffamily\bfseries{依存分析}}\index{依存分析}(Dependency Parsing)\index{Dependency Parsing}。图\ref{fig:3.4-1}展示了这两种的句法表示形式的实例。其中,左侧是短语结构树,它描述的是短语的结构功能,比如“吃”是动词(记为VV),“鱼”是名词(记为NN),“吃/鱼”组成动词短语,这个短语再与“喜欢”这一动词组成新的动词短语。短语结构树的每个子树都是一个句法功能单元,比如,子树VP(VV(吃) NN(鱼))就表示了“吃/鱼”这个动词短语的结构,其中子树根节点VP是句法功能标记。短语结构树利用嵌套的方式描述了语言学的功能,短语结构树中,每个词都有词性(或词类),不同的词或者短语可以组成名动结构、动宾结构等语言学短语结构,短语结构分析一般也被称为{\small\sffamily\bfseries{成分分析}}\index{成分分析}(Constituency Parsing)或{\small\sffamily\bfseries{完全分析}}\index{完全分析}(Full Parsing)\index{Full Parsing} \parinterval {\small\sffamily\bfseries{句法}}\index{句法}(Syntax)\index{Syntax}是研究句子的每个组成部分和它们之间的组合方式。一般来说,句法和语言是相关的,比如,英文是主谓宾结构,而日语是主宾谓结构,因此不同的语言也会有不同的句法描述方式。自然语言处理领域最常用的两种句法分析形式是{\small\sffamily\bfseries{短语结构句法分析}}\index{短语结构句法分析}(Phrase Structure Parsing)\index{Phrase Structure Parsing}{\small\sffamily\bfseries{依存句法分析}}\index{依存句法分析}(Dependency Parsing)\index{Dependency Parsing}。图\ref{fig:3.4-1}展示了这两种的句法表示形式的实例。其中,左侧是短语结构树,它描述的是短语的结构功能,比如“吃”是动词(记为VV),“鱼”是名词(记为NN),“吃/鱼”组成动词短语,这个短语再与“喜欢”这一动词组成新的动词短语。短语结构树的每个子树都是一个句法功能单元,比如,子树VP(VV(吃) NN(鱼))就表示了“吃/鱼”这个动词短语的结构,其中子树根节点VP是句法功能标记。短语结构树利用嵌套的方式描述了语言学的功能,短语结构树中,每个词都有词性(或词类),不同的词或者短语可以组成名动结构、动宾结构等语言学短语结构,短语结构句法分析一般也被称为{\small\sffamily\bfseries{成分句法分析}}\index{成分句法分析}(Constituency Parsing)或{\small\sffamily\bfseries{完全句法分析}}\index{完全句法分析}(Full Parsing)\index{Full Parsing}
\parinterval\ref{fig:3.4-1}右侧展示的是另一种句法结构,被称作依存句法树。依存句法树表示了句子中单词和单词之间的依存关系。比如,从这个例子可以了解,“猫”依赖“喜欢”,“吃”依赖“喜欢”,“鱼”依赖“吃”。 \parinterval\ref{fig:3.4-1}右侧展示的是另一种句法结构,被称作依存句法树。依存句法树表示了句子中单词和单词之间的依存关系。比如,从这个例子可以了解,“猫”依赖“喜欢”,“吃”依赖“喜欢”,“鱼”依赖“吃”。
...@@ -579,9 +579,9 @@ Z(\seq{x})&=&\sum_{\seq{y}}\exp(\sum_{i=1}^m\sum_{j=1}^k\lambda_{j}F_{j}(y_{i-1} ...@@ -579,9 +579,9 @@ Z(\seq{x})&=&\sum_{\seq{y}}\exp(\sum_{i=1}^m\sum_{j=1}^k\lambda_{j}F_{j}(y_{i-1}
\end{figure} \end{figure}
%--------------------------- %---------------------------
\parinterval 短语结构树和依存句法树的结构和功能有很大不同。短语结构树的叶子节点是单词,中间节点是词性或者短语句法标记。在短语结构分析中,通常把单词称作{\small\sffamily\bfseries{终结符}}\index{终结符}(Terminal)\index{Terminal},把词性称为{\small\sffamily\bfseries{预终结符}}\index{预终结符}(Pre-terminal)\index{Pre-terminal},而把其他句法标记称为{\small\sffamily\bfseries{非终结符}}\index{非终结符}(Non-terminal)\index{Non-terminal}。依存句法树没有预终结符和非终结符,所有的节点都是句子里的单词,通过不同节点间的连线表示句子中各个单词之间的依存关系。每个依存关系实际上都是有方向的,头和尾分别指向“接受”和“发出”依存关系的词。依存关系也可以进行分类,例如,图\ref{fig:3.4-1}中的对每个依存关系的类型都有一个标记,这也被称作是有标记的依存分析。如果不生成这些标记,这样的句法分析被称作无标记的依存分析。 \parinterval 短语结构树和依存句法树的结构和功能有很大不同。短语结构树的叶子节点是单词,中间节点是词性或者短语句法标记。在短语结构句法分析中,通常把单词称作{\small\sffamily\bfseries{终结符}}\index{终结符}(Terminal)\index{Terminal},把词性称为{\small\sffamily\bfseries{预终结符}}\index{预终结符}(Pre-terminal)\index{Pre-terminal},而把其他句法标记称为{\small\sffamily\bfseries{非终结符}}\index{非终结符}(Non-terminal)\index{Non-terminal}。依存句法树没有预终结符和非终结符,所有的节点都是句子里的单词,通过不同节点间的连线表示句子中各个单词之间的依存关系。每个依存关系实际上都是有方向的,头和尾分别指向“接受”和“发出”依存关系的词。依存关系也可以进行分类,例如,图\ref{fig:3.4-1}中的对每个依存关系的类型都有一个标记,这也被称作是有标记的依存句法分析。如果不生成这些标记,这样的句法分析被称作无标记的依存句法分析。
\parinterval 虽然短语结构树和依存树的句法表现形式有很大不同,但是它们在某些条件下能相互转化。比如,可以使用启发性规则将短语结构树自动转化为依存树。从应用的角度,依存分析由于形式更加简单,而且直接建模词语之间的依赖,因此在自然语言处理领域中受到很多关注。在机器翻译中,无论是哪种句法树结构,都已经被证明会对机器翻译系统产生帮助。特别是短语结构树,在机器翻译中的应用历史更长,研究更为深入,因此本节将会以短语结构分析为例介绍句法分析的相关概念。 \parinterval 虽然短语结构树和依存树的句法表现形式有很大不同,但是它们在某些条件下能相互转化。比如,可以使用启发性规则将短语结构树自动转化为依存树。从应用的角度,依存句法分析由于形式更加简单,而且直接建模词语之间的依赖,因此在自然语言处理领域中受到很多关注。在机器翻译中,无论是哪种句法树结构,都已经被证明会对机器翻译系统产生帮助。特别是短语结构树,在机器翻译中的应用历史更长,研究更为深入,因此本节将会以短语结构句法分析为例介绍句法分析的相关概念。
\parinterval 而句法分析到底是什么呢?简单的理解,句法分析就是在小学语文课程中学习的句子成分的分析,以及对句子中各个成分内部、外部关系的判断。更规范一些的定义,可以参照百度百科和维基百科关于句法分析的解释。 \parinterval 而句法分析到底是什么呢?简单的理解,句法分析就是在小学语文课程中学习的句子成分的分析,以及对句子中各个成分内部、外部关系的判断。更规范一些的定义,可以参照百度百科和维基百科关于句法分析的解释。
...@@ -618,7 +618,7 @@ Z(\seq{x})&=&\sum_{\seq{y}}\exp(\sum_{i=1}^m\sum_{j=1}^k\lambda_{j}F_{j}(y_{i-1} ...@@ -618,7 +618,7 @@ Z(\seq{x})&=&\sum_{\seq{y}}\exp(\sum_{i=1}^m\sum_{j=1}^k\lambda_{j}F_{j}(y_{i-1}
\parinterval 句法树是对句子的一种抽象,这种树形结构表达了一种对句子结构的归纳过程,比如,从树的叶子开始,把每一个树节点看作一次抽象,最终形成一个根节点。那这个过程如何用计算机来实现呢?这就需要使用到形式文法。 \parinterval 句法树是对句子的一种抽象,这种树形结构表达了一种对句子结构的归纳过程,比如,从树的叶子开始,把每一个树节点看作一次抽象,最终形成一个根节点。那这个过程如何用计算机来实现呢?这就需要使用到形式文法。
\parinterval 形式文法是分析自然语言的一种重要工具。根据乔姆斯基的定义\upcite{chomsky1957syntactic},形式文法分为四种类型:无限制文法(0型文法)、上下文有关文法(1型文法)、上下文无关文法(2型文法)和正规文法(3型文法)。不同类型的文法有不同的应用,比如,正规文法可以用来描述有限状态自动机,因此也会被使用在语言模型等系统中。对于短语结构分析问题,常用的是{\small\sffamily\bfseries{上下文无关文法}}\index{上下文无关文法}(Context-free Grammar)\index{Context-free Grammar}。上下文无关文法的具体形式如下: \parinterval 形式文法是分析自然语言的一种重要工具。根据乔姆斯基的定义\upcite{chomsky1957syntactic},形式文法分为四种类型:无限制文法(0型文法)、上下文有关文法(1型文法)、上下文无关文法(2型文法)和正规文法(3型文法)。不同类型的文法有不同的应用,比如,正规文法可以用来描述有限状态自动机,因此也会被使用在语言模型等系统中。对于短语结构句法分析问题,常用的是{\small\sffamily\bfseries{上下文无关文法}}\index{上下文无关文法}(Context-free Grammar)\index{Context-free Grammar}\footnote{在上下文无关文法中,非终结符可以根据规则被终结符自由替换,而无需考虑非终结符所处的上下文,因此这种文法被命名为“上下文无关文法”。}。上下文无关文法的具体形式如下:
%------------------------------------------- %-------------------------------------------
\vspace{0.5em} \vspace{0.5em}
...@@ -797,7 +797,7 @@ s_0 \overset{r_1}{\Rightarrow} s_1 \overset{r_2}{\Rightarrow} s_2 \overset{r_3}{ ...@@ -797,7 +797,7 @@ s_0 \overset{r_1}{\Rightarrow} s_1 \overset{r_2}{\Rightarrow} s_2 \overset{r_3}{
\label{eq:3.4-4} \label{eq:3.4-4}
\end{eqnarray} \end{eqnarray}
\noindent 即,在给定规则左部的情况下生成规则右部的可能性。进一步,在上下文无关文法中,每条规则之间的使用都是相互独立的 \footnote{如果是上下文有关文法,规则会形如 $a\alpha b\to a\beta b$,这时$\alpha \to \beta $的过程会依赖前后上下文$a$$b$},因此可以把$\funp{P}(d)$分解为规则概率的乘积: \noindent 即,在给定规则左部的情况下生成规则右部的可能性。进一步,在上下文无关文法中,每条规则之间的使用都是相互独立的 \footnote{如果是上下文有关文法,规则会形如 $a\alpha b\to a\beta b$,这时$\alpha \to \beta $的过程会依赖上下文$a$$b$},因此可以把$\funp{P}(d)$分解为规则概率的乘积:
\begin{eqnarray} \begin{eqnarray}
\funp{P}(d) & = & \funp{P}(r_1 \cdot r_2 \cdot ... \cdot r_n) \nonumber \\ \funp{P}(d) & = & \funp{P}(r_1 \cdot r_2 \cdot ... \cdot r_n) \nonumber \\
& = & \funp{P}(r_1) \cdot \funp{P}(r_2) \cdots \funp{P}(r_n) & = & \funp{P}(r_1) \cdot \funp{P}(r_2) \cdots \funp{P}(r_n)
...@@ -819,9 +819,9 @@ r_6: & & \textrm{VP} \to \textrm{VV}\ \textrm{NN} \nonumber ...@@ -819,9 +819,9 @@ r_6: & & \textrm{VP} \to \textrm{VV}\ \textrm{NN} \nonumber
\label{eq:3.4-7} \label{eq:3.4-7}
\end{eqnarray} \end{eqnarray}
\parinterval 这也对应了词串“吃/鱼”的生成过程。首先,从起始非终结符VP开始,使用规则$r_6$生成两个非终结符VV和NN;进一步,分别使用规则$r_3$$r_4$从VV和NN进一步生成单词“吃”和“鱼”。整个过程的概率等于三条规则概率的乘积。 \parinterval 这也对应了词串“吃/鱼”的生成过程。首先,从起始非终结符VP开始,使用规则$r_6$生成两个非终结符VV和NN;进一步,分别使用规则$r_3$$r_4$将“VV”和“NN”进一步推导,生成单词“吃”和“鱼”。整个过程的概率等于三条规则概率的乘积。
\parinterval 新的问题又来了,如何得到规则的概率呢?这里仍然可以从数据中学习文法规则的概率。假设有人工标注的数据,它包很多人工标注句法树的句法,称之为{\small\sffamily\bfseries{树库}}\index{树库}(Treebank)\index{Treebank}。然后,对于规则$\textrm{r}:\alpha \to \beta$可以使用基于频次的方法: \parinterval 新的问题又来了,如何得到规则的概率呢?这里仍然可以从数据中学习文法规则的概率。假设有人工标注的数据,它包很多人工标注句法树的句法,称之为{\small\sffamily\bfseries{树库}}\index{树库}(Treebank)\index{Treebank}。然后,对于规则$\textrm{r}:\alpha \to \beta$可以使用基于频次的方法:
\begin{eqnarray} \begin{eqnarray}
\funp{P}(r) &=& \frac{\text{规则$r$在树库中出现的次数}}{\alpha \text{在树库中出现的次数}} \funp{P}(r) &=& \frac{\text{规则$r$在树库中出现的次数}}{\alpha \text{在树库中出现的次数}}
\label{eq:3.4-8} \label{eq:3.4-8}
...@@ -869,10 +869,10 @@ r_6: & & \textrm{VP} \to \textrm{VV}\ \textrm{NN} \nonumber ...@@ -869,10 +869,10 @@ r_6: & & \textrm{VP} \to \textrm{VV}\ \textrm{NN} \nonumber
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item 在建模方面,本章描述了基于1-gram语言模型的分词、基于上下文无关文法的句法分析等,它们都是基于人工先验知识进行模型设计的思路。也就是,问题所表达的现象被“一步一步”生成出来。这是一种典型的生成式建模思想,它把要解决的问题看作一些观测结果的隐含变量(比如,句子是观测结果,分词结果是隐含在背后的变量),之后通过对隐含变量生成观测结果的过程进行建模,以达到对问题进行数学描述的目的。这类模型一般需要依赖一些独立性假设,假设的合理性对最终的性能有较大影响。相对于生成式模型,另一类方法是{\small\sffamily\bfseries{判别式模型}}\index{判别式模型}(Discriminative Model)\index{Discriminative Model}。本章序列标注内容中提到一些模型就是判别式模型,如条件随机场\upcite{lafferty2001conditional}。它直接描述了从隐含变量生成观测结果的过程,这样对问题的建模更加直接,同时这类模型可以更加灵活的引入不同的特征。判别模型在自然语言处理中也有广泛应用\upcite{ng2002discriminative,manning2008introduction,berger1996maximum,mitchell1996m,DBLP:conf/acl/OchN02}。 在本书的第七章也会使用到判别式模型。 \item 在建模方面,本章描述了基于1-gram语言模型的分词、基于上下文无关文法的句法分析等,它们都是基于人工先验知识进行模型设计的思路。也就是,问题所表达的现象被“一步一步”生成出来。这是一种典型的生成式建模思想,它把要解决的问题看作一些观测结果的隐含变量(比如,句子是观测结果,分词结果是隐含在背后的变量),之后通过对隐含变量生成观测结果的过程进行建模,以达到对问题进行数学描述的目的。这类模型一般需要依赖一些独立性假设,假设的合理性对最终的性能有较大影响。相对于生成模型,另一类方法是{\small\sffamily\bfseries{判别模型}}\index{判别模型}(Discriminative Model)\index{Discriminative Model}。本章序列标注内容中提到一些模型就是判别模型,如条件随机场\upcite{lafferty2001conditional}。它直接描述了从隐含变量生成观测结果的过程,这样对问题的建模更加直接,同时这类模型可以更加灵活的引入不同的特征。判别模型在自然语言处理中也有广泛应用\upcite{ng2002discriminative,manning2008introduction,berger1996maximum,mitchell1996m,DBLP:conf/acl/OchN02}。 在本书的第七章也会使用到判别模型。
\vspace{0.5em} \vspace{0.5em}
\item 事实上,本章并没有对分词、句法分析中的预测问题进行深入介绍。比如,如何找到概率最大的分词结果?这个问题的解决可以直接借鉴{\chaptertwo}中介绍的搜索方法:对于基于$n$-­gram 语言模型的分词方法,可以使用动态规划方法\upcite{huang2008coling}进行搜索;在不满足动态规划的使用条件时,可以考虑使用更加复杂的搜索策略,并配合一定的剪枝方法找到最终的分词结果。实际上,无论是基于$n$-gram 语言模型的分词还是简单的上下文无关文法都有高效的推断方法。比如,$n$-gram语言模型可以被视为概率有限状态自动机,因此可以直接使用成熟的自动机工具\upcite{mohri2008speech}。对于更复杂的句法分析问题,可以考虑使用移进- 规约方法来解决预测问题\upcite{aho1972theory} \item 事实上,本章并没有对分词、句法分析中的预测问题进行深入介绍。比如,如何找到概率最大的分词结果?这个问题的解决可以直接借鉴{\chaptertwo}中介绍的搜索方法:对于基于$n$-­gram 语言模型的分词方法,可以使用动态规划方法\upcite{huang2008coling}进行搜索;在不满足动态规划的使用条件时,可以考虑使用更加复杂的搜索策略,并配合一定的剪枝方法找到最终的分词结果。实际上,无论是基于$n$-gram 语言模型的分词还是简单的上下文无关文法都有高效的推断方法。比如,$n$-gram语言模型可以被视为概率有限状态自动机,因此可以直接使用成熟的自动机工具\upcite{mohri2008speech}。对于更复杂的句法分析问题,可以考虑使用{\small\sffamily\bfseries{移进- 规约算法}}\index{移进- 规约算法}(Shift-Reduce Algorithm)\index{Shift-Reduce Algorithm}来解决预测问题\upcite{aho1972theory}
\vspace{0.5em} \vspace{0.5em}
\item 从自然语言处理的角度来看,词法分析和法分析中的很多问题都是序列标注问题,例如本章介绍的分词和命名实体识别。此外序列标注还可以被扩展到词性标注\upcite{brants-2000-tnt}、组块识别\upcite{tsuruoka-tsujii-2005-chunk}、关键词抽取\upcite{li-etal-2003-news-oriented}、词义角色标注\upcite{chomsky1993lectures}等任务,本章着重介绍了传统的方法,前沿方法大多与深度学习相结合,感兴趣的读者可以自行了解,其中比较有代表性的使用双向长短时记忆网络对序列进行建模,之后于不同模型进行融合得到最终的结果,例如,与条件随机场相结合的模型(BiLSTM-CRF)\upcite{2015Bidirectional}、与卷积神经网络相结合的模型(BiLSTM-CNNs)\upcite{chiu2016named}、与简单的Softmax结构相结合的模型\upcite{vzukov2018named}等。此外,对于序列标注任务,模型性能很大程度上依赖对输入序列的表示能力,因此基于预训练语言模型的方法也非常流行\upcite{Li2020A},如:BERT\upcite{devlin2019bert}、GPT\upcite{radford2018improving}、XLM\upcite{conneau2019unsupervised}等。 \item 从自然语言处理的角度来看,词法分析和法分析中的很多问题都是序列标注问题,例如本章介绍的分词和命名实体识别。此外序列标注还可以被扩展到词性标注\upcite{brants-2000-tnt}、组块识别\upcite{tsuruoka-tsujii-2005-chunk}、关键词抽取\upcite{li-etal-2003-news-oriented}、词义角色标注\upcite{chomsky1993lectures}等任务,本章着重介绍了传统的方法,前沿方法大多与深度学习相结合,感兴趣的读者可以自行了解,其中比较有代表性的使用双向长短时记忆网络对序列进行建模,之后于不同模型进行融合得到最终的结果,例如,与条件随机场相结合的模型(BiLSTM-CRF)\upcite{2015Bidirectional}、与卷积神经网络相结合的模型(BiLSTM-CNNs)\upcite{chiu2016named}、与简单的Softmax结构相结合的模型\upcite{vzukov2018named}等。此外,对于序列标注任务,模型性能很大程度上依赖对输入序列的表示能力,因此基于预训练语言模型的方法也非常流行\upcite{Li2020A},如:BERT\upcite{devlin2019bert}、GPT\upcite{radford2018improving}、XLM\upcite{conneau2019unsupervised}等。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -23,7 +23,7 @@ ...@@ -23,7 +23,7 @@
\chapter{翻译质量评价} \chapter{翻译质量评价}
\parinterval 人们在使用机器翻译系统时需要评估系统输出结果的质量。这个过程也被称作机器翻译译文质量评价,简称为{\small\sffamily\bfseries{译文质量评价}}\index{译文质量评价}(Quality Evaluation of Translation)\index{Quality Evaluation of Translation}。在机器翻译的发展进程中,译文质量评价有着非常重要的作用。不论在系统研发的反复迭代中,还是在诸多的机器翻译应用场景中,都存在大量的译文质量评价环节。从某种意义上说,没有译文质量评价,机器翻译也不会发展成今天的样子。比如,本世纪初研究人员提出了译文质量自动评价方法BLEU\upcite{DBLP:conf/acl/PapineniRWZ02}。该方法使得机器系统的评价变得自动、快速、便捷,而且评价过程可以重复。正是由于BLEU等自动评价方法的提出,机器翻译研究人员可以在更短的时间内得到译文质量的评价结果,加速系统研发的进程。 \parinterval 人们在使用机器翻译系统时需要评估系统输出结果的质量。这个过程也被称作机器翻译译文质量评价,简称为{\small\sffamily\bfseries{译文质量评价}}\index{译文质量评价}(Quality Evaluation of Translation)\index{Quality Evaluation of Translation}。在机器翻译的发展进程中,译文质量评价有着非常重要的作用。不论在系统研发的反复迭代中,还是在诸多的机器翻译应用场景中,都存在大量的译文质量评价环节。从某种意义上说,没有译文质量评价,机器翻译也不会发展成今天的样子。比如,本世纪初研究人员提出了译文质量自动评价方法{\small\sffamily\bfseries{BLEU}}\index{BLEU}(Bilingual Evaluation Understudy)\index{Bilingual Evaluation Understudy}\upcite{DBLP:conf/acl/PapineniRWZ02}。该方法使得机器系统的评价变得自动、快速、便捷,而且评价过程可以重复。正是由于BLEU等自动评价方法的提出,机器翻译研究人员可以在更短的时间内得到译文质量的评价结果,加速系统研发的进程。
\parinterval 时至今日,译文质量评价方法已经非常丰富,针对不同的使用场景研究人员陆续提出了不同的方法。本章将会对其中的典型方法进行介绍,包括:人工评价、有参考答案自动评价、无参考答案自动评价等。相关方法及概念也会在本章的后续章节中被广泛使用。 \parinterval 时至今日,译文质量评价方法已经非常丰富,针对不同的使用场景研究人员陆续提出了不同的方法。本章将会对其中的典型方法进行介绍,包括:人工评价、有参考答案自动评价、无参考答案自动评价等。相关方法及概念也会在本章的后续章节中被广泛使用。
...@@ -109,7 +109,7 @@ ...@@ -109,7 +109,7 @@
\subsection{评价策略} \subsection{评价策略}
\parinterval 合理的评价指标是人工评价得以顺利进行的基础。机器译文质量的人工评价可以追溯到1966年,自然语言处理咨询委员会提出{\small\sffamily\bfseries{可理解度}}\index{可理解度}(Intelligibility)\index{Intelligibility}和忠诚度作为机器译文质量人工评价指标\upcite{DBLP:journals/mtcl/Carroll66}。1994 年,{\small\sffamily\bfseries{充分性}}\index{充分性}(Adequacy)\index{Adequacy}、流畅度和{\small\sffamily\bfseries{信息}}\index{信息性}(Informativeness)\index{Informativeness}成为ARPA MT\footnote{ARPA MT计划是美国高级研究计划局软件和智能系统技术处人类语言技术计划的一部分。}的人工评价标准\upcite{DBLP:conf/amta/WhiteOO94}。此后,有不少研究者提出了更多的机器译文质量人工评估指标,例如将{\small\sffamily\bfseries{清晰度}}\index{清晰度}(Clarity)\index{Clarity}{\small\sffamily\bfseries{连贯性}}\index{连贯性}(Coherence)\index{Coherence}加入人工评价指标中\upcite{Miller:2005:MTS}。甚至有人将各种人工评价指标集中在一起,组成了尽可能全面的机器翻译评估框架\upcite{king2003femti} \parinterval 合理的评价指标是人工评价得以顺利进行的基础。机器译文质量的人工评价可以追溯到1966年,自然语言处理咨询委员会提出{\small\sffamily\bfseries{可理解度}}\index{可理解度}(Intelligibility)\index{Intelligibility}和忠诚度作为机器译文质量人工评价指标\upcite{DBLP:journals/mtcl/Carroll66}。1994 年,{\small\sffamily\bfseries{充分性}}\index{充分性}(Adequacy)\index{Adequacy}、流畅度和{\small\sffamily\bfseries{信息}}\index{信息量}(Informativeness)\index{Informativeness}成为ARPA MT\footnote{ARPA MT计划是美国高级研究计划局软件和智能系统技术处人类语言技术计划的一部分。}的人工评价标准\upcite{DBLP:conf/amta/WhiteOO94}。此后,有不少研究者提出了更多的机器译文质量人工评估指标,例如将{\small\sffamily\bfseries{清晰度}}\index{清晰度}(Clarity)\index{Clarity}{\small\sffamily\bfseries{连贯性}}\index{连贯性}(Coherence)\index{Coherence}加入人工评价指标中\upcite{Miller:2005:MTS}。甚至有人将各种人工评价指标集中在一起,组成了尽可能全面的机器翻译评估框架\upcite{king2003femti}
\parinterval 人工评价的策略非常多。考虑不同的因素,往往会使用不同的评价方案,比如: \parinterval 人工评价的策略非常多。考虑不同的因素,往往会使用不同的评价方案,比如:
...@@ -159,7 +159,7 @@ ...@@ -159,7 +159,7 @@
\label{eq:4-2} \label{eq:4-2}
\end{eqnarray} \end{eqnarray}
根据公式\eqref{eq:4-2}可以看出,该策略除了平局的影响。 根据公式\eqref{eq:4-2}可以看出,该策略除了平局的影响。
\end{itemize} \end{itemize}
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -176,7 +176,7 @@ ...@@ -176,7 +176,7 @@
\parinterval 人工评价费事费力,同时具有一定的主观性,甚至不同人在不同时刻面对同一篇文章的理解都会不同。为了克服这些问题,另一种思路是将人类专家翻译的结果看作是参考答案,将译文与答案的近似程度作为评价结果。即译文与答案越接近,评价结果越好;反之,评价结果较差。这种评价方式叫做{\small\bfnew{自动评价}}\index{自动评价}(Automatic Evaluation)。自动评价具有速度快,成本低、一致性高的优点,因此自动评价是也是机器翻译系统研发人员所青睐的方法。 \parinterval 人工评价费事费力,同时具有一定的主观性,甚至不同人在不同时刻面对同一篇文章的理解都会不同。为了克服这些问题,另一种思路是将人类专家翻译的结果看作是参考答案,将译文与答案的近似程度作为评价结果。即译文与答案越接近,评价结果越好;反之,评价结果较差。这种评价方式叫做{\small\bfnew{自动评价}}\index{自动评价}(Automatic Evaluation)。自动评价具有速度快,成本低、一致性高的优点,因此自动评价是也是机器翻译系统研发人员所青睐的方法。
\parinterval 随着评价技术的不断发展,自动评价结果已经具有了比较好的指导性,可以帮助使用者快速了解当前译文的质量。在机器翻译领域,自动评价已经成为了一个重要的研究分支。至今,已经有不下几十种自动评价方法被提出。这里无法对这些方法一一列举,为了便于后续章节中对自动评价方法的使用,这里仅对一些代表性的方法进行简要介绍。 \parinterval 随着评价技术的不断发展,自动评价结果已经具有了比较好的指导性,可以帮助使用者快速了解当前译文的质量。在机器翻译领域,自动评价已经成为了一个重要的研究分支。至今,已经有不下几十种自动评价方法被提出。这里无法对这些方法一一列举,为了便于读者理解后续章节中涉及到的自动评价方法,这里仅对一些代表性的方法进行简要介绍。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -209,9 +209,9 @@ ...@@ -209,9 +209,9 @@
\label{eg:4-1} \label{eg:4-1}
\end{example} \end{example}
\parinterval 在这个实例中,将机器译文序列转换为参考答案序列,需要进行两次替换操作,将“A” 替换为“The”,将“in” 替换为“on”。所以$\textrm{edit}(c,r)$ = 2,归一化因子$l$为参考答案的长度8(包括标点符号),所以该机器译文的TER 结果为2/8。 \parinterval 在这个实例中,将机器译文序列转换为参考答案序列,需要进行两次替换操作,将“A” 替换为“The”,将“in” 替换为“on”。所以$\textrm{edit}(o,g)$ = 2,归一化因子$l$为参考答案的长度8(包括标点符号),所以该机器译文的TER 结果为2/8。
\parinterval PER与WER的基本思想与TER相同,这三种方法的主要区别在于对“错误” 的定义和考虑的操作类型略有不同。WER使用的编辑操作包括:增加、删除、替换,由于没有移位操作,当机器译文出现词序问题时,会发生多次替代,因而一般会低估译文质量;而PER只考虑增加和删除两个动作,在不考虑词序的情况下,PER计算两个句子中出现相同单词的次数,根据机器译文与参考答案的长度差距,其余操作无非是插入词或删除词,这样往往会高估译文质量。 \parinterval PER与WER的基本思想与TER相同,这三种方法的主要区别在于对“错误” 的定义和考虑的操作类型略有不同。WER使用的编辑操作包括:增加、删除、替换,由于没有移位操作,当机器译文出现词序问题时,会发生多次替代,因而一般会低估译文质量;而PER只考虑增加和删除两个动作,计算两个句子中出现相同单词的次数,根据机器译文与参考答案的长度差距,其余操作无非是插入词或删除词,而忽略了词序的错误,因此这样往往会高估译文质量。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -238,7 +238,7 @@ ...@@ -238,7 +238,7 @@
\parinterval 在引入截断方式之前,该机器译文的1-gram准确率为4/4 = 1,这显然是不合理的。在引入截断的方式之后,“the” 在译文中出现4 次,在参考答案中出现2 次,截断操作则是取二者的最小值,即$\textrm{count}_{\textrm{hit}}$= 2,$\textrm{count}_{\textrm{output}}$= 4,该译文的1-gram准确率为2/4。 \parinterval 在引入截断方式之前,该机器译文的1-gram准确率为4/4 = 1,这显然是不合理的。在引入截断的方式之后,“the” 在译文中出现4 次,在参考答案中出现2 次,截断操作则是取二者的最小值,即$\textrm{count}_{\textrm{hit}}$= 2,$\textrm{count}_{\textrm{output}}$= 4,该译文的1-gram准确率为2/4。
\parinterval$N$表示考虑的最大$n$-gram的大小,则译文整体的准确率等于各$n$-gram的加权平均: \parinterval$N$表示最大$n$-gram的大小,则译文整体的准确率等于各$n$-gram的加权平均:
\begin{eqnarray} \begin{eqnarray}
{\funp{P}_{{\textrm{avg}}}} &=& \exp (\sum\limits_{n = 1}^N {{w_n} \cdot {{{\mathop{\log\funp{P}}\nolimits} }_n}} ) {\funp{P}_{{\textrm{avg}}}} &=& \exp (\sum\limits_{n = 1}^N {{w_n} \cdot {{{\mathop{\log\funp{P}}\nolimits} }_n}} )
\label{eq:4-5} \label{eq:4-5}
...@@ -275,7 +275,7 @@ ...@@ -275,7 +275,7 @@
\parinterval 基于词对齐的方法,顾名思义就是根据参考答案中的单词与译文中的单词之间的对齐关系对机器翻译译文进行评价。词对齐的概念也被用于统计机器翻译的建模(\chapterfive),这里借用了相同的思想来度量机器译文与参考答案之间的匹配程度。在基于$n$-gram匹配的评价方法中(如BLEU),BP可以起到一些度量召回率的作用,但是这类方法并没有对召回率进行准确的定义。与其不同的是,基于词对齐的方法在机器译文和参考答案的单词之间建立一对一的对应关系,这种评价方法在引入准确率的同时还能显性引入召回率作为评价所考虑的因素。 \parinterval 基于词对齐的方法,顾名思义就是根据参考答案中的单词与译文中的单词之间的对齐关系对机器翻译译文进行评价。词对齐的概念也被用于统计机器翻译的建模(\chapterfive),这里借用了相同的思想来度量机器译文与参考答案之间的匹配程度。在基于$n$-gram匹配的评价方法中(如BLEU),BP可以起到一些度量召回率的作用,但是这类方法并没有对召回率进行准确的定义。与其不同的是,基于词对齐的方法在机器译文和参考答案的单词之间建立一对一的对应关系,这种评价方法在引入准确率的同时还能显性引入召回率作为评价所考虑的因素。
\parinterval 在基于词对齐的自动评价方法中,一种典型的方法是Meteor。该方法通过计算精确的{\small\bfnew{单词到单词}}\index{单词到单词}(Word-to-Word\index{Word-to-Word})的匹配来度量一个译文的质量\upcite{DBLP:conf/acl/BanerjeeL05},并且在“ 绝对”匹配之外,还引入了“ 波特词干匹配”和“同义词”匹配。在下面的内容中,将利用实例对Meteor方法进行介绍。 \parinterval 在基于词对齐的自动评价方法中,一种典型的方法是Meteor。该方法通过计算精确的{\small\bfnew{单词到单词}}\index{单词到单词}(Word-to-Word\index{Word-to-Word})的匹配来度量一个译文的质量\upcite{DBLP:conf/acl/BanerjeeL05},并且在精确匹配之外,还引入了“波特词干”匹配和“同义词”匹配。在下面的内容中,将利用实例对Meteor方法进行介绍。
\begin{example} \begin{example}
机器译文:Can I have it like he ? 机器译文:Can I have it like he ?
...@@ -284,24 +284,24 @@ ...@@ -284,24 +284,24 @@
\label{eg:4-2} \label{eg:4-2}
\end{example} \end{example}
\parinterval 在Meteor方法中,首先在机器译文与参考答案之间建立单词之间的对应关系,再根据其对应关系计算准确率和召回率。 \parinterval 在Meteor方法中,首先在机器译文与参考答案之间建立单词的对应关系,再根据其对应关系计算准确率和召回率。
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item 在机器译文与参考答案之间建立单词之间的对应关系。单词之间的对应关系在建立过程中主要涉及三个模型,在对齐过程中依次使用这三个模型进行匹配: \item 在机器译文与参考答案之间建立单词之间的对应关系。单词之间的对应关系在建立过程中主要涉及三个模型,在对齐过程中依次使用这三个模型进行匹配:
\begin{itemize} \begin{itemize}
\item {\small\sffamily\bfseries{“绝对”匹配模型}}\index{“绝对”匹配模型}(Exact Model)\index{Exact Model}。绝对匹配模型在建立单词对应关系时,要求机器译文端的单词与参考答案端的单词完全一致,并且在参考答案端至多有1个单词与机器译文端的单词对应,否则会将其视为多种对应情况。对于实例\ref{eg:4-2},使用“绝对”匹配模型,共有两种匹配结果,如图\ref{fig:4-3}所示。 \item {\small\sffamily\bfseries{精确模型}}\index{精确模型}(Exact Model)\index{Exact Model}。精确模型在建立单词对应关系时,要求机器译文端的单词与参考答案端的单词完全一致,并且在参考答案端至多有1个单词与机器译文端的单词对应,否则会将其视为多种对应情况。对于实例\ref{eg:4-2},使用精确模型,共有两种匹配结果,如图\ref{fig:4-3}所示。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\subfigure[\small{“绝对”匹配词对齐-1}]{\input{./Chapter4/Figures/figure-absolute-match-word-alignment-1}} \subfigure[\small{精确匹配词对齐-1}]{\input{./Chapter4/Figures/figure-absolute-match-word-alignment-1}}
\subfigure[\small{“绝对”匹配词对齐-2}]{\input{./Chapter4/Figures/figure-absolute-match-word-alignment-2}} \subfigure[\small{精确匹配词对齐-2}]{\input{./Chapter4/Figures/figure-absolute-match-word-alignment-2}}
\caption{“绝对”匹配模型} \caption{精确匹配词对齐}
\label{fig:4-3} \label{fig:4-3}
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\item {\small\sffamily\bfseries{“波特词干”匹配模型}}\index{“波特词干”匹配模型}(Porter Stem Model)\index{Porter Stem Model}。该模型在“绝对”匹配结果的基础上,对尚未对齐的单词进行基于词干的匹配,只需机器译文端单词与参考答案端单词的词干相同即可,如上文中的“do”和“did”。对于图\ref{fig:4-3}中显示的词对齐结果,再使用“波特词干” 匹配模型,得到如图\ref{fig:4-4}所示的结果。 \item {\small\sffamily\bfseries{“波特词干”模型}}\index{“波特词干”模型}(Porter Stem Model)\index{Porter Stem Model}。该模型在精确匹配结果的基础上,对尚未对齐的单词进行基于词干的匹配,只需机器译文端单词与参考答案端单词的词干相同即可,如上文中的“he”和“him”。对于图\ref{fig:4-3}中显示的词对齐结果,再使用“波特词干” 模型,得到如图\ref{fig:4-4}所示的结果。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -311,7 +311,7 @@ ...@@ -311,7 +311,7 @@
\label{fig:4-4} \label{fig:4-4}
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\item {\small\sffamily\bfseries{“同义词”匹配模型}}\index{“同义词”匹配模型}(WN Synonymy Model)\index{WN Synonymy Model}。该模型在前两个模型匹配结果的基础上,对尚未对齐的单词进行同义词的匹配,即基于WordNet词典匹配机器译文与参考答案中的同义词。如实例\ref{eg:4-2}中的“eat”和“have”。图\ref{fig:4-5}给出了一个真实的例子。 \item {\small\sffamily\bfseries{“同义词”模型}}\index{“同义词”模型}(WN Synonymy Model)\index{WN Synonymy Model}。该模型在前两个模型匹配结果的基础上,对尚未对齐的单词进行同义词的匹配,即基于WordNet词典匹配机器译文与参考答案中的同义词。如实例\ref{eg:4-2}中的“eat”和“have”。图\ref{fig:4-5}给出了一个真实的例子。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -367,7 +367,7 @@ ...@@ -367,7 +367,7 @@
\label{eq:4-12} \label{eq:4-12}
\end{eqnarray} \end{eqnarray}
\parinterval Meteor方法是经典的自动评价方法之一。它的创新点在于引入了词干匹配和同义词匹配,扩大了词汇匹配的范围。Meteor方法被提出后,很多人尝试对其进行了改进,使其评价结果与人工评价结果更相近。例如Meteor-next在Meteor的基础上增加{\small\sffamily\bfseries{释义匹配器}}\index{释义匹配器}(Paraphrase Matcher)\index{Paraphrase Matcher},利用该匹配器能够捕获机器译文中与参考答案意思相近的短语,从而在短语层面进行匹配。此外这种方法还引入了{\small\sffamily\bfseries{可调权值向量}}\index{可调权值向量}(Tunable Weight Vector)\index{Tunable Weight Vector},用于调节每个匹配类型的相应贡献\upcite{DBLP:conf/wmt/DenkowskiL10};Meteor 1.3在Meteor的基础上增加了改进的{\small\sffamily\bfseries{文本规范器}}\index{文本规范器}Meteor Normalizer)\index{Meteor Normalizer}、更高精度的释义匹配以及区分内容词和功能词等指标,其中文本规范器能够根据一些规范化规则,将机器译文中意义等价的标点减少到通用的形式。而区分内容词和功能词则能够得到更为准确的词汇对应关系\upcite{DBLP:conf/wmt/DenkowskiL11};Meteor Universial则通过机器学习方法学习不同语言的可调权值,在对低资源语言进行评价时可对其进行复用,从而实现对低资源语言的译文更准确的评价\upcite{DBLP:conf/wmt/DenkowskiL14} \parinterval Meteor方法是经典的自动评价方法之一。它的创新点在于引入了词干匹配和同义词匹配,扩大了词汇匹配的范围。Meteor方法被提出后,很多人尝试对其进行了改进,使其评价结果与人工评价结果更相近。例如Meteor-next在Meteor的基础上增加{\small\sffamily\bfseries{释义匹配器}}\index{释义匹配器}(Paraphrase Matcher)\index{Paraphrase Matcher},利用该匹配器能够捕获机器译文中与参考答案意思相近的短语,从而在短语层面进行匹配。此外这种方法还引入了{\small\sffamily\bfseries{可调权值向量}}\index{可调权值向量}(Tunable Weight Vector)\index{Tunable Weight Vector},用于调节每个匹配类型的相应贡献\upcite{DBLP:conf/wmt/DenkowskiL10};Meteor 1.3在Meteor的基础上增加了改进的{\small\sffamily\bfseries{文本规范器}}\index{文本规范器}Text Normalizer)\index{Text Normalizer}、更高精度的释义匹配以及区分内容词和功能词等指标,其中文本规范器能够根据一些规范化规则,将机器译文中意义等价的标点减少到通用的形式。而区分内容词和功能词则能够得到更为准确的词汇对应关系\upcite{DBLP:conf/wmt/DenkowskiL11};Meteor Universial则通过机器学习方法学习不同语言的可调权值,在对低资源语言进行评价时可对其进行复用,从而实现对低资源语言的译文更准确的评价\upcite{DBLP:conf/wmt/DenkowskiL14}
\parinterval 由于召回率反映参考答案在何种程度上覆盖目标译文的全部内容,而Meteor在评价过程中显式引入召回率,所以Meteor的评价与人工评价更为接近。但Meteor方法需要借助同义词表、功能词表等外部数据,当外部数据中的目标词对应不正确或缺失相应的目标词时,评价水准就会降低。特别是,针对汉语等与英语差异较大的语言,使用Meteor方法也会面临很多挑战。不仅如此,超参数的设置和使用,对于评分也有较大影响。 \parinterval 由于召回率反映参考答案在何种程度上覆盖目标译文的全部内容,而Meteor在评价过程中显式引入召回率,所以Meteor的评价与人工评价更为接近。但Meteor方法需要借助同义词表、功能词表等外部数据,当外部数据中的目标词对应不正确或缺失相应的目标词时,评价水准就会降低。特别是,针对汉语等与英语差异较大的语言,使用Meteor方法也会面临很多挑战。不仅如此,超参数的设置和使用,对于评分也有较大影响。
...@@ -428,7 +428,7 @@ His house is on the south bank of the river . ...@@ -428,7 +428,7 @@ His house is on the south bank of the river .
\parinterval 参数化组合方法的实现主要有两种方式:一种方式是广泛使用不同的译文质量评价作为特征,借助回归算法实现多种评价策略的融合\upcite{DBLP:conf/acl/AlbrechtH07a,DBLP:conf/acl/AlbrechtH07};另一种方式则是对各种译文质量评价方法的结果进行加权求和,并借助机器学习算法更新内部的权重参数,从而实现多种评价策略的融合\upcite{DBLP:conf/naacl/LiuG07} \parinterval 参数化组合方法的实现主要有两种方式:一种方式是广泛使用不同的译文质量评价作为特征,借助回归算法实现多种评价策略的融合\upcite{DBLP:conf/acl/AlbrechtH07a,DBLP:conf/acl/AlbrechtH07};另一种方式则是对各种译文质量评价方法的结果进行加权求和,并借助机器学习算法更新内部的权重参数,从而实现多种评价策略的融合\upcite{DBLP:conf/naacl/LiuG07}
\parinterval 非参数化组合方法的思想与贪心算法异曲同工:将多个自动评价方法以与人工评价的相关度为标准进行降序排列,依次尝试将其加入最优策略集合中,如果能提高最优策略集合的“性能”,则将该自动评价方法加入最优策略集合中,否则不加入。其中最优策略集合的“性能”用QUEEN定义\upcite{DBLP:conf/ijcnlp/GimenezM08}。该方法是首次尝试使用非参数的组合方式将多种自动评价方法进行融合,也不可避免地存在一些瑕疵。一方面在评价最优策略集合性能时,对于一个源文需要至少三个参考答案;另一方面,这种“贪心”的组合策略很有可能会得到局部最优的组合。 \parinterval 非参数化组合方法的思想与贪心算法异曲同工:以与人工评价的相关度为标准,将多个自动评价方法降序排列,依次尝试将其加入最优策略集合中,如果能提高最优策略集合的“性能”,则将该自动评价方法加入最优策略集合中,否则不加入。其中最优策略集合的“性能”用QUEEN定义\upcite{DBLP:conf/ijcnlp/GimenezM08}。该方法是首次尝试使用非参数的组合方式将多种自动评价方法进行融合,也不可避免地存在一些瑕疵。一方面在评价最优策略集合性能时,对于一个源文需要至少三个参考答案;另一方面,这种“贪心”的组合策略很有可能会得到局部最优的组合。
\parinterval 与单一的译文评价方法相比,多策略融合的评价方法能够对机器译文从多角度进行综合评价,这显然是一个模拟人工评价的过程,因而多策略融合的评价结果也与人工评价结果更加接近。但是对于不同的语言,多策略融合的评价方法需要不断调整最优策略集合或是调整组合方法内部的参数才能达到最佳的评价效果,这个过程势必要比单一的自动评价方法更繁琐些。 \parinterval 与单一的译文评价方法相比,多策略融合的评价方法能够对机器译文从多角度进行综合评价,这显然是一个模拟人工评价的过程,因而多策略融合的评价结果也与人工评价结果更加接近。但是对于不同的语言,多策略融合的评价方法需要不断调整最优策略集合或是调整组合方法内部的参数才能达到最佳的评价效果,这个过程势必要比单一的自动评价方法更繁琐些。
...@@ -593,7 +593,7 @@ His house is on the south bank of the river . ...@@ -593,7 +593,7 @@ His house is on the south bank of the river .
\parinterval 在机器译文质量评价工作中,相比人工评价,有参考答案的自动评价具有效率高、成本低的优点,因而广受机器翻译系统研发人员青睐。在这种情况下,自动评价结果的可信度一般取决于它们与可靠的人工评价之间的相关性。随着越来越多有参考答案的自动评价方法的提出,“与人工评价之间的相关性”也被视为衡量一种新的自动评价方法是否可靠的衡量标准。 \parinterval 在机器译文质量评价工作中,相比人工评价,有参考答案的自动评价具有效率高、成本低的优点,因而广受机器翻译系统研发人员青睐。在这种情况下,自动评价结果的可信度一般取决于它们与可靠的人工评价之间的相关性。随着越来越多有参考答案的自动评价方法的提出,“与人工评价之间的相关性”也被视为衡量一种新的自动评价方法是否可靠的衡量标准。
\parinterval 很多研究工作中都曾对BLEU、NIST等有参考答案的自动评价与人工评价的相关性进行研究和讨论,其中也有很多工作对“相关性”的统计过程作过比较详细的阐述。在“相关性”的统计过程中,一般是分别利用人工评价方法和某种有参考答案的自动评价方法对若干个机器翻译系统的输出进行等级评价\upcite{coughlin2003correlating}或是相对排序\upcite{popescu2003experiment},从而对比两种评价手段的评价结果是否一致。该过程中的几个关键问题可能会对最终结果产生影响。 \parinterval 很多研究工作中都曾对BLEU、NIST等有参考答案的自动评价与人工评价的相关性进行研究和讨论,其中也有很多工作对“相关性”的统计过程作过比较详细的阐述。在“相关性”的统计过程中,一般是分别利用人工评价方法和某种有参考答案的自动评价方法对若干个机器翻译系统的输出进行等级评价\upcite{coughlin2003correlating}或是相对排序\upcite{popescu2003experiment},从而对比两种评价手段的评价结果是否一致。该过程中的几个关键问题可能会对最终结果产生影响。
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -783,7 +783,7 @@ d&=&t \frac{s}{\sqrt{n}} ...@@ -783,7 +783,7 @@ d&=&t \frac{s}{\sqrt{n}}
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{预测译文句子的相对排名}}。当相对排序(详见\ref{sec:human-eval-scoring}节)的译文评价方法被引入后,给出机器译文的相对排名成为句子级质量评估的任务目标。 \item {\small\sffamily\bfseries{预测译文句子的相对排名}}。当相对排序(详见\ref{sec:human-eval-scoring}节)的译文评价方法被引入后,给出机器译文的相对排名成为句子级质量评估的任务目标。
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{预测译文句子的后编辑工作量}}。在最近的研究中,句子级的质量评估一直在探索各种类型的离散或连续的后编辑标签。例如,通过测量以秒为单位的后编辑时间对译文句子进行评分;通过测量预测后编辑过程所需的击键数对译文句子进行评分;通过计算{\small\sffamily\bfseries{人工译后编辑距离}}\index{人工译后编辑距离}(Human Translation Error Rate,HTER)\index{Human Translation Error Rate},即在后编辑过程中编辑(插入/删除/替换)数量与参考翻译长度的占比率对译文句子进行评分。HTER的计算公式为: \item {\small\sffamily\bfseries{预测译文句子的后编辑工作量}}。在最近的研究中,句子级的质量评估一直在尝试各种类型的离散或连续的后编辑标签。例如,通过测量以秒为单位的后编辑时间对译文句子进行评分;通过测量预测后编辑过程所需的击键数对译文句子进行评分;通过计算{\small\sffamily\bfseries{人工译后错误率}}\index{人工译后错误率}(Human Translation Error Rate,HTER)\index{Human Translation Error Rate},即在后编辑过程中编辑(插入/删除/替换)数量与参考翻译长度的占比率对译文句子进行评分。HTER的计算公式为:
\vspace{0.5em} \vspace{0.5em}
\begin{eqnarray} \begin{eqnarray}
\textrm{HTER}&=& \frac{\mbox{编辑操作数目}}{\mbox{翻译后编辑结果长度}} \textrm{HTER}&=& \frac{\mbox{编辑操作数目}}{\mbox{翻译后编辑结果长度}}
...@@ -888,7 +888,7 @@ d&=&t \frac{s}{\sqrt{n}} ...@@ -888,7 +888,7 @@ d&=&t \frac{s}{\sqrt{n}}
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{判断人工后编辑工作量}}。人工后编辑工作中有两个不可避免的问题:1)待编辑的机器译文是否值得改?2)待编辑的机器译文需要修改哪里?对于一些质量较差的机器译文来说,人工重译远远比修改译文的效率高,后编辑人员可以借助质量评估系统提供的指标筛选出值得进行后编辑的机器译文,另一方面,质量评估模型可以为每条机器译文提供{错误内容、错误类型、错误严重程度}的注释,这些内容将帮助后编辑人员准确定位到需要修改的位置,同时在一定程度上提示后编辑人员采取何种修改策略,势必能大大减少后编辑的工作内容。 \item {\small\sffamily\bfseries{判断人工后编辑工作量}}。人工后编辑工作中有两个不可避免的问题:1)待编辑的机器译文是否值得改?2)待编辑的机器译文需要修改哪里?对于一些质量较差的机器译文来说,人工重译远远比修改译文的效率高,后编辑人员可以借助质量评估系统提供的指标筛选出值得进行后编辑的机器译文,另一方面,质量评估模型可以为每条机器译文提供{错误内容、错误类型、错误严重程度}的注释,这些内容将帮助后编辑人员准确定位到需要修改的位置,同时在一定程度上提示后编辑人员采取何种修改策略,势必能大大减少后编辑的工作内容。
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{自动识别并更正翻译错误}}。质量评估和{\small\sffamily\bfseries{自动后编辑}}\index{自动后编辑}(Automatic Post-editing,APE)\index{Automatic Post-editing}也是很有潜力的应用方向。因为质量评估可以预测出错的位置,进而可以使用自动方法修正这些错误。但是,在这种应用模式中,质量评估的精度是非常关键的,因为如果预测错误可能会产生错误的修改,甚至带来整体译文质量的下降。 \item {\small\sffamily\bfseries{自动识别并更正翻译错误}}。质量评估和{\small\sffamily\bfseries{自动后编辑}}\index{自动后编辑}(Automatic Post-editing,APE)\index{Automatic Post-editing}也是很有潜力的应用方向。因为质量评估可以预测出错的位置,进而可以使用自动方法修正这些错误。但是,在这种应用模式中,质量评估的精度是非常关键的,因为如果预测错误可能会产生错误的修改,甚至带来整体译文质量的下降。
\vspace{0.5em} \vspace{0.5em}
...@@ -911,7 +911,7 @@ d&=&t \frac{s}{\sqrt{n}} ...@@ -911,7 +911,7 @@ d&=&t \frac{s}{\sqrt{n}}
\vspace{0.5em} \vspace{0.5em}
\item 基于句法和语义的机器译文质量自动评价方法。本章内容中介绍的自动评价多是基于表面字符串形式判定机器翻译结果和参考译文之间的相似度,而忽略了更抽象的语言层次的信息。基于句法和语义的机器译文质量自动评价方法在评价度量标准中加入能反映句法信息\upcite{DBLP:conf/acl/LiuG05}和语义信息\upcite{DBLP:conf/wmt/GimenezM07a}的相关内容,通过比较机器译文与参考答案之间的句法相似度和语义等价性\upcite{DBLP:journals/mt/PadoCGJM09},能够大大提高自动评价与人工评价之间的相关性。其中句法信息往往能够对机器译文流利度方面的评价起到促进作用\upcite{DBLP:conf/acl/LiuG05},常见的句法信息包括语法成分\upcite{DBLP:conf/acl/LiuG05}、依存关系\upcite{DBLP:conf/ssst/OwczarzakGW07,DBLP:conf/wmt/OwczarzakGW07,DBLP:conf/coling/YuWXJLL14}等。语义信息则对机器翻译的充分性评价更有帮助\upcite{DBLP:conf/acl/BanchsL11,reeder2006measuring},近年来也有很多用于机器译文质量评估的语义框架被提出,如AM-FM\upcite{DBLP:conf/acl/BanchsL11}、XMEANT\upcite{DBLP:conf/acl/LoBSW14}等。 \item 基于句法和语义的机器译文质量自动评价方法。本章内容中介绍的自动评价多是基于表面字符串形式判定机器翻译结果和参考译文之间的相似度,而忽略了更抽象的语言层次的信息。基于句法和语义的机器译文质量自动评价方法在评价度量标准中加入能反映句法信息\upcite{DBLP:conf/acl/LiuG05}和语义信息\upcite{DBLP:conf/wmt/GimenezM07a}的相关内容,通过比较机器译文与参考答案之间的句法相似度和语义等价性\upcite{DBLP:journals/mt/PadoCGJM09},能够大大提高自动评价与人工评价之间的相关性。其中句法信息往往能够对机器译文流利度方面的评价起到促进作用\upcite{DBLP:conf/acl/LiuG05},常见的句法信息包括语法成分\upcite{DBLP:conf/acl/LiuG05}、依存关系\upcite{DBLP:conf/ssst/OwczarzakGW07,DBLP:conf/wmt/OwczarzakGW07,DBLP:conf/coling/YuWXJLL14}等。语义信息则对机器翻译的充分性评价更有帮助\upcite{DBLP:conf/acl/BanchsL11,reeder2006measuring},近年来也有很多用于机器译文质量评估的语义框架被提出,如AM-FM\upcite{DBLP:conf/acl/BanchsL11}、XMEANT\upcite{DBLP:conf/acl/LoBSW14}等。
\vspace{0.5em} \vspace{0.5em}
\item 对机器译文中的错误分析和错误分类。无论是人工评价还是自动评价手段,其评价结果只能反映机器翻译系统性能,而无法确切表明机器翻译系统的优点和弱点是什么、系统最常犯什么类型的错误、一个特定的修改是否改善了系统的某一方面、排名较差的系统是否在任何方面都优于排名较好的系统等等。对机器译文进行错误分析和错误分类有助于找出机器翻译系统中存在的主要问题,以便集中精力进行研究改进\upcite{DBLP:conf/lrec/VilarXDN06}。相关的研究工作中,一些致力于错误分类方法的设计,如手动的机器译文错误分类框架\upcite{DBLP:conf/lrec/VilarXDN06}、自动的机器译文错误分类框架\upcite{popovic2011human}、基于语言学的错误分类方法\upcite{DBLP:journals/mt/CostaLLCC15}以及目前被用作篇章级质量评估注释标准的MQM错误分类框架\upcite{lommel2014using};其他的研究工作则致力于对机器译文进行错误分析,如引入形态句法信息的自动错误分析框架\upcite{DBLP:conf/wmt/PopovicGGLNMFB06}、引入词错误率(WER)和位置无关词错误率(PER)的错误分析框架\upcite{DBLP:conf/wmt/PopovicN07}、基于检索的错误分析工具tSEARCH\upcite{DBLP:conf/acl/GonzalezMM13}等等。 \item 对机器译文中的错误分析和错误分类。无论是人工评价还是自动评价手段,其评价结果只能反映机器翻译系统性能,而无法确切表明机器翻译系统的优点和弱点是什么、系统最常犯什么类型的错误、一个特定的修改是否改善了系统的某一方面、排名较好的系统是否在任何方面都优于排名较差的系统等等。对机器译文进行错误分析和错误分类有助于找出机器翻译系统中存在的主要问题,以便集中精力进行研究改进\upcite{DBLP:conf/lrec/VilarXDN06}。相关的研究工作中,一些致力于错误分类方法的设计,如手动的机器译文错误分类框架\upcite{DBLP:conf/lrec/VilarXDN06}、自动的机器译文错误分类框架\upcite{popovic2011human}、基于语言学的错误分类方法\upcite{DBLP:journals/mt/CostaLLCC15}以及目前被用作篇章级质量评估注释标准的MQM错误分类框架\upcite{lommel2014using};其他的研究工作则致力于对机器译文进行错误分析,如引入形态句法信息的自动错误分析框架\upcite{DBLP:conf/wmt/PopovicGGLNMFB06}、引入词错误率(WER)和位置无关词错误率(PER)的错误分析框架\upcite{DBLP:conf/wmt/PopovicN07}、基于检索的错误分析工具tSEARCH\upcite{DBLP:conf/acl/GonzalezMM13}等等。
\vspace{0.5em} \vspace{0.5em}
\item 译文质量的多角度评价。章节内主要介绍的几种经典方法如BLEU、TER、METEOR等,大都是从某个单一的角度计算机器译文和参考答案的相似性,如何对译文从多个角度进行综合评价是需要进一步思考的问题,\ref{Evaluation method of Multi Strategy fusion}节中介绍的多策略融合评价方法就可以看作是一种多角度评价方法,其思想是将各种评价方法下的译文得分通过某种方式进行组合,从而实现对译文的综合评价。译文质量多角度评价的另一种思路则是直接将BLEU、TER、Meteor等多种指标看做是某种特征,使用分类\upcite{kulesza2004learning,corston2001machine}、回归\upcite{albrecht2008regression}、排序\upcite{duh2008ranking}等机器学习手段形成一种综合度量。此外,也有相关工作专注于多等级的译文质量评价,使用聚类算法将大致译文按其质量分为不同等级,并对不同质量等级的译文按照不同权重组合几种不同的评价方法\upcite{chen2015multi} \item 译文质量的多角度评价。章节内主要介绍的几种经典方法如BLEU、TER、METEOR等,大都是从某个单一的角度计算机器译文和参考答案的相似性,如何对译文从多个角度进行综合评价是需要进一步思考的问题,\ref{Evaluation method of Multi Strategy fusion}节中介绍的多策略融合评价方法就可以看作是一种多角度评价方法,其思想是将各种评价方法下的译文得分通过某种方式进行组合,从而实现对译文的综合评价。译文质量多角度评价的另一种思路则是直接将BLEU、TER、Meteor等多种指标看做是某种特征,使用分类\upcite{kulesza2004learning,corston2001machine}、回归\upcite{albrecht2008regression}、排序\upcite{duh2008ranking}等机器学习手段形成一种综合度量。此外,也有相关工作专注于多等级的译文质量评价,使用聚类算法将大致译文按其质量分为不同等级,并对不同质量等级的译文按照不同权重组合几种不同的评价方法\upcite{chen2015multi}
\vspace{0.5em} \vspace{0.5em}
......
...@@ -37,7 +37,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo ...@@ -37,7 +37,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo
\parinterval 在翻译任务中,我们希望得到一个源语言到目标语言的翻译。对于人类来说这个问题很简单,但是让计算机做这样的工作却很困难。这里面临的第一个问题是:如何对翻译进行建模?从计算机的角度来看,这就需要把自然语言的翻译问题转换为计算机可计算的问题。 \parinterval 在翻译任务中,我们希望得到一个源语言到目标语言的翻译。对于人类来说这个问题很简单,但是让计算机做这样的工作却很困难。这里面临的第一个问题是:如何对翻译进行建模?从计算机的角度来看,这就需要把自然语言的翻译问题转换为计算机可计算的问题。
\parinterval 那么,基于单词的统计机器翻译模型又是如何描述翻译问题的呢?Peter F. Brown等人提出了一个观点\upcite{DBLP:journals/coling/BrownPPM94}:在翻译一个句子时,可以把其中的每个单词翻译成对应的目标语言单词,然后调整这些目标语言单词的顺序,最后得到整个句子的翻译结果,而这个过程可以用统计模型来描述。尽管在人看来使用两个语言单词之间的对应进行翻译是很自然的事,但是对于计算机来说可是向前迈出了一大步。 \parinterval 那么,基于单词的统计机器翻译模型又是如何描述翻译问题的呢?Peter F. Brown等人提出了一个观点\upcite{DBLP:journals/coling/BrownPPM94}:在翻译一个句子时,可以把其中的每个单词翻译成对应的目标语言单词,然后调整这些目标语言单词的顺序,最后得到整个句子的翻译结果,而这个过程可以用统计模型来描述。尽管在人看来使用两个语言之间对应的单词进行翻译是很自然的事,但是对于计算机来说可是向前迈出了一大步。
\parinterval 先来看一个例子。图 \ref{fig:5-1}展示了一个汉语翻译到英语的例子。首先,可以把源语言句子中的单词“我”、“对”、“你”、“感到”和“满意”分别翻译为“I”、“with”、“you”、“am”\ 和“satisfied”,然后调整单词的顺序,比如,“am”放在译文的第2个位置,“you”应该放在最后的位置等等,最后得到译文“I am satisfied with you”。 \parinterval 先来看一个例子。图 \ref{fig:5-1}展示了一个汉语翻译到英语的例子。首先,可以把源语言句子中的单词“我”、“对”、“你”、“感到”和“满意”分别翻译为“I”、“with”、“you”、“am”\ 和“satisfied”,然后调整单词的顺序,比如,“am”放在译文的第2个位置,“you”应该放在最后的位置等等,最后得到译文“I am satisfied with you”。
...@@ -80,7 +80,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo ...@@ -80,7 +80,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo
\section{一个简单实例} \section{一个简单实例}
\label{sec:simple-mt-example} \label{sec:simple-mt-example}
\parinterval 本节首先对比人工翻译和机器翻译程的异同点,从中归纳出实现机器翻译过程的两个主要步骤:训练和解码。之后,会从学习翻译知识和运用翻译知识两个方面描述如何构建一个简单的机器翻译系统。 \parinterval 本节首先对比人工翻译和机器翻译程的异同点,从中归纳出实现机器翻译过程的两个主要步骤:训练和解码。之后,会从学习翻译知识和运用翻译知识两个方面描述如何构建一个简单的机器翻译系统。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -162,7 +162,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo ...@@ -162,7 +162,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo
\subsection{统计机器翻译的基本框架} \subsection{统计机器翻译的基本框架}
\parinterval 为了对统计机器翻译有一个直观的认识,下面将介绍如何构建一个非常简单的统计机器翻译系统,其中涉及到的很多思想来自IBM模型。这里,仍然使用数据驱动的统计建模方法。图\ref{fig:5-5}展示了系统的主要流程,包括两个步骤: \parinterval 为了对统计机器翻译有一个直观的认识,下面将介绍如何构建一个非常简单的统计机器翻译系统,其中涉及到的很多思想来自IBM模型。这里,仍然使用数据驱动的统计建模方法。图\ref{fig:5-5}展示了统计机器翻译的主要流程,包括两个步骤:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -182,13 +182,13 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo ...@@ -182,13 +182,13 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo
%---------------------------------------------- %----------------------------------------------
\vspace{-0.5em} \vspace{-0.5em}
\parinterval 接下来,本节将介绍统计机器翻译模型训练和解码的方法。在模型学习中,会分两小节进行描述\ \dash \ 单词级翻译和句子级翻译。实现单词级翻译是实现句子级翻译的基础。换言之,句子级翻译的统计模型是建立在单词翻译之上的。在解码中,本节将介绍一个高效的搜索算法,其中也使用到了剪枝和启发式搜索的思想。 \parinterval 接下来,本节将介绍统计机器翻译模型训练和解码的方法。在模型学习中,会分两小节进行描述\ \dash \ 单词级翻译和句子级翻译。实现单词级翻译是实现句子级翻译的基础。换言之,句子级翻译的统计模型是建立在单词翻译之上的。在\ref{sec:simple-decoding}节将介绍一个高效的搜索算法,其中也使用到了剪枝和启发式搜索的思想。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsection{单词翻译概率}\label{chapter5.2.3} \subsection{单词级翻译模型}\label{chapter5.2.3}
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -323,7 +323,7 @@ $\seq{t}^{[2]}$ = So\; ,\; what\; is\; human\; \underline{translation}\; ? ...@@ -323,7 +323,7 @@ $\seq{t}^{[2]}$ = So\; ,\; what\; is\; human\; \underline{translation}\; ?
\subsubsection{1. 基础模型} \subsubsection{1. 基础模型}
\parinterval 计算句子级翻译概率并不简单。因为自然语言非常灵活,任何数据无法覆盖足够多的句子,因此,无法像公式\eqref{eq:5-5}一样直接用简单计数的方式对句子的翻译概率进行估计。这里,采用一个退而求其次的方法:找到一个函数$g(\seq{s},\seq{t})\ge 0$来模拟翻译概率对译文可能性进行估计。可以定义一个新的函数$g(\seq{s},\seq{t})$,令其满足:给定$\seq{s}$,翻译结果$\seq{t}$出现的可能性越大,$g(\seq{s},\seq{t})$的值越大;$\seq{t}$出现的可能性越小,$g(\seq{s},\seq{t})$的值越小。换句话说,$g(\seq{s},\seq{t})$和翻译概率$\funp{P}(\seq{t}|\seq{s})$呈正相关。如果存在这样的函数$g(\seq{s},\seq{t} \parinterval 计算句子级翻译概率并不简单。因为自然语言非常灵活,任何数据无法覆盖足够多的句子,因此,无法像公式\eqref{eq:5-5}一样直接用简单计数的方式对句子的翻译概率进行估计。这里,采用一个退而求其次的方法:找到一个函数$g(\seq{s},\seq{t})\ge 0$来模拟翻译概率对译文可能性进行估计。可以定义一个新的函数$g(\seq{s},\seq{t})$,令其满足:给定$\seq{s}$,翻译结果$\seq{t}$出现的可能性越大,$g(\seq{s},\seq{t})$的值越大;$\seq{t}$出现的可能性越小,$g(\seq{s},\seq{t})$的值越小。换句话说,$g(\seq{s},\seq{t})$和翻译概率$\funp{P}(\seq{t}|\seq{s})$呈正相关。如果存在这样的函数$g(\seq{s},\seq{t}
)$,可以利用$g(\seq{s},\seq{t})$近似表示$\funp{P}(\seq{t}|\seq{s})$,如下: )$,可以利用$g(\seq{s},\seq{t})$近似表示$\funp{P}(\seq{t}|\seq{s})$,如下:
\begin{eqnarray} \begin{eqnarray}
\funp{P}(\seq{t}|\seq{s}) & \equiv & \frac{g(\seq{s},\seq{t})}{\sum_{\seq{t}'}g(\seq{s},\seq{t}')} \funp{P}(\seq{t}|\seq{s}) & \equiv & \frac{g(\seq{s},\seq{t})}{\sum_{\seq{t}'}g(\seq{s},\seq{t}')}
...@@ -332,7 +332,7 @@ $\seq{t}^{[2]}$ = So\; ,\; what\; is\; human\; \underline{translation}\; ? ...@@ -332,7 +332,7 @@ $\seq{t}^{[2]}$ = So\; ,\; what\; is\; human\; \underline{translation}\; ?
\parinterval 公式\eqref{eq:5-7}相当于在函数$g(\cdot)$上做了归一化,这样等式右端的结果具有一些概率的属性,比如,$0 \le \frac{g(\seq{s},\seq{t})}{\sum_{\seq{t'}}g(\seq{s},\seq{t'})} \le 1$。 具体来说,对于源语言句子$\seq{s}$,枚举其所有的翻译结果,并把所对应的函数$g(\cdot)$相加作为分母,而分子是某个翻译结果$\seq{t}$所对应的$g(\cdot)$的值。 \parinterval 公式\eqref{eq:5-7}相当于在函数$g(\cdot)$上做了归一化,这样等式右端的结果具有一些概率的属性,比如,$0 \le \frac{g(\seq{s},\seq{t})}{\sum_{\seq{t'}}g(\seq{s},\seq{t'})} \le 1$。 具体来说,对于源语言句子$\seq{s}$,枚举其所有的翻译结果,并把所对应的函数$g(\cdot)$相加作为分母,而分子是某个翻译结果$\seq{t}$所对应的$g(\cdot)$的值。
\parinterval 上述过程初步建立了句子级翻译模型,并没有直接求$\funp{P}(\seq{t}|\seq{s})$,而是把问题转化$g(\cdot)$的设计和计算上。但是,面临着两个新的问题: \parinterval 上述过程初步建立了句子级翻译模型,并没有直接求$\funp{P}(\seq{t}|\seq{s})$,而是把问题转化$g(\cdot)$的设计和计算上。但是,面临着两个新的问题:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -344,11 +344,11 @@ $\seq{t}^{[2]}$ = So\; ,\; what\; is\; human\; \underline{translation}\; ? ...@@ -344,11 +344,11 @@ $\seq{t}^{[2]}$ = So\; ,\; what\; is\; human\; \underline{translation}\; ?
\parinterval 当然,这里最核心的问题还是函数$g(\seq{s},\seq{t})$的定义。而第二个问题其实不需要解决,因为机器翻译只关注于可能性最大的翻译结果,即$g(\seq{s},\seq{t})$的计算结果最大时对应的译文。这个问题会在后面进行讨论。 \parinterval 当然,这里最核心的问题还是函数$g(\seq{s},\seq{t})$的定义。而第二个问题其实不需要解决,因为机器翻译只关注于可能性最大的翻译结果,即$g(\seq{s},\seq{t})$的计算结果最大时对应的译文。这个问题会在后面进行讨论。
\parinterval 回到设计$g(\seq{s},\seq{t})$的问题上。这里,采用“大题小作”的方法,这个技巧{\chaptertwo}已经进行了充分的介绍。具体来说,直接建模句子之间的对应比较困难,但可以利用单词之间的对应来描述句子之间的对应关系。这就用到了\ref{chapter5.2.3}小节所介绍的单词翻译概率。 \parinterval 回到设计$g(\seq{s},\seq{t})$的问题上。这里,采用“大题小作”的方法,这个方法{\chaptertwo}已经进行了充分的介绍。具体来说,直接建模句子之间的对应比较困难,但可以利用单词之间的对应来描述句子之间的对应关系。这就用到了\ref{chapter5.2.3}小节所介绍的单词翻译概率。
\parinterval 首先引入一个非常重要的概念\ \dash \ {\small\sffamily\bfseries{词对齐}}\index{词对齐}(Word Alignment)\index{Word Alignment},它是统计机器翻译中最核心的概念之一。词对齐描述了平行句对中单词之间的对应关系,它体现了一种观点:本质上句子之间的对应是由单词之间的对应表示的。当然,这个观点在神经机器翻译或者其他模型中可能会有不同的理解,但是翻译句子的过程中考虑词级的对应关系是符合人类对语言的认知的。 \parinterval 首先引入一个非常重要的概念\ \dash \ {\small\sffamily\bfseries{词对齐}}\index{词对齐}(Word Alignment)\index{Word Alignment},它是统计机器翻译中最核心的概念之一。词对齐描述了平行句对中单词之间的对应关系,它体现了一种观点:本质上句子之间的对应是由单词之间的对应表示的。当然,这个观点在神经机器翻译或者其他模型中可能会有不同的理解,但是翻译句子的过程中考虑词级的对应关系是符合人类对语言的认知的。
\parinterval\ref{fig:5-7} 展示了一个句对$\seq{s}$$\seq{t}$,单词的右下标数字表示了该词在句中的位置,而虚线表示的是句子$\seq{s}$$\seq{t}$中的词对齐关系。比如,“满意”的右下标数字5表示在句子$\seq{s}$中处于第5个位置,“satisfied”的右下标数字3表示在句子$\seq{t}$中处于第3个位置,“满意”和“satisfied”之间的虚线表示两个单词之间是对齐的。为方便描述,用二元组$(j,i)$ 来描述词对齐,它表示源语言句子的第$j$个单词对应目标语言句子的第$i$个单词,即单词$s_j$$t_i$对应。通常,也会把$(j,i)$称作一条{\small\sffamily\bfseries{词对齐连接}}\index{词对齐连接}(Word Alignment Link\index{Word Alignment Link})。图\ref{fig:5-7} 中共有5 条虚线,表示有5组单词之间的词对齐连接。可以把这些词对齐连接构成的集合作为词对齐的一种表示,记为$A$,即$A={\{(1,1),(2,4),(3,5),(4,2)(5,3)}\}$ \parinterval\ref{fig:5-7} 展示了一个汉英互译句对$\seq{s}$$\seq{t}$及其词对齐关系,单词的右下标数字表示了该词在句中的位置,而虚线表示的是句子$\seq{s}$$\seq{t}$中的词对齐关系。比如,“满意”的右下标数字5表示在句子$\seq{s}$中处于第5个位置,“satisfied”的右下标数字3表示在句子$\seq{t}$中处于第3个位置,“满意”和“satisfied”之间的虚线表示两个单词之间是对齐的。为方便描述,用二元组$(j,i)$ 来描述词对齐,它表示源语言句子的第$j$个单词对应目标语言句子的第$i$个单词,即单词$s_j$$t_i$对应。通常,也会把$(j,i)$称作一条{\small\sffamily\bfseries{词对齐连接}}\index{词对齐连接}(Word Alignment Link\index{Word Alignment Link})。图\ref{fig:5-7} 中共有5 条虚线,表示有5组单词之间的词对齐连接。可以把这些词对齐连接构成的集合作为词对齐的一种表示,记为$A$,即$A={\{(1,1),(2,4),(3,5),(4,2)(5,3)}\}$
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -381,7 +381,7 @@ g(\seq{s},\seq{t}) &= &\prod_{(j,i)\in \widehat{A}}\funp{P}(s_j,t_i) ...@@ -381,7 +381,7 @@ g(\seq{s},\seq{t}) &= &\prod_{(j,i)\in \widehat{A}}\funp{P}(s_j,t_i)
\subsubsection{2. 生成流畅的译文} \subsubsection{2. 生成流畅的译文}
\parinterval 公式\eqref{eq:5-8}定义的$g(\seq{s},\seq{t})$存在的问题是没有考虑词序信息。这里用一个简单的例子说明这个问题。如图\ref{fig:5-8}所示,源语言句子“我 对 你 感到 满意”有两个翻译结果,第一个翻译结果是“I am satisfied with you”,第二个是“I with you am satisfied”。虽然这两个译文包含的目标语单词是一样的,但词序存在很大差异。比如,它们都选择了“satisfied”作为源语单词“满意”的译文,但是在第一个翻译结果中“satisfied”处于第3个位置,而第二个结果中处于最后的位置。显然第一个翻译结果更符合英语的表达习惯,翻译的质量更高。遗憾的是,对于有明显差异的两个译文,公式\eqref{eq:5-8}计算得到的函数$g(\cdot)$却是一样的。 \parinterval 公式\eqref{eq:5-8}定义的$g(\seq{s},\seq{t})$存在的问题是没有考虑词序信息。这里用一个简单的例子说明这个问题。如图\ref{fig:5-8}所示,源语言句子“我 对 你 感到 满意”有两个翻译结果,第一个翻译结果是“I am satisfied with you”,第二个是“I with you am satisfied”。虽然这两个译文包含的目标语单词是一样的,但词序存在很大差异。比如,它们都选择了“satisfied”作为源语单词“满意”的译文,但是在第一个翻译结果中“satisfied”处于第3个位置,而第二个结果中处于最后的位置。显然第一个翻译结果更符合英语的表达习惯,翻译的质量更高。遗憾的是,对于有明显差异的两个译文,公式\eqref{eq:5-8}计算得到的函数$g(\cdot)$得分却是一样的。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -409,7 +409,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti ...@@ -409,7 +409,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti
\label{eq:5-11} \label{eq:5-11}
\end{eqnarray} \end{eqnarray}
\parinterval 如图\ref{fig:5-9}所示,语言模型$\funp{P}_{\textrm{lm}}(\seq{t})$分别给$\seq{t}^{'}$$\seq{t}^{}$赋予0.0107和0.0009的概率,这表明句子$\seq{t}^{'}$更符合英文的表达,这与期望是相吻合的。它们再分别乘以$\prod_{j,i \in \widehat{A}}{\funp{P}(s_j},t_i)$的值,就得到公式\eqref{eq:5-11}定义的函数$g(\cdot)$。显然句子$\seq{t}^{'}$的分数更高。至此,完成了对函数$g(\seq{s},\seq{t})$的一个简单定义,把它带入公式\eqref{eq:5-7}就得到了同时考虑准确性和流畅性的句子级统计翻译模型。 \parinterval 如图\ref{fig:5-9}所示,语言模型$\funp{P}_{\textrm{lm}}(\seq{t})$分别给$\seq{t}^{'}$$\seq{t}^{}$赋予0.0107和0.0009的概率,这表明句子$\seq{t}^{'}$更符合英文的表达,这与期望是相吻合的。它们再分别乘以$\prod_{j,i \in \widehat{A}}{\funp{P}(s_j},t_i)$的值,就得到公式\eqref{eq:5-11}定义的函数$g(\cdot)$得分。显然句子$\seq{t}^{'}$的分数更高。至此,完成了对函数$g(\seq{s},\seq{t})$的一个简单定义,把它带入公式\eqref{eq:5-7}就得到了同时考虑准确性和流畅性的句子级统计翻译模型。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -517,7 +517,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti ...@@ -517,7 +517,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti
\vspace{-0.5em} \vspace{-0.5em}
\parinterval IBM模型也是建立在如上统计模型之上。具体来说,IBM模型的基础是{\small\sffamily\bfseries{噪声信道模型}}\index{噪声信道模型}(Noise Channel Model)\index{Noise Channel Model},它是由Shannon在上世纪40年代末提出来的\upcite{shannon1949communication},并于上世纪80年代应用在语言识别领域,后来又被Brown等人用于统计机器翻译中\upcite{brown1990statistical,DBLP:journals/coling/BrownPPM94} \parinterval IBM模型也是建立在如上统计模型之上。具体来说,IBM模型的基础是{\small\sffamily\bfseries{噪声信道模型}}\index{噪声信道模型}(Noise Channel Model)\index{Noise Channel Model},它是由Shannon在上世纪40年代末提出来的\upcite{shannon1949communication},并于上世纪80年代应用在语言识别领域,后来又被Brown等人用于统计机器翻译中\upcite{brown1990statistical,DBLP:journals/coling/BrownPPM94}
\parinterval 在噪声信道模型中,源语言句子$\seq{s}$(信宿)被看作是由目标语言句子$\seq{t}$(信源)经过一个有噪声的信道得到的。如果知道了$\seq{s}$和信道的性质,可以通过$\funp{P}(\seq{t}|\seq{s})$得到信源的信息,这个过程如图\ref{fig:5-13}所示。 \parinterval 在噪声信道模型中,目标语言句子$\seq{t}$(信源)被看作是由源语言句子$\seq{s}$(信宿)经过一个有噪声的信道得到的。如果知道了$\seq{s}$和信道的性质,可以通过$\funp{P}(\seq{t}|\seq{s})$得到信源的信息,这个过程如图\ref{fig:5-13}所示。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -578,11 +578,11 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti ...@@ -578,11 +578,11 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{建模}}(Modeling):如何建立$\funp{P}(\seq{s}|\seq{t})$$\funp{P}(\seq{t})$的数学模型。换句话说,需要用可计算的方式对翻译问题和语言建模问题进行描述,这也是最核心的问题。 \item {\small\sffamily\bfseries{建模}}\index{建模}(Modeling)\index{Modeling}:如何建立$\funp{P}(\seq{s}|\seq{t})$$\funp{P}(\seq{t})$的数学模型。换句话说,需要用可计算的方式对翻译问题和语言建模问题进行描述,这也是最核心的问题。
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{训练}}(Training):如何获得$\funp{P}(\seq{s}|\seq{t})$$\funp{P}(\seq{t})$所需的参数。即从数据中得到模型的最优参数。 \item {\small\sffamily\bfseries{训练}}\index{训练}(Training)\index{Training}:如何获得$\funp{P}(\seq{s}|\seq{t})$$\funp{P}(\seq{t})$所需的参数。即从数据中得到模型的最优参数。
\vspace{0.5em} \vspace{0.5em}
\item {\small\sffamily\bfseries{解码}}(Decoding):如何完成搜索最优解的过程。即完成$\argmax$ \item {\small\sffamily\bfseries{解码}}\index{解码}(Decoding)\index{Decoding}:如何完成搜索最优解的过程。即完成$\argmax$
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -616,7 +616,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti ...@@ -616,7 +616,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti
\centering \centering
\input{./Chapter5/Figures/figure-different-alignment-comparison} \input{./Chapter5/Figures/figure-different-alignment-comparison}
\setlength{\belowcaptionskip}{-0.5em} \setlength{\belowcaptionskip}{-0.5em}
\caption{不同词对齐对比} \caption{不同词对齐对比}
\label{fig:5-15} \label{fig:5-15}
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
...@@ -649,7 +649,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti ...@@ -649,7 +649,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti
\label{eq:5-18} \label{eq:5-18}
\end{eqnarray} \end{eqnarray}
\parinterval 公式\eqref{eq:5-18}使用了简单的全概率公式把$\funp{P}(\seq{s}|\seq{t})$进行展开。通过访问$\seq{s}$$\seq{t}$之间所有可能的词对齐$\seq{a}$,并把对应的对齐概率进行求和,得到了$\seq{t}$$\seq{s}$的翻译概率。这里,可以把词对齐看作翻译的隐含变量,这样从$\seq{t}$$\seq{s}$的生成就变为从$\seq{t}$同时生成$\seq{s}$和隐含变量$\seq{a}$的问题。引入隐含变量是生成模型常用的手段,通过使用隐含变量,可以把较为困难的端到端学习问题转化为分步学习问题。 \parinterval 公式\eqref{eq:5-18}使用了简单的全概率公式把$\funp{P}(\seq{s}|\seq{t})$进行展开。通过访问$\seq{s}$$\seq{t}$之间所有可能的词对齐$\seq{a}$,并把对应的对齐概率进行求和,得到了$\seq{t}$$\seq{s}$的翻译概率。这里,可以把词对齐看作翻译的隐含变量,这样从$\seq{t}$$\seq{s}$的生成就变为从$\seq{t}$同时生成$\seq{s}$和隐含变量$\seq{a}$的问题。引入隐含变量是生成模型常用的手段,通过使用隐含变量,可以把较为困难的端到端学习问题转化为分步学习问题。
\parinterval 举个例子说明公式\eqref{eq:5-18}的实际意义。如图\ref{fig:5-17}所示,可以把从“谢谢\ 你”到“thank you”的翻译分解为9种可能的词对齐。因为源语言句子$\seq{s}$有2个词,目标语言句子$\seq{t}$加上空标记$t_0$共3个词,因此每个源语言单词有3个可能对齐的位置,整个句子共有$3\times3=9$种可能的词对齐。 \parinterval 举个例子说明公式\eqref{eq:5-18}的实际意义。如图\ref{fig:5-17}所示,可以把从“谢谢\ 你”到“thank you”的翻译分解为9种可能的词对齐。因为源语言句子$\seq{s}$有2个词,目标语言句子$\seq{t}$加上空标记$t_0$共3个词,因此每个源语言单词有3个可能对齐的位置,整个句子共有$3\times3=9$种可能的词对齐。
...@@ -753,13 +753,13 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti ...@@ -753,13 +753,13 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti
\label{eq:5-22} \label{eq:5-22}
\end{eqnarray} \end{eqnarray}
\item 源语单词$s_j$的生成概率$\funp{P}(s_j|a_1^{j},s_1^{j-1},m,\seq{t})$仅依赖与其对齐的译文单词$t_{a_j}$,即词汇翻译概率$f(s_j|t_{a_j})$。此时词汇翻译概率满足$\sum_{s_j}{f(s_j|t_{a_j})}=1$。比如在图\ref{fig:5-18}表示的例子中,源语单词“上”出现的概率只和与它对齐的单词“on”有关系,与其他单词没有关系。 \item 源语单词$s_j$的生成概率$\funp{P}(s_j|a_1^{j},s_1^{j-1},m,\seq{t})$仅依赖与其对齐的译文单词$t_{a_j}$,即单词翻译概率$f(s_j|t_{a_j})$。此时单词翻译概率满足$\sum_{s_j}{f(s_j|t_{a_j})}=1$。比如在图\ref{fig:5-18}表示的例子中,源语单词“上”出现的概率只和与它对齐的单词“on”有关系,与其他单词没有关系。
\begin{eqnarray} \begin{eqnarray}
\funp{P}(s_j|a_1^{j},s_1^{j-1},m,\seq{t})& \equiv & f(s_j|t_{a_j}) \funp{P}(s_j|a_1^{j},s_1^{j-1},m,\seq{t})& \equiv & f(s_j|t_{a_j})
\label{eq:5-23} \label{eq:5-23}
\end{eqnarray} \end{eqnarray}
用一个简单的例子对公式\eqref{eq:5-23}进行说明。比如,在图\ref{fig:5-18}中,“桌子”对齐到“table”,可被描述为$f(s_2 |t_{a_2})=f(\textrm{“桌子”}|\textrm{“table”})$,表示给定“table”翻译为“桌子”的概率。通常,$f(s_2 |t_{a_2})$被认为是一种概率词典,它反应了两种语言词汇一级的对应关系。 用一个简单的例子对公式\eqref{eq:5-23}进行说明。比如,在图\ref{fig:5-18}中,“桌子”对齐到“table”,可被描述为$f(s_2 |t_{a_2})=f(\textrm{“桌子”}|\textrm{“table”})$,表示给定“table”翻译为“桌子”的概率。通常,$f(s_2 |t_{a_2})$被认为是一种概率词典,它反应了两种语言单词一级的对应关系。
\end{itemize} \end{itemize}
\parinterval 将上述三个假设和公式\eqref{eq:5-19}代入公式\eqref{eq:5-18}中,得到$\funp{P}(\seq{s}|\seq{t})$的表达式: \parinterval 将上述三个假设和公式\eqref{eq:5-19}代入公式\eqref{eq:5-18}中,得到$\funp{P}(\seq{s}|\seq{t})$的表达式:
...@@ -1093,10 +1093,10 @@ c_{\mathbb{E}}(s_u|t_v)&=&\sum\limits_{k=1}^{K} c_{\mathbb{E}}(s_u|t_v;s^{[k]}, ...@@ -1093,10 +1093,10 @@ c_{\mathbb{E}}(s_u|t_v)&=&\sum\limits_{k=1}^{K} c_{\mathbb{E}}(s_u|t_v;s^{[k]},
\vspace{0.5em} \vspace{0.5em}
\item 在IBM基础模型之上,有很多改进的工作。例如,对空对齐、低频词进行额外处理\upcite{DBLP:conf/acl/Moore04};考虑源语言-目标语言和目标语言-源语言双向词对齐进行更好地词对齐对称化\upcite{肖桐1991面向统计机器翻译的重对齐方法研究};使用词典、命名实体等多种信息对模型进行改进\upcite{2005Improvin};通过引入短语增强IBM基础模型\upcite{1998Grammar};引入相邻单词对齐之间的依赖关系增加模型健壮性\upcite{DBLP:conf/acl-vlc/DaganCG93}等;也可以对IBM模型的正向和反向结果进行对称化处理,以得到更加准确词对齐结果\upcite{och2003systematic} \item 在IBM基础模型之上,有很多改进的工作。例如,对空对齐、低频词进行额外处理\upcite{DBLP:conf/acl/Moore04};考虑源语言-目标语言和目标语言-源语言双向词对齐进行更好地词对齐对称化\upcite{肖桐1991面向统计机器翻译的重对齐方法研究};使用词典、命名实体等多种信息对模型进行改进\upcite{2005Improvin};通过引入短语增强IBM基础模型\upcite{1998Grammar};引入相邻单词对齐之间的依赖关系增加模型健壮性\upcite{DBLP:conf/acl-vlc/DaganCG93}等;也可以对IBM模型的正向和反向结果进行对称化处理,以得到更加准确词对齐结果\upcite{och2003systematic}
\item 随着词对齐概念的不断深入,也有很多词对齐方面的工作并不依赖IBM模型。比如,可以直接使用判别模型利用分类器解决词对齐问题\upcite{ittycheriah2005maximum};使用带参数控制的动态规划方法来提高词对齐准确率\upcite{DBLP:conf/naacl/GaleC91};甚至可以把对齐的思想用于短语和句法结构的双语对应\upcite{xiao2013unsupervised};无监督的对称词对齐方法,正向和反向模型联合训练,结合数据的相似性\upcite{DBLP:conf/naacl/LiangTK06};除了GIZA++,研究人员也开发了很多优秀的自动对齐工具,比如,FastAlign\upcite{DBLP:conf/naacl/DyerCS13}、Berkeley Word Aligner\upcite{taskar2005a}等,这些工具现在也有很广泛的应用。 \item 随着词对齐概念的不断深入,也有很多词对齐方面的工作并不依赖IBM模型。比如,可以直接使用判别模型利用分类器解决词对齐问题\upcite{ittycheriah2005maximum};使用带参数控制的动态规划方法来提高词对齐准确率\upcite{DBLP:conf/naacl/GaleC91};甚至可以把对齐的思想用于短语和句法结构的双语对应\upcite{xiao2013unsupervised};无监督的对称词对齐方法,正向和反向模型联合训练,结合数据的相似性\upcite{DBLP:conf/naacl/LiangTK06};除了GIZA++,研究人员也开发了很多优秀的自动对齐工具,比如,FastAlign\upcite{DBLP:conf/naacl/DyerCS13}、Berkeley Word Aligner\upcite{taskar2005a}等,这些工具现在也有很广泛的应用。
\vspace{0.5em} \vspace{0.5em}
\item 一种较为通用的词对齐评价标准是{\bfnew{对齐错误率}}(Alignment Error Rate, AER)\upcite{DBLP:journals/coling/FraserM07}。在此基础之上也可以对词对齐评价方法进行改进,以提高对齐质量与机器翻译评价得分BLEU的相关性\upcite{DBLP:conf/acl/DeNeroK07,paul2007all,黄书剑2009一种错误敏感的词对齐评价方法}。也有工作通过统计机器翻译系统性能的提升来评价对齐质量\upcite{DBLP:journals/coling/FraserM07}。不过,在相当长的时间内,词对齐质量对机器翻译系统的影响究竟如何并没有统一的结论。有些时候,词对齐的错误率下降了,但是机器翻译系统的译文品质没有带来性能提升。但是,这个问题比较复杂,需要进一步的论证。不过,可以肯定的是,词对齐可以帮助人们分析机器翻译的行为。甚至在最新的神经机器翻译中,如何在神经网络模型中寻求两种语言单词之间的对应关系也是对模型进行解释的有效手段之一\upcite{DBLP:journals/corr/FengLLZ16} \item 一种较为通用的词对齐评价标准是{\bfnew{对齐错误率}}(Alignment Error Rate, AER)\upcite{DBLP:journals/coling/FraserM07}。在此基础之上也可以对词对齐评价方法进行改进,以提高对齐质量与机器翻译评价得分BLEU的相关性\upcite{DBLP:conf/acl/DeNeroK07,paul2007all,黄书剑2009一种错误敏感的词对齐评价方法}。也有工作通过统计机器翻译系统性能的提升来评价对齐质量\upcite{DBLP:journals/coling/FraserM07}。不过,在相当长的时间内,词对齐质量对机器翻译系统的影响究竟如何并没有统一的结论。有些时候,词对齐的错误率下降了,但是机器翻译系统的译文品质却没有得到提升。但是,这个问题比较复杂,需要进一步的论证。不过,可以肯定的是,词对齐可以帮助人们分析机器翻译的行为。甚至在最新的神经机器翻译中,如何在神经网络模型中寻求两种语言单词之间的对应关系也是对模型进行解释的有效手段之一\upcite{DBLP:journals/corr/FengLLZ16}
\vspace{0.5em} \vspace{0.5em}
\item 基于单词的翻译模型的解码问题也是早期研究者所关注的。比较经典的方法的是贪婪方法\upcite{germann2003greedy}。也有研究者对不同的解码方法进行了对比\upcite{germann2001fast},并给出了一些加速解码的思路。随后,也有工作进一步对这些方法进行改进\upcite{DBLP:conf/coling/UdupaFM04,DBLP:conf/naacl/RiedelC09}。实际上,基于单词的模型的解码是一个NP完全问题\upcite{knight1999decoding},这也是为什么机器翻译的解码十分困难的原因。关于翻译模型解码算法的时间复杂度也有很多讨论\upcite{DBLP:conf/eacl/UdupaM06,DBLP:conf/emnlp/LeuschMN08,DBLP:journals/mt/FlemingKN15} \item 基于单词的翻译模型的解码问题也是早期研究者所关注的。比较经典的方法的是贪婪方法\upcite{germann2003greedy}。也有研究者对不同的解码方法进行了对比\upcite{germann2001fast},并给出了一些加速解码的思路。随后,也有工作进一步对这些方法进行改进\upcite{DBLP:conf/coling/UdupaFM04,DBLP:conf/naacl/RiedelC09}。实际上,基于单词的模型的解码是一个NP完全问题\upcite{knight1999decoding},这也是为什么机器翻译的解码十分困难的原因。关于翻译模型解码算法的时间复杂度也有很多讨论\upcite{DBLP:conf/eacl/UdupaM06,DBLP:conf/emnlp/LeuschMN08,DBLP:journals/mt/FlemingKN15}
......
...@@ -103,7 +103,7 @@ ...@@ -103,7 +103,7 @@
\label{eq:6-4} \label{eq:6-4}
\end{eqnarray} \end{eqnarray}
\parinterval 类似于模型1,模型2的表达式\eqref{eq:6-4}也能被拆分为两部分进行理解。第一部分:遍历所有的$\seq{a}$;第二部分:对于每个$\seq{a}$累加对齐概率$\funp{P}(\seq{s},\seq{a}| \seq{t})$,即计算对齐概率$a(a_j|j,m,l)$词汇翻译概率$f(s_j|t_{a_j})$对于所有源语言位置的乘积。 \parinterval 类似于模型1,模型2的表达式\eqref{eq:6-4}也能被拆分为两部分进行理解。第一部分:遍历所有的$\seq{a}$;第二部分:对于每个$\seq{a}$累加对齐概率$\funp{P}(\seq{s},\seq{a}| \seq{t})$,即计算对齐概率$a(a_j|j,m,l)$单词翻译概率$f(s_j|t_{a_j})$对于所有源语言位置的乘积。
\parinterval 同样的,模型2的解码及训练优化和模型1的十分相似,在此不再赘述,详细推导过程可以参看{\chapterfive}\ref{IBM-model1}小节解码及计算优化部分。这里直接给出IBM模型2的最终表达式: \parinterval 同样的,模型2的解码及训练优化和模型1的十分相似,在此不再赘述,详细推导过程可以参看{\chapterfive}\ref{IBM-model1}小节解码及计算优化部分。这里直接给出IBM模型2的最终表达式:
\begin{eqnarray} \begin{eqnarray}
...@@ -170,7 +170,7 @@ ...@@ -170,7 +170,7 @@
\parinterval 从前面的介绍可知,IBM模型1和模型2把不同的源语言单词看作相互独立的单元来进行词对齐和翻译。换句话说,即使某个源语言短语中的两个单词都对齐到同一个目标语单词,它们之间也是相互独立的。这样IBM模型1和模型2对于多个源语言单词对齐到同一个目标语单词的情况并不能很好地进行描述。 \parinterval 从前面的介绍可知,IBM模型1和模型2把不同的源语言单词看作相互独立的单元来进行词对齐和翻译。换句话说,即使某个源语言短语中的两个单词都对齐到同一个目标语单词,它们之间也是相互独立的。这样IBM模型1和模型2对于多个源语言单词对齐到同一个目标语单词的情况并不能很好地进行描述。
\parinterval 这里将会给出另一个翻译模型,能在一定程度上解决上面提到的问题\upcite{DBLP:journals/coling/BrownPPM94,och2003systematic}。该模型把目标语言生成源语言的过程分解为如下几个步骤:首先,确定每个目标语言单词生成源语言单词的个数,这里把它称为{\small\sffamily\bfseries{繁衍率}}\index{繁衍率}{\small\sffamily\bfseries{产出率}}\index{产出率}(Fertility)\index{Fertility};其次,决定目标语言句子中每个单词生成的源语言单词都是什么,即决定生成的第一个源语言单词是什么,生成的第二个源语言单词是什么,以此类推。这样每个目标语言单词就对应了一个源语言单词列表;最后把各组源语言单词列表中的每个单词都放置到合适的位置上,完成目标语言译文到源语言句子的生成。 \parinterval 这里将会给出另一个翻译模型,能在一定程度上解决上面提到的问题\upcite{DBLP:journals/coling/BrownPPM94,och2003systematic}。该模型把目标语言生成源语言的过程分解为如下几个步骤:首先,确定每个目标语言单词生成源语言单词的个数,这里把它称为{\small\sffamily\bfseries{繁衍率}}\index{繁衍率或产出率}{\small\sffamily\bfseries{产出率}}(Fertility)\index{Fertility};其次,决定目标语言句子中每个单词生成的源语言单词都是什么,即决定生成的第一个源语言单词是什么,生成的第二个源语言单词是什么,以此类推。这样每个目标语言单词就对应了一个源语言单词列表;最后把各组源语言单词列表中的每个单词都放置到合适的位置上,完成目标语言译文到源语言句子的生成。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -232,7 +232,7 @@ ...@@ -232,7 +232,7 @@
\vspace{0.5em} \vspace{0.5em}
\item 第二部分:对$i=0$时的产出率建模({\color{blue!70} 蓝色}),即空标记$t_0$的产出率生成概率。它依赖于$\seq{t}$和区间$[1,i-1]$的目标语单词的产出率$\varphi_1^l$ \item 第二部分:对$i=0$时的产出率建模({\color{blue!70} 蓝色}),即空标记$t_0$的产出率生成概率。它依赖于$\seq{t}$和区间$[1,i-1]$的目标语单词的产出率$\varphi_1^l$
\vspace{0.5em} \vspace{0.5em}
\item 第三部分:对词汇翻译建模({\color{green!70} 绿色}),目标语言单词$t_i$生成第$k$个源语言单词$\tau_{ik}$时的概率,依赖于$\seq{t}$、所有目标语言单词的产出率$\varphi_0^l$、区间$i\in[1,l]$的目标语言单词生成的源语言单词$\tau_1^{i-1}$和目标语单词$t_i$生成的前$k$个源语言单词$\tau_{i1}^{k-1}$ \item 第三部分:对单词翻译建模({\color{green!70} 绿色}),目标语言单词$t_i$生成第$k$个源语言单词$\tau_{ik}$时的概率,依赖于$\seq{t}$、所有目标语言单词的产出率$\varphi_0^l$、区间$i\in[1,l]$的目标语言单词生成的源语言单词$\tau_1^{i-1}$和目标语单词$t_i$生成的前$k$个源语言单词$\tau_{i1}^{k-1}$
\vspace{0.5em} \vspace{0.5em}
\item 第四部分:对于每个$i\in[1,l]$的目标语言单词生成的源语言单词的扭曲度建模({\color{yellow!70!black} 黄色}),即第$i$个目标语言单词生成的第$k$个源语言单词在源文中的位置$\pi_{ik}$ 的概率。其中$\pi_1^{i-1}$ 表示区间$[1,i-1]$的目标语言单词生成的源语言单词的扭曲度,$\pi_{i1}^{k-1}$表示第$i$目标语言单词生成的前$k-1$个源语言单词的扭曲度。 \item 第四部分:对于每个$i\in[1,l]$的目标语言单词生成的源语言单词的扭曲度建模({\color{yellow!70!black} 黄色}),即第$i$个目标语言单词生成的第$k$个源语言单词在源文中的位置$\pi_{ik}$ 的概率。其中$\pi_1^{i-1}$ 表示区间$[1,i-1]$的目标语言单词生成的源语言单词的扭曲度,$\pi_{i1}^{k-1}$表示第$i$目标语言单词生成的前$k-1$个源语言单词的扭曲度。
\vspace{0.5em} \vspace{0.5em}
...@@ -255,7 +255,7 @@ ...@@ -255,7 +255,7 @@
\parinterval 通常把$d(j|i,m,l)$称为扭曲度函数。这里$\funp{P}(\varphi_i|\varphi_1^{i-1},\seq{t})={\funp{P}(\varphi_i|t_i)}$${\funp{P}(\pi_{ik}=j|\pi_{i1}^{k-1},}$ $\pi_{1}^{i-1},\tau_0^l,\varphi_0^l,\seq{t})=d(j|i,m,l)$仅对$1 \le i \le l$成立。这样就完成了图\ref{fig:6-7}中第1、3和4部分的建模。 \parinterval 通常把$d(j|i,m,l)$称为扭曲度函数。这里$\funp{P}(\varphi_i|\varphi_1^{i-1},\seq{t})={\funp{P}(\varphi_i|t_i)}$${\funp{P}(\pi_{ik}=j|\pi_{i1}^{k-1},}$ $\pi_{1}^{i-1},\tau_0^l,\varphi_0^l,\seq{t})=d(j|i,m,l)$仅对$1 \le i \le l$成立。这样就完成了图\ref{fig:6-7}中第1、3和4部分的建模。
\parinterval 对于$i=0$的情况需要单独进行考虑。实际上,$t_0$只是一个虚拟的单词。它要对应$\seq{s}$中原本为空对齐的单词。这里假设:要等其他非空对应单词都被生成(放置)后,才考虑这些空对齐单词的生成(放置)。即非空对单词都被生成后,在那些还有空的位置上放置这些空对的源语言单词。此外,在任何的空位置上放置空对的源语言单词都是等概率的,即放置空对齐源语言单词服从均匀分布。这样在已经放置了$k$个空对齐源语言单词的时候,应该还有$\varphi_0-k$个空位置。如果第$j$个源语言位置为空,那么 \parinterval 对于$i=0$的情况需要单独进行考虑。实际上,$t_0$只是一个虚拟的单词。它要对应$\seq{s}$中原本为空对齐的单词。这里假设:要等其他非空对齐单词都被生成(放置)后,才考虑这些空对齐单词的生成(放置)。即非空对齐单词都被生成后,在那些还有空的位置上放置这些空对齐的源语言单词。此外,在任何空位置上放置空对齐的源语言单词都是等概率的,即放置空对齐源语言单词服从均匀分布。这样在已经放置了$k$个空对齐源语言单词的时候,应该还有$\varphi_0-k$个空位置。如果第$j$个源语言位置为空,那么
\begin{eqnarray} \begin{eqnarray}
\funp{P}(\pi_{0k}=j|\pi_{01}^{k-1},\pi_1^l,\tau_0^l,\varphi_0^l,\seq{t}) & = & \frac{1}{\varphi_0-k} \funp{P}(\pi_{0k}=j|\pi_{01}^{k-1},\pi_1^l,\tau_0^l,\varphi_0^l,\seq{t}) & = & \frac{1}{\varphi_0-k}
...@@ -313,7 +313,7 @@ p_0+p_1 & = & 1 \label{eq:6-21} ...@@ -313,7 +313,7 @@ p_0+p_1 & = & 1 \label{eq:6-21}
\parinterval IBM模型3仍然存在问题,比如,它不能很好地处理一个目标语言单词生成多个源语言单词的情况。这个问题在模型1和模型2中也存在。如果一个目标语言单词对应多个源语言单词,则这些源语言单词往往会构成短语。但是模型1-3把这些源语言单词看成独立的单元,而实际上它们是一个整体。这就造成了在模型1-3中这些源语言单词可能会“分散”开。为了解决这个问题,模型4对模型3进行了进一步修正。 \parinterval IBM模型3仍然存在问题,比如,它不能很好地处理一个目标语言单词生成多个源语言单词的情况。这个问题在模型1和模型2中也存在。如果一个目标语言单词对应多个源语言单词,则这些源语言单词往往会构成短语。但是模型1-3把这些源语言单词看成独立的单元,而实际上它们是一个整体。这就造成了在模型1-3中这些源语言单词可能会“分散”开。为了解决这个问题,模型4对模型3进行了进一步修正。
\parinterval 为了更清楚地阐述,这里引入新的术语\ \dash \ {\small\bfnew{概念单元}}\index{概念单元}{\small\bfnew{概念}}\index{概念}(Concept)\index{Concept}。词对齐可以被看作概念之间的对应。这里的概念是指具有独立语法或语义功能的一组单词。依照Brown等人的表示方法\upcite{DBLP:journals/coling/BrownPPM94},可以把概念记为cept.。每个句子都可以被表示成一系列的cept.。这里要注意的是,源语言句子中的cept.数量不一定等于目标句子中的cept.数量。因为有些cept. 可以为空,因此可以把那些空对的单词看作空cept.。比如,在图\ref{fig:6-8}的实例中,“了”就对应一个空cept.。 \parinterval 为了更清楚地阐述,这里引入新的术语\ \dash \ {\small\bfnew{概念单元}}\index{概念单元或概念}{\small\bfnew{概念}}(Concept)\index{Concept}。词对齐可以被看作概念之间的对应。这里的概念是指具有独立语法或语义功能的一组单词。依照Brown等人的表示方法\upcite{DBLP:journals/coling/BrownPPM94},可以把概念记为cept.。每个句子都可以被表示成一系列的cept.。这里要注意的是,源语言句子中的cept.数量不一定等于目标句子中的cept.数量。因为有些cept. 可以为空,因此可以把那些空对的单词看作空cept.。比如,在图\ref{fig:6-8}的实例中,“了”就对应一个空cept.。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -353,7 +353,7 @@ p_0+p_1 & = & 1 \label{eq:6-21} ...@@ -353,7 +353,7 @@ p_0+p_1 & = & 1 \label{eq:6-21}
\subsection{ IBM 模型5} \subsection{ IBM 模型5}
\parinterval 模型3和模型4并不是“准确”的模型。这两个模型会把一部分概率分配给一些根本就不存在的句子。这个问题被称作IBM模型3和模型4的{\small\bfnew{缺陷}}\index{缺陷}(Deficiency)\index{Deficiency}。说得具体一些,模型3和模型4 中并没有这样的约束:如果已经放置了某个源语言单词的位置不能再放置其他单词,也就是说句子的任何位置只能放置一个词,不能多也不能少。由于缺乏这个约束,模型3和模型4中在所有合法的词对齐上概率和不等于1。 这部分缺失的概率被分配到其他不合法的词对齐上。举例来说,如图\ref{fig:6-9}所示,“吃/早饭”和“have breakfast”之间的合法词对齐用直线表示 。但是在模型3和模型4中, 它们的概率和为$0.9<1$。 损失掉的概率被分配到像a5和a6这样的对齐上了(红色)。虽然IBM模型并不支持一对多的对齐,但是模型3和模型4把概率分配给这些“ 不合法”的词对齐上,因此也就产生所谓的缺陷。 \parinterval 模型3和模型4并不是“准确”的模型。这两个模型会把一部分概率分配给一些根本就不存在的句子。这个问题被称作IBM模型3和模型4的{\small\bfnew{缺陷}}\index{缺陷}(Deficiency)\index{Deficiency}。说得具体一些,模型3和模型4 中并没有这样的约束:已经放置了某个源语言单词的位置不能再放置其他单词,也就是说句子的任何位置只能放置一个词,不能多也不能少。由于缺乏这个约束,模型3和模型4中在所有合法的词对齐上概率和不等于1。 这部分缺失的概率被分配到其他不合法的词对齐上。举例来说,如图\ref{fig:6-9}所示,“吃/早饭”和“have breakfast”之间的合法词对齐用直线表示 。但是在模型3和模型4中, 它们的概率和为$0.9<1$。 损失掉的概率被分配到像a5和a6这样的对齐上了(红色)。虽然IBM模型并不支持一对多的对齐,但是模型3和模型4把概率分配给这些“ 不合法”的词对齐上,因此也就产生所谓的缺陷。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -364,7 +364,7 @@ p_0+p_1 & = & 1 \label{eq:6-21} ...@@ -364,7 +364,7 @@ p_0+p_1 & = & 1 \label{eq:6-21}
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\parinterval 为了解决这个问题,模型5在模型中增加了额外的约束。基本想法是,在放置一个源语言单词的时候检查这个位置是否已经放置了单词,如果可以则把这个放置过程赋予一定的概率,否则把它作为不可能事件。基于这个想法,就需要在逐个放置源语言单词的时候判断源语言句子的哪些位置为空。这里引入一个变量$v(j, {\tau_1}^{[i]-1}, \tau_{[i]1}^{k-1})$,它表示在放置$\tau_{[i]k}$之前($\tau_1^{[i]-1}$$\tau_{[i]1}^{k-1}$已经被放置完了),从源语言句子的第一个位置到位置$j$(包含$j$)为止还有多少个空位置。这里,把这个变量简写为$v_j$。于是,对于$[i]$所对应的源语言单词列表($\tau_{[i]}$)中的第一个单词($\tau_{[i]1}$),有: \parinterval 为了解决这个问题,模型5在模型中增加了额外的约束。基本想法是,在放置一个源语言单词的时候检查这个位置是否已经放置了单词,如果没有放置单词,则把这个放置过程赋予一定的概率,否则把它作为不可能事件。基于这个想法,就需要在逐个放置源语言单词的时候判断源语言句子的哪些位置为空。这里引入一个变量$v(j, {\tau_1}^{[i]-1}, \tau_{[i]1}^{k-1})$,它表示在放置$\tau_{[i]k}$之前($\tau_1^{[i]-1}$$\tau_{[i]1}^{k-1}$已经被放置完了),从源语言句子的第一个位置到位置$j$(包含$j$)为止还有多少个空位置。这里,把这个变量简写为$v_j$。于是,对于$[i]$所对应的源语言单词列表($\tau_{[i]}$)中的第一个单词($\tau_{[i]1}$),有:
\begin{eqnarray} \begin{eqnarray}
\funp{P}(\pi_{[i]1} = j | \pi_1^{[i]-1}, \tau_0^l, \varphi_0^l, \seq{t}) & = & d_1(v_j|B(s_j), v_{\odot_{i-1}}, v_m-(\varphi_{[i]}-1)) \cdot \nonumber \\ \funp{P}(\pi_{[i]1} = j | \pi_1^{[i]-1}, \tau_0^l, \varphi_0^l, \seq{t}) & = & d_1(v_j|B(s_j), v_{\odot_{i-1}}, v_m-(\varphi_{[i]}-1)) \cdot \nonumber \\
& & (1-\delta(v_j,v_{j-1})) & & (1-\delta(v_j,v_{j-1}))
...@@ -431,7 +431,7 @@ p_0+p_1 & = & 1 \label{eq:6-21} ...@@ -431,7 +431,7 @@ p_0+p_1 & = & 1 \label{eq:6-21}
\label{eq:6-27} \label{eq:6-27}
\end{eqnarray} \end{eqnarray}
\parinterval 本质上,模型3和模型4就是对应$\funp{P}({\textrm{failure}|\seq{t}})>0$的情况。这部分概率是模型损失掉的。有时候也把这类缺陷称为{\small\bfnew{物理缺陷}}\index{物理缺陷}(Physical Deficiency\index{Physical Deficiency})或{\small\bfnew{技术缺陷}}\index{技术缺陷}(Technical Deficiency\index{Technical Deficiency})。还有一种缺陷被称作{\small\bfnew{精神缺陷}}(Spiritual Deficiency\index{Spiritual Deficiency})或{\small\bfnew{逻辑缺陷}}\index{逻辑缺陷}(Logical Deficiency\index{Logical Deficiency}),它是指$\funp{P}({\textrm{well}|\seq{t}}) + \funp{P}({\textrm{ill}|\seq{t}}) = 1$$\funp{P}({\textrm{ill}|\seq{t}}) > 0$的情况。模型1 和模型2 就有逻辑缺陷。可以注意到,技术缺陷只存在于模型3 和模型4 中,模型1和模型2并没有技术缺陷问题。根本原因在于模型1和模型2的词对齐是从源语言出发对应到目标语言,$\seq{t}$$\seq{s}$ 的翻译过程实际上是从单词$s_1$开始到单词$s_m$ 结束,依次把每个源语言单词$s_j$对应到唯一一个目标语言位置。显然,这个过程能够保证每个源语言单词仅对应一个目标语言单词。但是,模型3 和模型4中对齐是从目标语言出发对应到源语言,$\seq{t}$$\seq{s}$的翻译过程从$t_1$开始$t_l$ 结束,依次把目标语言单词$t_i$生成的单词对应到某个源语言位置上。但是这个过程不能保证$t_i$中生成的单词所对应的位置没有被其他单词占用,因此也就产生了缺陷。 \parinterval 本质上,模型3和模型4就是对应$\funp{P}({\textrm{failure}|\seq{t}})>0$的情况。这部分概率是模型损失掉的。有时候也把这类缺陷称为{\small\bfnew{物理缺陷}}\index{物理缺陷}(Physical Deficiency\index{Physical Deficiency})或{\small\bfnew{技术缺陷}}\index{技术缺陷}(Technical Deficiency\index{Technical Deficiency})。还有一种缺陷被称作{\small\bfnew{精神缺陷}}\index{精神缺陷}(Spiritual Deficiency\index{Spiritual Deficiency})或{\small\bfnew{逻辑缺陷}}\index{逻辑缺陷}(Logical Deficiency\index{Logical Deficiency}),它是指$\funp{P}({\textrm{well}|\seq{t}}) + \funp{P}({\textrm{ill}|\seq{t}}) = 1$$\funp{P}({\textrm{ill}|\seq{t}}) > 0$的情况。模型1 和模型2 就有逻辑缺陷。可以注意到,技术缺陷只存在于模型3 和模型4 中,模型1和模型2并没有技术缺陷问题。根本原因在于模型1和模型2的词对齐是从源语言出发对应到目标语言,$\seq{t}$$\seq{s}$ 的翻译过程实际上是从单词$s_1$开始到单词$s_m$ 结束,依次把每个源语言单词$s_j$对应到唯一一个目标语言位置。显然,这个过程能够保证每个源语言单词仅对应一个目标语言单词。但是,模型3 和模型4中对齐是从目标语言出发对应到源语言,$\seq{t}$$\seq{s}$的翻译过程从$t_1$开始$t_l$ 结束,依次把目标语言单词$t_i$生成的单词对应到某个源语言位置上。但是这个过程不能保证$t_i$中生成的单词所对应的位置没有被其他单词占用,因此也就产生了缺陷。
\parinterval 这里还要强调的是,技术缺陷是模型3和模型4是模型本身的缺陷造成的,如果有一个“更好”的模型就可以完全避免这个问题。而逻辑缺陷几乎是不能从模型上根本解决的,因为对于任意一种语言都不能枚举所有的句子($\funp{P}({\textrm{ill}|\seq{t}})$实际上是得不到的)。 \parinterval 这里还要强调的是,技术缺陷是模型3和模型4是模型本身的缺陷造成的,如果有一个“更好”的模型就可以完全避免这个问题。而逻辑缺陷几乎是不能从模型上根本解决的,因为对于任意一种语言都不能枚举所有的句子($\funp{P}({\textrm{ill}|\seq{t}})$实际上是得不到的)。
...@@ -445,7 +445,7 @@ p_0+p_1 & = & 1 \label{eq:6-21} ...@@ -445,7 +445,7 @@ p_0+p_1 & = & 1 \label{eq:6-21}
\parinterval 在IBM模型中,$\funp{P}(\seq{t})\funp{P}(\seq{s}| \seq{t})$会随着目标语言句子长度的增加而减少,因为这种模型有多个概率化的因素组成,乘积项越多结果的值越小。这也就是说,IBM模型会更倾向选择长度短一些的目标语言句子。显然这种对短句子的偏向性并不是机器翻译所期望的。 \parinterval 在IBM模型中,$\funp{P}(\seq{t})\funp{P}(\seq{s}| \seq{t})$会随着目标语言句子长度的增加而减少,因为这种模型有多个概率化的因素组成,乘积项越多结果的值越小。这也就是说,IBM模型会更倾向选择长度短一些的目标语言句子。显然这种对短句子的偏向性并不是机器翻译所期望的。
\parinterval 这个问题在很多机器翻译系统中都存在。它实际上也是了一种{\small\bfnew{系统偏置}}\index{系统偏置}(System Bias)\index{System Bias}的体现。为了消除这种偏置,可以通过在模型中增加一个短句子惩罚因子来抵消掉模型对短句子的倾向性。比如,可以定义一个惩罚因子,它的值随着长度的减少而增加。不过,简单引入这样的惩罚因子会导致模型并不符合一个严格的噪声信道模型。它对应一个基于判别式框架的翻译模型,这部分内容会在{\chapterseven}进行介绍。 \parinterval 这个问题在很多机器翻译系统中都存在。它实际上也是一种{\small\bfnew{系统偏置}}\index{系统偏置}(System Bias)\index{System Bias}的体现。为了消除这种偏置,可以通过在模型中增加一个短句子惩罚因子来抵消掉模型对短句子的倾向性。比如,可以定义一个惩罚因子,它的值随着长度的减少而增加。不过,简单引入这样的惩罚因子会导致模型并不符合一个严格的噪声信道模型。它对应一个基于判别框架的翻译模型,这部分内容会在{\chapterseven}进行介绍。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
......
...@@ -147,7 +147,7 @@ ...@@ -147,7 +147,7 @@
\end{definition} \end{definition}
%------------------------------------------- %-------------------------------------------
\parinterval 根据这个定义,对于一个由$n$个单词构成的句子,可以包含$\frac{n(n-1)}{2}$个短语(子串)。进一步,可以把每个句子看作是由一系列短语构成的序列。组成这个句子的短语序列也可以被看作是句子的一个{\small\bfnew{短语切分}}\index{短语切分}(Phrasal Segmentation)\index{Phrasal Segmentation} \parinterval 根据这个定义,对于一个由$n$个单词构成的句子,可以包含$\frac{n(n-1)}{2}$个短语(子串)。进一步,可以把每个句子看作是由一系列短语构成的序列。组成这个句子的短语序列也可以被看作是句子的一个{\small\bfnew{短语切分}}\index{短语切分}(Phrase Segmentation)\index{Phrase Segmentation}
%------------------------------------------- %-------------------------------------------
\vspace{0.5em} \vspace{0.5em}
...@@ -313,7 +313,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2) ...@@ -313,7 +313,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)
\subsection{对数线性模型} \subsection{对数线性模型}
\parinterval 对于如何定义$\funp{P}(d,\seq{t}|\seq{s})$有很多种思路,比如,可以把$d$拆解为若干步骤,然后对这些步骤分别建模,最后形成描述$d$的生成式模型。这种方法在{\chapterfive}{\chaptersix}的IBM模型中也大量使用。但是,生成式模型的每一步推导需要有严格的概率解释,这也限制了研究人员从更多的角度对$d$进行描述。这里,可以使用另外一种方法\ \dash \ 判别式模型来对$\funp{P}(d,\seq{t}|\seq{s})$进行描述\upcite{DBLP:conf/acl/OchN02}。其模型形式如下: \parinterval 对于如何定义$\funp{P}(d,\seq{t}|\seq{s})$有很多种思路,比如,可以把$d$拆解为若干步骤,然后对这些步骤分别建模,最后形成描述$d$的生成模型。这种方法在{\chapterfive}{\chaptersix}的IBM模型中也大量使用。但是,生成模型的每一步推导需要有严格的概率解释,这也限制了研究人员从更多的角度对$d$进行描述。这里,可以使用另外一种方法\ \dash \ 判别模型来对$\funp{P}(d,\seq{t}|\seq{s})$进行描述\upcite{DBLP:conf/acl/OchN02}。其模型形式如下:
\begin{eqnarray} \begin{eqnarray}
\funp{P}(d,\seq{t}|\seq{s}) &=& \frac{\textrm{exp}(\textrm{score}(d,\seq{t},\seq{s}))}{\sum_{d',\seq{t}'} \textrm{exp}(\textrm{score}(d',\seq{t}',\seq{s}))} \label{eqa4.10} \funp{P}(d,\seq{t}|\seq{s}) &=& \frac{\textrm{exp}(\textrm{score}(d,\seq{t},\seq{s}))}{\sum_{d',\seq{t}'} \textrm{exp}(\textrm{score}(d',\seq{t}',\seq{s}))} \label{eqa4.10}
...@@ -339,14 +339,14 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2) ...@@ -339,14 +339,14 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)
% NEW SUB-SECTION % NEW SUB-SECTION
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsection{判别模型中的特征} \subsection{判别模型中的特征}
\parinterval 判别模型最大的好处在于它可以更灵活地引入特征。某种意义上,每个特征都是在描述翻译的某方面属性。在各种统计分类模型中,也大量使用了“特征”这个概念(见{\chapterthree})。比如,要判别一篇新闻是体育方面的还是文化方面的,可以设计一个分类器,用词作为特征。这个分类器就会有能力区分“体育”和“文化”两个类别的特征,最终决定这篇文章属于哪个类别。统计机器翻译也在做类似的事情。系统研发者可以通过设计翻译相关的特征,来区分不同翻译结果的好坏。翻译模型会综合这些特征对所有可能的译文进行打分和排序,并选择得分最高的译文输出。 \parinterval 判别模型最大的好处在于它可以更灵活地引入特征。某种意义上,每个特征都是在描述翻译的某方面属性。在各种统计分类模型中,也大量使用了“特征”这个概念(见{\chapterthree})。比如,要判别一篇新闻是体育方面的还是文化方面的,可以设计一个分类器,用词作为特征。这个分类器就会有能力区分“体育”和“文化”两个类别的特征,最终决定这篇文章属于哪个类别。统计机器翻译也在做类似的事情。系统研发者可以通过设计翻译相关的特征,来区分不同翻译结果的好坏。翻译模型会综合这些特征对所有可能的译文进行打分和排序,并选择得分最高的译文输出。
\parinterval 在判别模型中,系统开发者可以设计任意的特征来描述翻译,特征的设计甚至都不需要统计上的解释,包括0-1特征、计数特征等。比如,可以设计特征来回答“you这个单词是否出现在译文中?”。如果答案为真,这个特征的值为1,否则为0。再比如,可以设计特征来回答“译文里有多少个单词?”。这个特征相当于一个统计目标语单词数的函数,它的值即为译文的长度。此外,还可以设计更加复杂的实数特征,甚至具有概率意义的特征。在随后的内容中还将看到,翻译的调序、译文流畅度等都会被建模为特征,而机器翻译系统会融合这些特征,综合得到最优的输出译文。 \parinterval 在判别模型中,系统开发者可以设计任意的特征来描述翻译,特征的设计甚至都不需要统计上的解释,包括0-1特征、计数特征等。比如,可以设计特征来回答“you这个单词是否出现在译文中?”。如果答案为真,这个特征的值为1,否则为0。再比如,可以设计特征来回答“译文里有多少个单词?”。这个特征相当于一个统计目标语单词数的函数,它的值即为译文的长度。此外,还可以设计更加复杂的实数特征,甚至具有概率意义的特征。在随后的内容中还将看到,翻译的调序、译文流畅度等都会被建模为特征,而机器翻译系统会融合这些特征,综合得到最优的输出译文。
\parinterval 此外,判别式模型并不需要像生成式模型那样对问题进行具有统计学意义的“分解”,更不需要对每个步骤进行严格的数学推导。相反,它直接对问题的后验概率进行建模。由于不像生成式模型那样需要引入假设来对每个生成步骤进行化简,判别式模型对问题的刻画更加直接,因此也受到自然语言处理研究者的青睐。 \parinterval 此外,判别模型并不需要像生成模型那样对问题进行具有统计学意义的“分解”,更不需要对每个步骤进行严格的数学推导。相反,它直接对问题的后验概率进行建模。由于不像生成模型那样需要引入假设来对每个生成步骤进行化简,判别模型对问题的刻画更加直接,因此也受到自然语言处理研究者的青睐。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
...@@ -354,7 +354,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2) ...@@ -354,7 +354,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)
\subsection{搭建模型的基本流程} \subsection{搭建模型的基本流程}
\parinterval 对于翻译的判别建模,需要回答两个问题: \parinterval 对于翻译的判别建模,需要回答两个问题:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -366,7 +366,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2) ...@@ -366,7 +366,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)
在基于短语的翻译模型中,通常包含三类特征:短语翻译特征、调序特征、语言模型相关的特征。这些特征都需要从训练数据中学习。 在基于短语的翻译模型中,通常包含三类特征:短语翻译特征、调序特征、语言模型相关的特征。这些特征都需要从训练数据中学习。
\parinterval\ref{fig:7-8}展示了一个基于短语的机器翻译模型的搭建流程。其中的训练数据包括双语平行语料和目标语言单语语料。首先,需要从双语平行数据中学习短语的翻译,并形成一个短语翻译表;然后,再从双语平行数据中学习调序模型;最后,从目标语单语数据中学习语言模型。短语翻译表、调序模型、语言模型都会作为特征被送入判别模型,由解码器完成对新句子的翻译。而这些特征的权重可以在额外的开发集上进行调优。关于短语抽取、调序模型和翻译特征的学习,会在本章的\ref{section-7.3}-\ref{section-7.6}节进行介绍。 \parinterval\ref{fig:7-8}展示了一个基于短语的机器翻译模型的搭建流程。其中的训练数据包括双语平行语料和目标语言单语语料。首先,需要从双语平行数据中学习短语的翻译,并形成一个短语翻译表;然后,再从双语平行数据中学习调序模型;最后,从目标语单语数据中学习语言模型。短语翻译表、调序模型、语言模型都会作为特征被送入判别模型,由解码器完成对新句子的翻译。而这些特征的权重可以在额外的开发集上进行调优。关于短语抽取、调序模型和翻译特征的学习,会在本章的\ref{section-7.3}-\ref{section-7.6}节进行介绍。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -481,7 +481,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2) ...@@ -481,7 +481,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)
\parinterval 给定一个双语句对$(\seq{s},\seq{t})$$c(\bar{s})$表示短语$\bar{s}$$\seq{s}$中出现的次数,$c(\bar{s},\bar{t})$表示双语短语$(\bar{s},\bar{t})$$(\seq{s},\seq{t})$中被抽取出来的次数。对于一个包含多个句子的语料库,$c(\bar{s})$$c(\bar{s},\bar{t})$可以按句子进行累加。类似的,也可以用同样的方法,计算$\bar{t}$$\bar{s}$的翻译概率,即$\funp{P}(\bar{s}|\bar{t})$。一般会同时使用$\funp{P}(\bar{t}|\bar{s})$$\funp{P}(\bar{s}|\bar{t})$度量一个双语短语的好与坏。 \parinterval 给定一个双语句对$(\seq{s},\seq{t})$$c(\bar{s})$表示短语$\bar{s}$$\seq{s}$中出现的次数,$c(\bar{s},\bar{t})$表示双语短语$(\bar{s},\bar{t})$$(\seq{s},\seq{t})$中被抽取出来的次数。对于一个包含多个句子的语料库,$c(\bar{s})$$c(\bar{s},\bar{t})$可以按句子进行累加。类似的,也可以用同样的方法,计算$\bar{t}$$\bar{s}$的翻译概率,即$\funp{P}(\bar{s}|\bar{t})$。一般会同时使用$\funp{P}(\bar{t}|\bar{s})$$\funp{P}(\bar{s}|\bar{t})$度量一个双语短语的好与坏。
\parinterval 当遇到低频短语时,短语翻译概率的估计可能会不准确。例如,短语$\bar{s}$$\bar{t}$在语料中只出现了一次,且在一个句子中共现,那么$\bar{s}$$\bar{t}$的翻译概率为$\funp{P}(\bar{t}|\bar{s})=1$,这显然是不合理的,因为$\bar{s}$$\bar{t}$的出现完全可能是偶然事件。既然直接度量双语短语的好坏会面临数据稀疏问题,一个自然的想法就是把短语拆解成单词,利用双语短语中单词翻译的好坏间接度量双语短语的好坏。为了达到这个目的,可以使用{\small\bfnew{词汇化翻译概率}}\index{词汇化翻译概率}(Lexical Translation Probability)\index{Lexical Translation Probability}。前面借助词对齐信息完成了双语短语的抽取,因此,词对齐信息本身就包含了短语内部单词之间的对应关系。因此同样可以借助词对齐来计算词汇翻译概率,公式如下: \parinterval 当遇到低频短语时,短语翻译概率的估计可能会不准确。例如,短语$\bar{s}$$\bar{t}$在语料中只出现了一次,且在一个句子中共现,那么$\bar{s}$$\bar{t}$的翻译概率为$\funp{P}(\bar{t}|\bar{s})=1$,这显然是不合理的,因为$\bar{s}$$\bar{t}$的出现完全可能是偶然事件。既然直接度量双语短语的好坏会面临数据稀疏问题,一个自然的想法就是把短语拆解成单词,利用双语短语中单词翻译的好坏间接度量双语短语的好坏。为了达到这个目的,可以使用{\small\bfnew{词汇化翻译概率}}\index{单词化翻译概率}(Lexical Translation Probability)\index{Lexical Translation Probability}。前面借助词对齐信息完成了双语短语的抽取,可以看出,词对齐信息本身就包含了短语内部单词之间的对应关系。因此同样可以借助词对齐来计算词汇翻译概率,公式如下:
\begin{eqnarray} \begin{eqnarray}
\funp{P}_{\textrm{lex}}(\bar{t}|\bar{s}) & = & \prod_{j=1}^{|\bar{s}|} \frac{1}{|\{j|a(j,i) = 1\}|} \sum_{\forall(j,i):a(j,i) = 1} \sigma (t_i|s_j) \funp{P}_{\textrm{lex}}(\bar{t}|\bar{s}) & = & \prod_{j=1}^{|\bar{s}|} \frac{1}{|\{j|a(j,i) = 1\}|} \sum_{\forall(j,i):a(j,i) = 1} \sigma (t_i|s_j)
\label{eq:7-14} \label{eq:7-14}
...@@ -493,14 +493,14 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2) ...@@ -493,14 +493,14 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter7/Figures/figure-example-of-vocabulary-translation-probability} \input{./Chapter7/Figures/figure-example-of-vocabulary-translation-probability}
\caption{词汇翻译概率实例} \caption{单词翻译概率实例}
\label{fig:7-14} \label{fig:7-14}
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 来看一个具体的例子,如图\ref{fig:7-14}所示。对于一个双语短语,将它们的词对齐关系代入到公式\eqref{eq:7-14}就会得到短语的词汇翻译概率。对于词汇翻译概率,可以使用IBM 模型中的单词翻译表,也可以通过统计获得\upcite{koehn2002learning}。如果一个单词的词对齐为空,则用$N$表示它翻译为空的概率。和短语翻译概率一样,可以使用双向的词汇化翻译概率来评价双语短语的好坏。 \parinterval 来看一个具体的例子,如图\ref{fig:7-14}所示。对于一个双语短语,将它们的词对齐关系代入到公式\eqref{eq:7-14}就会得到短语的单词翻译概率。对于单词翻译概率,可以使用IBM 模型中的单词翻译表,也可以通过统计获得\upcite{koehn2002learning}。如果一个单词的词对齐为空,则用$N$表示它翻译为空的概率。和短语翻译概率一样,可以使用双向的单词化翻译概率来评价双语短语的好坏。
\parinterval 经过上面的介绍,可以从双语平行语料中把双语短语抽取出来,同时得到相应的翻译概率(即特征),组成{\small\bfnew{短语表}}\index{短语表}(Phrase Table)\index{Phrase Table}。图\ref{fig:7-15}展示了一个真实短语表的片段。其中包括源语言短语和目标语言短语,用|||进行分割。每个双语对应的得分,包括正向和反向的词汇翻译概率以及短语翻译概率,还包括词对齐信息(0-0、1-1)等其他信息。 \parinterval 经过上面的介绍,可以从双语平行语料中把双语短语抽取出来,同时得到相应的翻译概率(即特征),组成{\small\bfnew{短语表}}\index{短语表}(Phrase Table)\index{Phrase Table}。图\ref{fig:7-15}展示了一个真实短语表的片段。其中包括源语言短语和目标语言短语,用|||进行分割。每个双语对应的得分,包括正向和反向的单词翻译概率以及短语翻译概率,还包括词对齐信息(0-0、1-1)等其他信息。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -519,7 +519,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2) ...@@ -519,7 +519,7 @@ d & = & {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)
\parinterval 尽管已经知道了如何将一个源语言短语翻译成目标语言短语,但是想要获得一个高质量的译文,仅有互译的双语短语是远远不够的。 \parinterval 尽管已经知道了如何将一个源语言短语翻译成目标语言短语,但是想要获得一个高质量的译文,仅有互译的双语短语是远远不够的。
\parinterval 如图\ref{fig:7-16}所示,按照从左到右的顺序对一个句子“在/桌子/上/的/苹果”进行翻译,得到的译文“on the table the apple”的语序是不对的。虽然可以使用$n$-gram语言模型对语序进行建模,但是此处仍然需要用更加准确的方式描述目标语短语间的次序。一般,把这个问题称为短语调序,或者简称{\small\bfnew{调序}}\index{调序}(Reordering)\index{Reordering}。通常,基于短语的调序模型会作为判别模型的特征参与到翻译过程中来。接下来,会介绍3 种不同的调序方法,分别是基于距离的调序、基于方向的调序(MSD模型)以及基于分类的调序。 \parinterval 如图\ref{fig:7-16}所示,按照从左到右的顺序对一个句子“在/桌子/上/的/苹果”进行翻译,得到的译文“on the table the apple”的语序是不对的。虽然可以使用$n$-gram语言模型对语序进行建模,但是此处仍然需要用更加准确的方式描述目标语短语间的次序。一般,把这个问题称为短语调序,或者简称{\small\bfnew{调序}}\index{调序}(Reordering)\index{Reordering}。通常,基于短语的调序模型会作为判别模型的特征参与到翻译过程中来。接下来,会介绍3 种不同的调序方法,分别是基于距离的调序、基于方向的调序(MSD模型)以及基于分类的调序。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -565,7 +565,7 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1 ...@@ -565,7 +565,7 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1
\subsection{基于方向的调序} \subsection{基于方向的调序}
\parinterval 基于方向的调序模型是另一种常用的调序模型。该模型是一种典型的词汇化调序模型,因此调序的结果会根据不同短语有所不同。简单来说,在两个短语目标语言端连续的情况下,该模型会判断两个双语短语在源语言端的调序情况,包含三种调序类型:顺序的单调翻译(M)、与前一个短语交换位置(S)、非连续翻译(D)。因此,这个模型也被称作MSD调序模型,也是Moses等经典的机器翻译系统所采用的调序模型\upcite{Koehn2007Moses} \parinterval 基于方向的调序模型是另一种常用的调序模型。该模型是一种典型的单词化调序模型,因此调序的结果会根据不同短语有所不同。简单来说,在两个短语目标语言端连续的情况下,该模型会判断两个双语短语在源语言端的调序情况,包含三种调序类型:顺序的单调翻译(M)、与前一个短语交换位置(S)、非连续翻译(D)。因此,这个模型也被称作MSD调序模型,也是Moses等经典的机器翻译系统所采用的调序模型\upcite{Koehn2007Moses}
\parinterval\ref{fig:7-18}展示了这三种调序类型,当两个短语对在源语言和目标语言中都是按顺序排列时,它们就是单调的(如:从左边数前两个短语);如果对应的短语顺序在目标语中是反过来的,属于交换调序(如:从左边数第三和第四个短语);如果两个短语之间还有其他的短语,就是非连续调序(如:从右边数的前两个短语)。 \parinterval\ref{fig:7-18}展示了这三种调序类型,当两个短语对在源语言和目标语言中都是按顺序排列时,它们就是单调的(如:从左边数前两个短语);如果对应的短语顺序在目标语中是反过来的,属于交换调序(如:从左边数第三和第四个短语);如果两个短语之间还有其他的短语,就是非连续调序(如:从右边数的前两个短语)。
...@@ -573,7 +573,7 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1 ...@@ -573,7 +573,7 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter7/Figures/figure-three-types-of-reorder-method-in-msd} \input{./Chapter7/Figures/figure-three-types-of-reorder-method-in-msd}
\caption{词汇化调序模型的三种调序类型} \caption{单词化调序模型的三种调序类型}
\label{fig:7-18} \label{fig:7-18}
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
...@@ -621,13 +621,13 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1 ...@@ -621,13 +621,13 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1
\sectionnewpage \sectionnewpage
\section{翻译特征} \section{翻译特征}
\parinterval 基于短语的模型使用判别模型对翻译推导进行建模,给定双语句对$(\seq{s},\seq{t})$,每个翻译推导$d$都有一个模型得分,由$M$个特征线性加权得到,记为$\textrm{score}(d,\seq{t},\seq{s}) = \sum_{i=1}^{M} \lambda_i \cdot h_i (d,\seq{t},\seq{s})$,其中$\lambda_i$表示特征权重,$h_i (d,\seq{t},\seq{s})$表示特征函数(简记为$h_i (d)$)。这些特征包含刚刚介绍过的短语翻译概率、调序模型得分等,除此之外,还包含语言模型等其他特征,它们共同组成了特征集合。这里列出了基于短语的模型中的一些基础特征: \parinterval 基于短语的模型使用判别模型对翻译推导进行建模,给定双语句对$(\seq{s},\seq{t})$,每个翻译推导$d$都有一个模型得分,由$M$个特征线性加权得到,记为$\textrm{score}(d,\seq{t},\seq{s}) = \sum_{i=1}^{M} \lambda_i \cdot h_i (d,\seq{t},\seq{s})$,其中$\lambda_i$表示特征权重,$h_i (d,\seq{t},\seq{s})$表示特征函数(简记为$h_i (d)$)。这些特征包含刚刚介绍过的短语翻译概率、调序模型得分等,除此之外,还包含语言模型等其他特征,它们共同组成了特征集合。这里列出了基于短语的模型中的一些基础特征:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item 短语翻译概率(取对数),包含正向翻译概率$\textrm{log}(\funp{P}(\bar{t}|\bar{s}))$和反向翻译概率$\textrm{log}(\funp{P}(\bar{s}$\\$|\bar{t}))$,它们是基于短语的模型中最主要的特征。 \item 短语翻译概率(取对数),包含正向翻译概率$\textrm{log}(\funp{P}(\bar{t}|\bar{s}))$和反向翻译概率$\textrm{log}(\funp{P}(\bar{s}$\\$|\bar{t}))$,它们是基于短语的模型中最主要的特征。
\vspace{0.5em} \vspace{0.5em}
\item 词汇化翻译概率(取对数),同样包含正向词汇化翻译概率$\textrm{log}(\funp{P}_{\textrm{lex}}(\bar{t}|\bar{s}))$和反向词汇化翻译概率$\textrm{log}(\funp{P}_{\textrm{lex}}(\bar{s}|\bar{t}))$,它们用来描述双语短语中单词间对应的好坏。 \item 单词化翻译概率(取对数),同样包含正向单词化翻译概率$\textrm{log}(\funp{P}_{\textrm{lex}}(\bar{t}|\bar{s}))$和反向单词化翻译概率$\textrm{log}(\funp{P}_{\textrm{lex}}(\bar{s}|\bar{t}))$,它们用来描述双语短语中单词间对应的好坏。
\item $n$-gram语言模型,用来度量译文的流畅程度,可以通过大规模目标端单语数据得到。 \item $n$-gram语言模型,用来度量译文的流畅程度,可以通过大规模目标端单语数据得到。
\vspace{0.5em} \vspace{0.5em}
\item 译文长度,避免模型倾向于短译文,同时让系统自动学习对译文长度的偏好。 \item 译文长度,避免模型倾向于短译文,同时让系统自动学习对译文长度的偏好。
...@@ -902,17 +902,17 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1 ...@@ -902,17 +902,17 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1
\parinterval 统计机器翻译模型是近三十年内自然语言处理的重要里程碑之一。其统计建模的思想长期影响着自然语言处理的研究。无论是前面介绍的基于单词的模型,还是本章介绍的基于短语的模型,甚至后面即将介绍的基于句法的模型,大家都在尝试回答:究竟应该用什么样的知识对机器翻译进行统计建模?不过,这个问题至今还没有确定的答案。但是,显而易见,统计机器翻译为机器翻译的研究提供了一种范式,即让计算机用概率化的 “知识” 描述翻译问题。这些 “ 知识” 体现在统计模型的结构和参数中,并且可以从大量的双语和单语数据中自动学习。这种建模思想在今天的机器翻译研究中仍然随处可见。 \parinterval 统计机器翻译模型是近三十年内自然语言处理的重要里程碑之一。其统计建模的思想长期影响着自然语言处理的研究。无论是前面介绍的基于单词的模型,还是本章介绍的基于短语的模型,甚至后面即将介绍的基于句法的模型,大家都在尝试回答:究竟应该用什么样的知识对机器翻译进行统计建模?不过,这个问题至今还没有确定的答案。但是,显而易见,统计机器翻译为机器翻译的研究提供了一种范式,即让计算机用概率化的 “知识” 描述翻译问题。这些 “ 知识” 体现在统计模型的结构和参数中,并且可以从大量的双语和单语数据中自动学习。这种建模思想在今天的机器翻译研究中仍然随处可见。
\parinterval 本章对统计机器翻译中的基于短语的模型进行了介绍。可以说,基于短语的模型是机器翻译中最成功的机器翻译模型之一。其结构简单,而且翻译速度快,因此也被大量应用于机器翻译产品及服务中。此外,包括判别模型、最小错误率训练、短语抽取等经典问题都是源自基于短语的模型。可是,基于短语的模型所涉及的非常丰富,很难通过一章的内容进行面面俱到的介绍。还有很多方向值得读者进一步了解: \parinterval 本章对统计机器翻译中的基于短语的模型进行了介绍。可以说,基于短语的模型是机器翻译中最成功的机器翻译模型之一。其结构简单,而且翻译速度快,因此也被大量应用于机器翻译产品及服务中。此外,包括判别模型、最小错误率训练、短语抽取等经典问题都是源自基于短语的模型。可是,基于短语的模型所涉及的非常丰富,很难通过一章的内容进行面面俱到的介绍。还有很多方向值得读者进一步了解:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item 基于短语的机器翻译的想法很早就出现了,比如直接对把机器翻译看作基于短语的生成问题\upcite{DBLP:conf/acl/OchW98,DBLP:phd/dnb/Och02,och2004alignment},或者单独对短语翻译进行建模,之后集成到基于单词的模型中\upcite{DBLP:conf/acl/WangW98,DBLP:conf/acl/WatanabeSO03,DBLP:conf/acl/Marcu01}。现在,最通用的框架是Koehn等人提出的模型\upcite{koehn2003statistical},与其类似的还有Zens等人的工作\upcite{DBLP:conf/ki/ZensON02,DBLP:conf/naacl/ZensN04}。这类模型把短语翻译分解为短语学习问题和解码问题。因此,在随后相当长一段时间里,如何获取双语短语也是机器翻译领域的热点。比如,一些团队研究如何直接从双语句对中学习短语翻译,而不是通过简单的启发性规则进行短语抽取\upcite{DBLP:conf/emnlp/MarcuW02,DBLP:conf/wmt/DeNeroGZK06}。也有研究者对短语边界的建模进行研究,以获得更高质量的短语,同时减小模型大小\upcite{german2011bilingual,DBLP:conf/coling/BlackwoodGB08,DBLP:conf/naacl/XiongZL10} \item 基于短语的机器翻译的想法很早就出现了,比如直接对把机器翻译看作基于短语的生成问题\upcite{DBLP:conf/acl/OchW98,DBLP:phd/dnb/Och02,och2004alignment},或者单独对短语翻译进行建模,之后集成到基于单词的模型中\upcite{DBLP:conf/acl/WangW98,DBLP:conf/acl/WatanabeSO03,DBLP:conf/acl/Marcu01}。现在,最通用的框架是Koehn等人提出的模型\upcite{koehn2003statistical},与其类似的还有Zens等人的工作\upcite{DBLP:conf/ki/ZensON02,DBLP:conf/naacl/ZensN04}。这类模型把短语翻译分解为短语学习问题和解码问题。因此,在随后相当长一段时间里,如何获取双语短语也是机器翻译领域的热点。比如,一些团队研究如何直接从双语句对中学习短语翻译,而不是通过简单的启发性规则进行短语抽取\upcite{DBLP:conf/emnlp/MarcuW02,DBLP:conf/wmt/DeNeroGZK06}。也有研究者对短语边界的建模进行研究,以获得更高质量的短语,同时减小模型大小\upcite{german2011bilingual,DBLP:conf/coling/BlackwoodGB08,DBLP:conf/naacl/XiongZL10}
\vspace{0.5em} \vspace{0.5em}
\item 调序是基于短语的模型中经典的问题之一。早期的模型都是词汇化的调序模型,这类模型把调序定义为短语之间的相对位置建模问题\upcite{DBLP:conf/naacl/Tillman04,DBLP:conf/naacl/KumarB05,DBLP:conf/acl/NagataSYO06}。后来,也有一些工作使用判别式模型来集成更多的调序特征\upcite{xiong2006maximum,DBLP:conf/wmt/ZensN06,DBLP:conf/naacl/GreenGM10,DBLP:conf/naacl/Cherry13}。实际上,除了基于短语的模型,调序也在基于句法的模型中被广泛讨论。因此,一些工作尝试将基于短语的调序模型集成到基于句法的机器翻译系统中\upcite{DBLP:conf/wmt/HuckWRN13,matthias2012discriminative,vinh2009improving,xiong2006maximum}。此外,也有研究者对不同的调序模型进行了系统化的对比和分析,可以作为相关研究的参考\upcite{DBLP:journals/coling/BisazzaF16}。与在机器翻译系统中集成调序模型不同,预调序(Pre-ordering)也是一种解决调序问题的思路\upcite{DBLP:conf/coling/XiaM04,DBLP:conf/acl/CollinsKK05,DBLP:conf/emnlp/WangCK07,DBLP:conf/ijcnlp/WuSDTN11}。机器翻译中的预调序是指将输入的源语言句子按目标语言的顺序进行排列,这样在翻译中就尽可能减少调序操作。这种方法大多依赖源语言的句法树进行调序的建模,不过它与机器翻译系统的耦合很小,因此很容易进行系统集成。 \item 调序是基于短语的模型中经典的问题之一。早期的模型都是单词化的调序模型,这类模型把调序定义为短语之间的相对位置建模问题\upcite{DBLP:conf/naacl/Tillman04,DBLP:conf/naacl/KumarB05,DBLP:conf/acl/NagataSYO06}。后来,也有一些工作使用判别模型来集成更多的调序特征\upcite{xiong2006maximum,DBLP:conf/wmt/ZensN06,DBLP:conf/naacl/GreenGM10,DBLP:conf/naacl/Cherry13}。实际上,除了基于短语的模型,调序也在基于句法的模型中被广泛讨论。因此,一些工作尝试将基于短语的调序模型集成到基于句法的机器翻译系统中\upcite{DBLP:conf/wmt/HuckWRN13,matthias2012discriminative,vinh2009improving,xiong2006maximum}。此外,也有研究者对不同的调序模型进行了系统化的对比和分析,可以作为相关研究的参考\upcite{DBLP:journals/coling/BisazzaF16}。与在机器翻译系统中集成调序模型不同,预调序(Pre-ordering)也是一种解决调序问题的思路\upcite{DBLP:conf/coling/XiaM04,DBLP:conf/acl/CollinsKK05,DBLP:conf/emnlp/WangCK07,DBLP:conf/ijcnlp/WuSDTN11}。机器翻译中的预调序是指将输入的源语言句子按目标语言的顺序进行排列,这样在翻译中就尽可能减少调序操作。这种方法大多依赖源语言的句法树进行调序的建模,不过它与机器翻译系统的耦合很小,因此很容易进行系统集成。
\vspace{0.5em} \vspace{0.5em}
\item 统计机器翻译中使用的栈解码方法源自Tillmann等人的工作\upcite{tillmann1997a}。这种方法在Pharaoh\upcite{DBLP:conf/amta/Koehn04}、Moses\upcite{Koehn2007Moses}等开源系统中被成功的应用,在机器翻译领域产生了很大的影响力。特别是,这种解码方法效率很高,因此在许多工业系统里也大量使用。对于栈解码也有很多改进工作,比如,早期的工作考虑剪枝或者限制调序范围以加快解码速度\upcite{DBLP:conf/acl/WangW97,DBLP:conf/coling/TillmannN00,DBLP:conf/iwslt/ShenDA06a,robert2007faster}。随后,也有研究工作从解码算法和语言模型集成方式的角度对这类方法进行改进\upcite{DBLP:conf/acl/HeafieldKM14,DBLP:conf/acl/WuebkerNZ12,DBLP:conf/iwslt/ZensN08} \item 统计机器翻译中使用的栈解码方法源自Tillmann等人的工作\upcite{tillmann1997a}。这种方法在Pharaoh\upcite{DBLP:conf/amta/Koehn04}、Moses\upcite{Koehn2007Moses}等开源系统中被成功的应用,在机器翻译领域产生了很大的影响力。特别是,这种解码方法效率很高,因此在许多工业系统里也大量使用。对于栈解码也有很多改进工作,比如,早期的工作考虑剪枝或者限制调序范围以加快解码速度\upcite{DBLP:conf/acl/WangW97,DBLP:conf/coling/TillmannN00,DBLP:conf/iwslt/ShenDA06a,robert2007faster}。随后,也有研究工作从解码算法和语言模型集成方式的角度对这类方法进行改进\upcite{DBLP:conf/acl/HeafieldKM14,DBLP:conf/acl/WuebkerNZ12,DBLP:conf/iwslt/ZensN08}
\vspace{0.5em} \vspace{0.5em}
\item 统计机器翻译的成功很大程度上来自判别模型引入任意特征的能力。因此,在统计机器翻译时代,很多工作都集中在新特征的设计上。比如,可以基于不同的统计特征和先验知识设计翻译特征\upcite{och2004smorgasbord,Chiang200911,gildea2003loosely},也可以模仿分类任务设计大规模的稀疏特征\upcite{DBLP:conf/emnlp/ChiangMR08}。模型训练和特征权重调优也是统计机器翻译中的重要问题,除了最小错误率训练,还有很多方法,比如,最大似然估计\upcite{koehn2003statistical,DBLP:journals/coling/BrownPPM94}、判别式方法\upcite{Blunsom2008A}、贝叶斯方法\upcite{Blunsom2009A,Cohn2009A}、最小风险训练\upcite{smith2006minimum,li2009first}、基于Margin的方法\upcite{watanabe2007online,Chiang200911}以及基于排序模型的方法(PRO)\upcite{Hopkins2011Tuning,dreyer2015apro}。实际上,统计机器翻译的训练和解码也存在不一致的问题,比如,特征值由双语数据上的极大似然估计得到(没有剪枝),而解码时却使用束剪枝,而且模型的目标是最大化机器翻译评价指标。对于这个问题也可以通过调整训练的目标函数进行缓解\upcite{XiaoA,marcu2006practical} \item 统计机器翻译的成功很大程度上来自判别模型引入任意特征的能力。因此,在统计机器翻译时代,很多工作都集中在新特征的设计上。比如,可以基于不同的统计特征和先验知识设计翻译特征\upcite{och2004smorgasbord,Chiang200911,gildea2003loosely},也可以模仿分类任务设计大规模的稀疏特征\upcite{DBLP:conf/emnlp/ChiangMR08}。模型训练和特征权重调优也是统计机器翻译中的重要问题,除了最小错误率训练,还有很多方法,比如,最大似然估计\upcite{koehn2003statistical,DBLP:journals/coling/BrownPPM94}、判别式方法\upcite{Blunsom2008A}、贝叶斯方法\upcite{Blunsom2009A,Cohn2009A}、最小风险训练\upcite{smith2006minimum,li2009first}、基于Margin的方法\upcite{watanabe2007online,Chiang200911}以及基于排序模型的方法(PRO)\upcite{Hopkins2011Tuning,dreyer2015apro}。实际上,统计机器翻译的训练和解码也存在不一致的问题,比如,特征值由双语数据上的极大似然估计得到(没有剪枝),而解码时却使用束剪枝,而且模型的目标是最大化机器翻译评价指标。对于这个问题也可以通过调整训练的目标函数进行缓解\upcite{XiaoA,marcu2006practical}
\vspace{0.5em} \vspace{0.5em}
\item 短语表是基于短语的系统中的重要模块。但是,简单地利用基于频次的方法估计得到的翻译概率无法很好地处理低频短语。这时就需要对短语表进行平滑\upcite{DBLP:conf/iwslt/ZensN08,DBLP:conf/emnlp/SchwenkCF07,boxing2011unpacking,DBLP:conf/coling/DuanSZ10}。另一方面,随着数据量的增长和抽取短语长度的增大,短语表的体积会急剧膨胀,这也大大增加了系统的存储消耗,同时过大的短语表也会带来短语查询效率的下降。针对这个问题,很多工作尝试对短语表进行压缩。一种思路是限制短语的长度\upcite{DBLP:conf/naacl/QuirkM06,DBLP:journals/coling/MarinoBCGLFC06};另一种广泛使用的思路是使用一些指标或者分类器来对短语进行剪枝,其核心思想是判断每个短语的质量\upcite{DBLP:conf/emnlp/ZensSX12},并过滤掉低质量的短语。代表性的方法有:基于假设检验的剪枝\upcite{DBLP:conf/emnlp/JohnsonMFK07}、基于熵的剪枝\upcite{DBLP:conf/emnlp/LingGTB12}、两阶段短语抽取方法\upcite{DBLP:conf/naacl/ZettlemoyerM07}、基于解码中短语使用频率的方法\upcite{DBLP:conf/naacl/EckVW07}等。此外,短语表的存储方式也是在实际使用中需要考虑的问题。因此,也有研究者尝试使用更加紧凑、高效的结构保存短语表。其中最具代表性的结构是后缀数组(Suffix Arrays),这种结构可以充分利用短语之间有重叠的性质,减少了重复存储\upcite{DBLP:conf/acl/Callison-BurchBS05,DBLP:conf/acl/Callison-BurchBS05,DBLP:conf/naacl/ZensN07,2014Dynamic} \item 短语表是基于短语的系统中的重要模块。但是,简单地利用基于频次的方法估计得到的翻译概率无法很好地处理低频短语。这时就需要对短语表进行平滑\upcite{DBLP:conf/iwslt/ZensN08,DBLP:conf/emnlp/SchwenkCF07,boxing2011unpacking,DBLP:conf/coling/DuanSZ10}。另一方面,随着数据量的增长和抽取短语长度的增大,短语表的体积会急剧膨胀,这也大大增加了系统的存储消耗,同时过大的短语表也会带来短语查询效率的下降。针对这个问题,很多工作尝试对短语表进行压缩。一种思路是限制短语的长度\upcite{DBLP:conf/naacl/QuirkM06,DBLP:journals/coling/MarinoBCGLFC06};另一种广泛使用的思路是使用一些指标或者分类器来对短语进行剪枝,其核心思想是判断每个短语的质量\upcite{DBLP:conf/emnlp/ZensSX12},并过滤掉低质量的短语。代表性的方法有:基于假设检验的剪枝\upcite{DBLP:conf/emnlp/JohnsonMFK07}、基于熵的剪枝\upcite{DBLP:conf/emnlp/LingGTB12}、两阶段短语抽取方法\upcite{DBLP:conf/naacl/ZettlemoyerM07}、基于解码中短语使用频率的方法\upcite{DBLP:conf/naacl/EckVW07}等。此外,短语表的存储方式也是在实际使用中需要考虑的问题。因此,也有研究者尝试使用更加紧凑、高效的结构保存短语表。其中最具代表性的结构是后缀数组(Suffix Arrays),这种结构可以充分利用短语之间有重叠的性质,减少了重复存储\upcite{DBLP:conf/acl/Callison-BurchBS05,DBLP:conf/acl/Callison-BurchBS05,DBLP:conf/naacl/ZensN07,2014Dynamic}
\vspace{0.5em} \vspace{0.5em}
......
...@@ -53,7 +53,7 @@ ...@@ -53,7 +53,7 @@
{ {
\node [anchor=west,minimum height=12pt,fill=red!20] (inputseg1) at (inputlabel.east) {$_1$ }; \node [anchor=west,minimum height=12pt,fill=red!20] (inputseg1) at (inputlabel.east) {$_1$ };
\node [anchor=west,minimum height=12pt,fill=blue!20] (inputseg2) at ([xshift=0.2em]inputseg1.east) {学校$_2$ 球队$_3$ 首次$_4$ 夺得$_5$ 中国$_6$ 大学生$_7$ 篮球$_8$ 联赛$_9$ 冠军$_{10}$}; \node [anchor=west,minimum height=12pt,fill=blue!20] (inputseg2) at ([xshift=0.2em]inputseg1.east) {学校$_2$ 球队$_3$ 首次$_4$ 夺得$_5$ 中国$_6$ 大学生$_7$ 篮球$_8$ 联赛$_9$ 冠军$_{10}$};
\node [anchor=west,minimum height=12pt,fill=red!20] (inputseg3) at ([xshift=0.2em]inputseg2.east) {$_{15}$}; \node [anchor=west,minimum height=12pt,fill=red!20] (inputseg3) at ([xshift=0.2em]inputseg2.east) {$_{11}$};
\path [draw,->,dashed] (inputseg1.north) .. controls +(north:0.2) and +(south:0.3) .. ([xshift=1em]synhifstpart1.south); \path [draw,->,dashed] (inputseg1.north) .. controls +(north:0.2) and +(south:0.3) .. ([xshift=1em]synhifstpart1.south);
\path [draw,->,dashed] (inputseg3.north) .. controls +(north:0.2) and +(south:0.6) .. ([xshift=1em]synhifstpart1.south); \path [draw,->,dashed] (inputseg3.north) .. controls +(north:0.2) and +(south:0.6) .. ([xshift=1em]synhifstpart1.south);
......
...@@ -41,7 +41,7 @@ ...@@ -41,7 +41,7 @@
\node[scale=0.9,anchor=west,minimum size=18pt] (tw13) at ([yshift=0.1em,xshift=0.5em]tw12.east){worried}; \node[scale=0.9,anchor=west,minimum size=18pt] (tw13) at ([yshift=0.1em,xshift=0.5em]tw12.east){worried};
\node[scale=0.9,anchor=west,minimum size=18pt] (tw14) at ([xshift=0.5em]tw13.east){about}; \node[scale=0.9,anchor=west,minimum size=18pt] (tw14) at ([xshift=0.5em]tw13.east){about};
\node[scale=0.9,anchor=west,minimum size=18pt] (tw15) at ([xshift=0.5em]tw14.east){the}; \node[scale=0.9,anchor=west,minimum size=18pt] (tw15) at ([xshift=0.5em]tw14.east){the};
\node[scale=0.9,anchor=west,minimum size=18pt] (tw16) at ([yshift=-0.1em,xshift=0.5em]tw15.east){situation}; \node[scale=0.9,anchor=west,minimum size=18pt] (tw16) at ([xshift=0.5em]tw15.east){situation};
\draw[dashed] ([xshift=-0.3em]cfrag1.south) -- ([yshift=-0.3em]tw11.north); \draw[dashed] ([xshift=-0.3em]cfrag1.south) -- ([yshift=-0.3em]tw11.north);
\draw[dashed] (cfrag2.south) -- ([yshift=-0.4em]tw14.north); \draw[dashed] (cfrag2.south) -- ([yshift=-0.4em]tw14.north);
......
...@@ -44,7 +44,7 @@ ...@@ -44,7 +44,7 @@
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 当然,可以使用平滑算法对长短语的概率进行估计,但是使用过长的短语在实际系统研发中仍然不现实。图\ref{fig:8-1}展示了一个汉语到英语的翻译实例。源语言的两个短语(蓝色和红色高亮)在目标语言中产生了调序。但是,这两个短语在源语言句子中横跨11个单词。如果直接使用这11个单词构成的短语进行翻译,显然会有非常严重的数据稀疏问题,因为很难期望在训练数据中见到一模一样的短语。 \parinterval 当然,可以使用平滑算法对长短语的概率进行估计,但是使用过长的短语在实际系统研发中仍然不现实。图\ref{fig:8-1}展示了一个汉语到英语的翻译实例。源语言的两个短语(蓝色和红色高亮)在目标语言中产生了调序。但是,这两个短语在源语言句子中横跨8个单词。如果直接使用这8个单词构成的短语进行翻译,显然会有非常严重的数据稀疏问题,因为很难期望在训练数据中见到一模一样的短语。
\parinterval 仅使用连续词串不能处理所有的翻译问题,其根本原因在于句子的表层串很难描述片段之间大范围的依赖。一个新的思路是使用句子的层次结构信息进行建模。{\chapterthree}已经介绍了句法分析基础。对于每个句子,都可以用句法树描述它的结构。 \parinterval 仅使用连续词串不能处理所有的翻译问题,其根本原因在于句子的表层串很难描述片段之间大范围的依赖。一个新的思路是使用句子的层次结构信息进行建模。{\chapterthree}已经介绍了句法分析基础。对于每个句子,都可以用句法树描述它的结构。
...@@ -68,7 +68,7 @@ ...@@ -68,7 +68,7 @@
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 句法树结构可以赋予机器翻译对语言进一步抽象的能力,这样,可以不需要使用连续词串,而是通过句法结构来对大范围的译文生成和调序进行建模。图\ref{fig:8-3}是一个在翻译中融入源语言(汉语)句法信息的实例。这个例子中,介词短语“在 $...$ 后”包含12个单词,因此,使用短语很难涵盖这样的片段。这时,系统会把“在 $...$ 后”错误地翻译为“In $...$”。通过句法树,可以知道“在 $...$ 后”对应着一个完整的子树结构PP(介词短语)。因此也很容易知道介词短语中“在 $...$ 后”是一个模板(红色),而“在”和“后”之间的部分构成从句部分(蓝色)。最终得到正确的译文“After $...$”。 \parinterval 句法树结构可以赋予机器翻译对语言进一步抽象的能力,这样,可以不需要使用连续词串,而是通过句法结构来对大范围的译文生成和调序进行建模。图\ref{fig:8-3}是一个在翻译中融入源语言(汉语)句法信息的实例。这个例子中,介词短语“在 $...$ 后”包含11个单词,因此,使用短语很难涵盖这样的片段。这时,系统会把“在 $...$ 后”错误地翻译为“In $...$”。通过句法树,可以知道“在 $...$ 后”对应着一个完整的子树结构PP(介词短语)。因此也很容易知道介词短语中“在 $...$ 后”是一个模板(红色),而“在”和“后”之间的部分构成从句部分(蓝色)。最终得到正确的译文“After $...$”。
\parinterval 使用句法信息在机器翻译中并不新鲜。在基于规则和模板的翻译模型中,就大量使用了句法等结构信息。只是由于早期句法分析技术不成熟,系统的整体效果并不突出。在数据驱动的方法中,句法可以很好地融合在统计建模中。通过概率化的句法设计,可以对翻译过程进行很好的描述。 \parinterval 使用句法信息在机器翻译中并不新鲜。在基于规则和模板的翻译模型中,就大量使用了句法等结构信息。只是由于早期句法分析技术不成熟,系统的整体效果并不突出。在数据驱动的方法中,句法可以很好地融合在统计建模中。通过概率化的句法设计,可以对翻译过程进行很好的描述。
...@@ -229,7 +229,7 @@ ...@@ -229,7 +229,7 @@
\funp{X}\ &\to\ &\langle \ \text{强大},\quad \textrm{strong}\ \rangle \nonumber \funp{X}\ &\to\ &\langle \ \text{强大},\quad \textrm{strong}\ \rangle \nonumber
\end{eqnarray} \end{eqnarray}
\parinterval 这个文法只有一种非终结符X,因此所有的变量都可以使用任意的产生式进行推导。这就给翻译提供了更大的自由度,也就是说,规则可以被任意使用,进行自由组合。这也符合基于短语的模型中对短语进行灵活拼接的思想。基于此,层次短语系统中也使用这种并不依赖语言学句法标记的文法。在本章的内容中,如果没有特殊说明,把这种没有语言学句法标记的文法称作{\small\bfnew{基于层次短语的文法}}\index{基于层次短语的文法}(Hierarchical Phrase-based Grammar)\index{Hierarchical Phrase-based Grammar},或简称层次短语文法。 \parinterval 这个文法只有一种非终结符X,因此所有的变量都可以使用任意的产生式进行推导。这就给翻译提供了更大的自由度,也就是说,规则可以被任意使用,进行自由组合。这也符合基于短语的模型中对短语进行灵活拼接的思想。基于此,层次短语系统中也使用这种并不依赖语言学句法标记的文法。在本章的内容中,如果没有特殊说明,把这种没有语言学句法标记的文法称作{\small\bfnew{基于层次短语的文法}}\index{基于层次短语的文法或层次短语文法}(Hierarchical Phrase-based Grammar)\index{Hierarchical Phrase-based Grammar},或简称层次短语文法。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -245,7 +245,7 @@ r_3:\quad \funp{X}\ &\to\ &\langle \ \text{大幅度},\quad \textrm{drastically} ...@@ -245,7 +245,7 @@ r_3:\quad \funp{X}\ &\to\ &\langle \ \text{大幅度},\quad \textrm{drastically}
r_4:\quad \funp{X}\ &\to\ &\langle \ \text{},\quad \textrm{have}\ \rangle \nonumber r_4:\quad \funp{X}\ &\to\ &\langle \ \text{},\quad \textrm{have}\ \rangle \nonumber
\end{eqnarray} \end{eqnarray}
\noindent 其中,规则$r_1$$r_2$是含有变量的规则,这些变量可以被其他规则的右部替换;规则$r_2$是调序规则;规则$r_3$$r_4$是纯词汇化规则,表示单词或者短语的翻译。 \noindent 其中,规则$r_1$$r_2$是含有变量的规则,这些变量可以被其他规则的右部替换;规则$r_2$是调序规则;规则$r_3$$r_4$是纯单词化规则,表示单词或者短语的翻译。
\parinterval 对于一个双语句对: \parinterval 对于一个双语句对:
\begin{eqnarray} \begin{eqnarray}
...@@ -389,7 +389,7 @@ y&=&\beta_0 y_{\pi_1} ... \beta_{m-1} y_{\pi_m} \beta_m ...@@ -389,7 +389,7 @@ y&=&\beta_0 y_{\pi_1} ... \beta_{m-1} y_{\pi_m} \beta_m
\vspace{0.5em} \vspace{0.5em}
\item ($h_{1-2}$)短语翻译概率(取对数),即$\textrm{log}(\funp{P}(\alpha \mid \beta))$$\textrm{log}(\funp{P}(\beta \mid \alpha))$,特征的计算与基于短语的模型完全一样; \item ($h_{1-2}$)短语翻译概率(取对数),即$\textrm{log}(\funp{P}(\alpha \mid \beta))$$\textrm{log}(\funp{P}(\beta \mid \alpha))$,特征的计算与基于短语的模型完全一样;
\vspace{0.5em} \vspace{0.5em}
\item ($h_{3-4}$)词汇化翻译概率(取对数),即$\textrm{log}(\funp{P}_{\textrm{lex}}(\alpha \mid \beta))$$\textrm{log}(\funp{P}_{\textrm{lex}}(\beta \mid \alpha))$,特征的计算与基于短语的模型完全一样; \item ($h_{3-4}$)单词化翻译概率(取对数),即$\textrm{log}(\funp{P}_{\textrm{lex}}(\alpha \mid \beta))$$\textrm{log}(\funp{P}_{\textrm{lex}}(\beta \mid \alpha))$,特征的计算与基于短语的模型完全一样;
\vspace{0.5em} \vspace{0.5em}
\item ($h_{5}$)翻译规则数量,让模型自动学习对规则数量的偏好,同时避免使用过少规则造成分数偏高的现象; \item ($h_{5}$)翻译规则数量,让模型自动学习对规则数量的偏好,同时避免使用过少规则造成分数偏高的现象;
\vspace{0.5em} \vspace{0.5em}
...@@ -468,7 +468,7 @@ span\textrm{[2,4]}&=&\textrm{“吃} \quad \textrm{鱼”} \nonumber \\ ...@@ -468,7 +468,7 @@ span\textrm{[2,4]}&=&\textrm{“吃} \quad \textrm{鱼”} \nonumber \\
span\textrm{[0,4]}&=&\textrm{“猫} \quad \textrm{喜欢} \quad \textrm{} \quad \textrm{鱼”} \nonumber span\textrm{[0,4]}&=&\textrm{“猫} \quad \textrm{喜欢} \quad \textrm{} \quad \textrm{鱼”} \nonumber
\end{eqnarray} \end{eqnarray}
\parinterval CKY方法是按跨度由小到大的次序执行的,这也对应了一种{\small\bfnew{自下而上的分析}}\index{自下而上的分析}Top-Down Parsing)\index{Top-Down Parsing}过程。对于每个跨度,检查: \parinterval CKY方法是按跨度由小到大的次序执行的,这也对应了一种{\small\bfnew{自下而上的分析}}\index{自下而上的分析}Bottom-Up Parsing)\index{Bottom-Up Parsing}过程。对于每个跨度,检查:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -696,8 +696,8 @@ span\textrm{[0,4]}&=&\textrm{“猫} \quad \textrm{喜欢} \quad \textrm{吃} \q ...@@ -696,8 +696,8 @@ span\textrm{[0,4]}&=&\textrm{“猫} \quad \textrm{喜欢} \quad \textrm{吃} \q
&都是基于串的解码方法 \\ &都是基于串的解码方法 \\
\rule{0pt}{15pt}基于森林 &(源语言)使用句法森林,这里森林只是对多个句法树的一 \\ \rule{0pt}{15pt}基于森林 &(源语言)使用句法森林,这里森林只是对多个句法树的一 \\
& 种压缩结构表示 \\ & 种压缩结构表示 \\
\rule{0pt}{15pt}词汇化规则 & 含有终结符的规则 \\ \rule{0pt}{15pt}单词化规则 & 含有终结符的规则 \\
\rule{0pt}{15pt}词汇规则 & 不含有终结符的规则 \\ \rule{0pt}{15pt}单词规则 & 不含有终结符的规则 \\
\rule{0pt}{15pt}句法软约束 & 不强制规则推导匹配语言学句法树,通常把句法信息作为特\\ \rule{0pt}{15pt}句法软约束 & 不强制规则推导匹配语言学句法树,通常把句法信息作为特\\
&征使用 \\ &征使用 \\
\rule{0pt}{15pt}句法硬约束 & 要求推导必须符合语言学句法树,不符合的推导会被过滤掉 \\ \rule{0pt}{15pt}句法硬约束 & 要求推导必须符合语言学句法树,不符合的推导会被过滤掉 \\
...@@ -750,7 +750,7 @@ span\textrm{[0,4]}&=&\textrm{“猫} \quad \textrm{喜欢} \quad \textrm{吃} \q ...@@ -750,7 +750,7 @@ span\textrm{[0,4]}&=&\textrm{“猫} \quad \textrm{喜欢} \quad \textrm{吃} \q
\subsection{基于树结构的文法} \subsection{基于树结构的文法}
\parinterval 基于句法的翻译模型的一个核心问题是要对树结构进行建模,进而完成树之间或者树和串之间的转换。在计算机领域中,所谓树就是由一些节点组成的层次关系的集合。计算机领域的树和自然世界中的树没有任何关系,只是借用了相似的概念,因为这种层次结构很像一棵倒过来的树。在使用树时,经常会把树的层次结构转化为序列结构,称为树结构的{\small\bfnew{序列化}}\index{序列化}或者{\small\bfnew{线性化}}\index{线性化}(Linearization)\index{Linearization} \parinterval 基于句法的翻译模型的一个核心问题是要对树结构进行建模,进而完成树之间或者树和串之间的转换。在计算机领域中,所谓树就是由一些节点组成的层次关系的集合。计算机领域的树和自然世界中的树没有任何关系,只是借用了相似的概念,因为这种层次结构很像一棵倒过来的树。在使用树时,经常会把树的层次结构转化为序列结构,称为树结构的{\small\bfnew{序列化}}\index{序列化或线性化}或者{\small\bfnew{线性化}}(Linearization)\index{Linearization}
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -1313,7 +1313,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex ...@@ -1313,7 +1313,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\subsection{句法翻译模型的特征} \subsection{句法翻译模型的特征}
\parinterval 基于语言学句法的翻译模型使用判别模型对翻译推导进行建模({\chapterseven}数学建模小节)。给定双语句对($\seq{s}$,$\seq{t}$),由$M$个特征经过线性加权,得到每个翻译推导$d$的得分,记为$\textrm{score(}d,\seq{t},\seq{s})=\sum_{i=1}^{M} \lambda_i \cdot h_{i}(d,\seq{t},\seq{s})$,其中$\lambda_i$表示特征权重,$h_{i}(d,\seq{t},\seq{s})$表示特征函数。翻译的目标就是要找到使$\textrm{score(}d,\seq{t},\seq{s})$达到最高的推导$d$ \parinterval 基于语言学句法的翻译模型使用判别模型对翻译推导进行建模({\chapterseven}数学建模小节)。给定双语句对($\seq{s}$,$\seq{t}$),由$M$个特征经过线性加权,得到每个翻译推导$d$的得分,记为$\textrm{score(}d,\seq{t},\seq{s})=\sum_{i=1}^{M} \lambda_i \cdot h_{i}(d,\seq{t},\seq{s})$,其中$\lambda_i$表示特征权重,$h_{i}(d,\seq{t},\seq{s})$表示特征函数。翻译的目标就是要找到使$\textrm{score(}d,\seq{t},\seq{s})$达到最高的推导$d$
\parinterval 这里,可以使用最小错误率训练对特征权重进行调优({\chapterseven}最小错误率训练小节)。而特征函数可参考如下定义: \parinterval 这里,可以使用最小错误率训练对特征权重进行调优({\chapterseven}最小错误率训练小节)。而特征函数可参考如下定义:
...@@ -1333,7 +1333,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex ...@@ -1333,7 +1333,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\end{eqnarray} \end{eqnarray}
\noindent 于是,可以定义短语翻译概率特征为$\log(\textrm{P(}\tau( \alpha_r )|\tau( \beta_r )))$$\log(\textrm{P(}\tau( \beta_r )|\tau( \alpha_r )))$。它们的计算方法与基于短语的系统是完全一样的\footnote[9]{对于树到串规则,$\tau( \beta_r )$就是规则目标语言端的符号串。} \noindent 于是,可以定义短语翻译概率特征为$\log(\textrm{P(}\tau( \alpha_r )|\tau( \beta_r )))$$\log(\textrm{P(}\tau( \beta_r )|\tau( \alpha_r )))$。它们的计算方法与基于短语的系统是完全一样的\footnote[9]{对于树到串规则,$\tau( \beta_r )$就是规则目标语言端的符号串。}
\vspace{0.5em} \vspace{0.5em}
\item ($h_{3-4}$) 词汇化翻译概率(取对数),即$\log(\funp{P}_{\textrm{lex}}(\tau( \alpha_r )|\tau( \beta_r )))$$\log(\funp{P}_{\textrm{lex}}(\tau( \beta_r )|\tau( \alpha_r )))$。这两个特征的计算方法与基于短语的系统也是一样的。 \item ($h_{3-4}$) 单词化翻译概率(取对数),即$\log(\funp{P}_{\textrm{lex}}(\tau( \alpha_r )|\tau( \beta_r )))$$\log(\funp{P}_{\textrm{lex}}(\tau( \beta_r )|\tau( \alpha_r )))$。这两个特征的计算方法与基于短语的系统也是一样的。
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
...@@ -1362,7 +1362,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex ...@@ -1362,7 +1362,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\vspace{0.5em} \vspace{0.5em}
\item ($h_{11}$)组合规则的数量,学习对组合规则的偏好; \item ($h_{11}$)组合规则的数量,学习对组合规则的偏好;
\vspace{0.5em} \vspace{0.5em}
\item ($h_{12}$)词汇化规则的数量,学习对含有终结符规则的偏好; \item ($h_{12}$)单词化规则的数量,学习对含有终结符规则的偏好;
\vspace{0.5em} \vspace{0.5em}
\item ($h_{13}$)低频规则的数量,学习对训练数据中出现频次低于3的规则的偏好。低频规则大多不可靠,设计这个特征的目的也是为了区分不同质量的规则。 \item ($h_{13}$)低频规则的数量,学习对训练数据中出现频次低于3的规则的偏好。低频规则大多不可靠,设计这个特征的目的也是为了区分不同质量的规则。
\end{itemize} \end{itemize}
...@@ -1494,7 +1494,7 @@ d_1 & = & {d'} \circ {r_5} ...@@ -1494,7 +1494,7 @@ d_1 & = & {d'} \circ {r_5}
}\end{table} }\end{table}
%------------------------------------------- %-------------------------------------------
\parinterval 这里需要注意的是,不论是基于串的解码还是基于树的解码都是使用句法模型的方法,在翻译过程中都会生成翻译推导和树结构。二者的本质区别在于,基于树的解码把句法树作为显性的输入,而基于串的解码把句法树看作是翻译过程中的隐含变量。图\ref{fig:8-40}进一步解释了这个观点。 \parinterval 这里需要注意的是,不论是基于串的解码还是基于树的解码都是使用句法模型的方法,在翻译过程中都会生成翻译推导和树结构。二者的本质区别在于,基于树的解码把句法树作为显输入,而基于串的解码把句法树看作是翻译过程中的隐含变量。图\ref{fig:8-40}进一步解释了这个观点。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -1571,7 +1571,7 @@ d_1 & = & {d'} \circ {r_5} ...@@ -1571,7 +1571,7 @@ d_1 & = & {d'} \circ {r_5}
\parinterval 对于这个问题,有两种常用的解决办法: \parinterval 对于这个问题,有两种常用的解决办法:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item 对文法进行限制。比如,可以限制规则中变量的数量;或者不允许连续的变量,这样的规则也被称作满足{\small\bfnew{词汇化标准形式}}\index{词汇化标准形式}(Lexicalized Norm Form)\index{Lexicalized Norm Form} (LNF)的规则。比如,层次短语规则就是LNF规则。由于LNF 中单词(终结符)可以作为锚点,因此规则匹配时所有变量的匹配范围是固定的; \item 对文法进行限制。比如,可以限制规则中变量的数量;或者不允许连续的变量,这样的规则也被称作满足{\small\bfnew{单词化标准形式}}\index{单词化标准形式}(Lexicalized Norm Form)\index{Lexicalized Norm Form} (LNF)的规则。比如,层次短语规则就是LNF规则。由于LNF 中单词(终结符)可以作为锚点,因此规则匹配时所有变量的匹配范围是固定的;
\vspace{0.5em} \vspace{0.5em}
\item 对规则进行二叉化,使用CKY方法进行分析。这个方法也是句法分析中常用的策略。所谓规则二叉化是把规则转化为最多只含两个变量或连续词串的规则(串到树规则)。比如,对于如下的规则: \item 对规则进行二叉化,使用CKY方法进行分析。这个方法也是句法分析中常用的策略。所谓规则二叉化是把规则转化为最多只含两个变量或连续词串的规则(串到树规则)。比如,对于如下的规则:
\begin{eqnarray} \begin{eqnarray}
......
...@@ -31,7 +31,7 @@ ...@@ -31,7 +31,7 @@
\node [anchor=west] (layer01label) at ([xshift=1em]layer01.east) {\footnotesize{第1层}}; \node [anchor=west] (layer01label) at ([xshift=1em]layer01.east) {\footnotesize{第1层}};
} }
{ {
\node [anchor=west] (layer01label2) at (layer01label.east) {\footnotesize{{隐层}}}; \node [anchor=west] (layer01label2) at (layer01label.east) {\footnotesize{{}}};
} }
%%% layer 2 %%% layer 2
...@@ -57,7 +57,7 @@ ...@@ -57,7 +57,7 @@
\node [anchor=west] (layer02label) at ([xshift=5em]layer02.east) {\footnotesize{第2层}}; \node [anchor=west] (layer02label) at ([xshift=5em]layer02.east) {\footnotesize{第2层}};
{ {
\node [anchor=west] (layer02label2) at (layer02label.east) {\footnotesize{{隐层}}}; \node [anchor=west] (layer02label2) at (layer02label.east) {\footnotesize{{}}};
} }
} }
......
...@@ -45,9 +45,9 @@ ...@@ -45,9 +45,9 @@
} }
\draw[decorate,thick,decoration={brace,mirror,raise=0.2em}] (0,-0.2) -- (2.95,-0.2); \draw[decorate,thick,decoration={brace,mirror,raise=0.2em}] (0,-0.2) -- (2.95,-0.2);
\draw[decorate,thick,decoration={brace,mirror,raise=0.2em}] (3.05,-0.2) -- (6,-0.2); \draw[decorate,thick,decoration={brace,mirror,raise=0.2em}] (3.05,-0.2) -- (6,-0.2);
\node [anchor=north] (subtensor1) at (1.5,-0.4) {\footnotesize{$3 \times 2$ 子张量}}; \node [anchor=north] (subtensor1) at (1.5,-0.4) {\footnotesize{$2 \times 3$ 子张量}};
\node [anchor=north] (subtensor1) at (4.5,-0.4) {\footnotesize{$3 \times 2$ 子张量}}; \node [anchor=north] (subtensor1) at (4.5,-0.4) {\footnotesize{$2 \times 3$ 子张量}};
\node [anchor=north] (labelc) at (3,-1.1) {\small{(c)1阶张量}}; \node [anchor=north] (labelc) at (3,-1.1) {\small{(c)3阶张量}};
\end{scope} \end{scope}
\end{tikzpicture} \end{tikzpicture}
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
ytick={0,0.5,1}, ytick={0,0.5,1},
xlabel={\small{$x$}}, xlabel={\small{$x$}},
ylabel={\small{Softmax($x$)}}, ylabel={\small{Softmax($x$)}},
xlabel style={xshift=3.0cm,yshift=1cm}, xlabel style={xshift=4.0cm,yshift=1cm},
axis y line=middle, axis y line=middle,
ylabel style={xshift=-2.4cm,yshift=-0.2cm}, ylabel style={xshift=-2.4cm,yshift=-0.2cm},
x axis line style={->}, x axis line style={->},
......
...@@ -129,7 +129,7 @@ ...@@ -129,7 +129,7 @@
} }
\node [anchor=south west] (label24) at (-0.8,0.9) {\footnotesize{\ding{175}}}; \node [anchor=south west] (label24) at (-0.8,0.9) {\footnotesize{\ding{175}}};
{ {
\node [anchor=north] (xlabel) at (0,-1.2) {${\mathbi{x}} \cdot {\mathbi{W}}$}; \node [anchor=north] (xlabel) at (0,-1.2) {${\mathbi{x}} {\mathbi{W}}$};
\node [anchor=center] (elabel) at (-0.9in,0) {\Huge{$\textbf{=}$}}; \node [anchor=center] (elabel) at (-0.9in,0) {\Huge{$\textbf{=}$}};
} }
\end{scope} \end{scope}
......
...@@ -47,7 +47,7 @@ ...@@ -47,7 +47,7 @@
\node [anchor=west] (flabel) at ([xshift=1in]y.east) {\footnotesize{Sigmoid:}}; \node [anchor=west] (flabel) at ([xshift=1in]y.east) {\footnotesize{Sigmoid:}};
\node [anchor=north east] (slabel) at ([xshift=0]flabel.south east) {\footnotesize{Sum:}}; \node [anchor=north east] (slabel) at ([xshift=0]flabel.south east) {\footnotesize{Sum:}};
\node [anchor=west,inner sep=2pt] (flabel2) at (flabel.east) {\footnotesize{$f(s_2)=1/(1+{\textrm e}^{-s_2})$}}; \node [anchor=west,inner sep=2pt] (flabel2) at (flabel.east) {\footnotesize{$f(s_2)=1/(1+{\textrm e}^{-s_2})$}};
\node [anchor=west,inner sep=2pt] (flabel3) at (slabel.east) {\footnotesize{$s_2=x_1 \cdot w_{12} + b$}}; \node [anchor=west,inner sep=2pt] (flabel3) at (slabel.east) {\footnotesize{$s_2=x_1 \cdot w_{12} + b_2$}};
\draw [->,thick,dotted] ([yshift=-0.3em,xshift=-0.1em]n11.60) .. controls +(east:1) and +(west:2) .. ([xshift=-0.2em]flabel.west) ; \draw [->,thick,dotted] ([yshift=-0.3em,xshift=-0.1em]n11.60) .. controls +(east:1) and +(west:2) .. ([xshift=-0.2em]flabel.west) ;
\begin{pgfonlayer}{background} \begin{pgfonlayer}{background}
......
...@@ -22,7 +22,7 @@ ...@@ -22,7 +22,7 @@
\node [anchor=west,minimum width=2.0em,minimum height=1.5em] (part5-4) at ([xshift=2.0em,yshift=0.0em]part5-3.east) {\footnotesize {$ b^{[2]}$}}; \node [anchor=west,minimum width=2.0em,minimum height=1.5em] (part5-4) at ([xshift=2.0em,yshift=0.0em]part5-3.east) {\footnotesize {$ b^{[2]}$}};
\draw[-,thick](part4.south)--([xshift=-0.5em]part5-3.north); \draw[-,thick](part4.south)--([xshift=-0.5em]part5-3.north);
\draw[-,thick](part3.south)--(part5-4.north); \draw[-,thick](part3.south)--(part5-4.north);
\node [anchor=south,minimum width=1.5em,minimum height=1.5em] (part5-3-1) at ([xshift=1.1em,yshift=-0.45em]part5-3.north) {\scriptsize {$1\times 2$}}; \node [anchor=south,minimum width=1.5em,minimum height=1.5em] (part5-3-1) at ([xshift=1.1em,yshift=-0.45em]part5-3.north) {\scriptsize {$2\times 1$}};
\node [anchor=south,minimum width=1.5em,minimum height=1.5em] (part5-4-1) at ([xshift=1.1em,yshift=-0.45em]part5-4.north) {\scriptsize {$1\times1$}}; \node [anchor=south,minimum width=1.5em,minimum height=1.5em] (part5-4-1) at ([xshift=1.1em,yshift=-0.45em]part5-4.north) {\scriptsize {$1\times1$}};
%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%
\node [anchor=north,minimum width=1.5em,minimum height=1.5em] (part5-2) at ([xshift=-1.2em,yshift=-0.2em]part5.south) {\scriptsize {$1\times 2$}}; \node [anchor=north,minimum width=1.5em,minimum height=1.5em] (part5-2) at ([xshift=-1.2em,yshift=-0.2em]part5.south) {\scriptsize {$1\times 2$}};
......
...@@ -46,7 +46,7 @@ ...@@ -46,7 +46,7 @@
\subsection{发展简史} \subsection{发展简史}
\parinterval 神经网络最早出现在控制论中,随后更多地在连接主义中被提及。神经网络被提出的初衷并不是做一个简单的计算模型,而是希望将神经网络应用到一些自动控制相关的场景中。然而随着神经网络技术的持续发展,神经网络方法已经被广泛应用到各行各业的研究和实践工作中。 \parinterval 神经网络最早出现在控制论中,随后更多地在联结主义中被提及。神经网络被提出的初衷并不是做一个简单的计算模型,而是希望将神经网络应用到一些自动控制相关的场景中。然而随着神经网络技术的持续发展,神经网络方法已经被广泛应用到各行各业的研究和实践工作中。
\parinterval 人工神经网络诞生至今,经历了多次高潮和低谷,这是任何一种技术都无法绕开的命运。然而,好的技术和方法终究不会被埋没,直到今天,神经网络和深度学习迎来了最好的时代。 \parinterval 人工神经网络诞生至今,经历了多次高潮和低谷,这是任何一种技术都无法绕开的命运。然而,好的技术和方法终究不会被埋没,直到今天,神经网络和深度学习迎来了最好的时代。
...@@ -66,13 +66,13 @@ ...@@ -66,13 +66,13 @@
\subsubsection{2. 神经网络的第二次高潮和第二次寒冬} \subsubsection{2. 神经网络的第二次高潮和第二次寒冬}
\parinterval 虽然第一代神经网络受到了打击,但是在20世纪80年代,第二代人工神经网络开始萌发新的生机。在这个发展阶段,生物属性已经不再是神经网络的唯一灵感来源,在{\small\bfnew{连接主义}}\index{连接主义}(Connectionism)\index{Connectionism}和分布式表示两种思潮的影响下,神经网络方法再次走入了人们的视线。 \parinterval 虽然第一代神经网络受到了打击,但是在20世纪80年代,第二代人工神经网络开始萌发新的生机。在这个发展阶段,生物属性已经不再是神经网络的唯一灵感来源,在{\small\bfnew{联结主义}}\index{联结主义}(Connectionism)\index{Connectionism}和分布式表示两种思潮的影响下,神经网络方法再次走入了人们的视线。
\vspace{0.3em} \vspace{0.3em}
\parinterval 1)符号主义与连接主义 \parinterval 1)符号主义与联结主义
\vspace{0.3em} \vspace{0.3em}
\parinterval 人工智能领域始终存在着符号主义和连接主义之争。早期的人工智能研究在认知学中被称为{\small\bfnew{符号主义}}\index{符号主义}(Symbolicism)\index{Symbolicism},符号主义认为人工智能源于数理逻辑,希望将世界万物的所有运转方式归纳成像文法一样符合逻辑规律的推导过程。符号主义的支持者们坚信基于物理符号系统(即符号操作系统)假设和有限合理性原理,就能通过逻辑推理来模拟智能。但被他们忽略的一点是,模拟智能的推理过程需要大量的先验知识支持,哪怕是在现代,生物学界也很难准确解释大脑中神经元的工作原理,因此也很难用符号系统刻画人脑逻辑。另一方面,连接主义则侧重于利用人工神经网络中神经元的连接去探索并模拟输入与输出之间存在的某种关系,这个过程不需要任何先验知识,其核心思想是“大量简单的计算单元连接到一起可以实现智能行为”,这种思想也推动了反向传播等多种神经网络方法的应用,并发展了包括长短时记忆模型在内的经典建模方法。2019年3月27日,ACM 正式宣布将图灵奖授予 Yoshua Bengio, Geoffrey Hinton 和 Yann LeCun,以表彰他们提出的概念和工作使得深度学习神经网络有了重大突破,这三位获奖人均是人工智能连接主义学派的主要代表,从这件事中也可以看出连接主义对当代人工智能和深度学习的巨大影响。 \parinterval 人工智能领域始终存在着符号主义和联结主义之争。早期的人工智能研究在认知学中被称为{\small\bfnew{符号主义}}\index{符号主义}(Symbolicism)\index{Symbolicism},符号主义认为人工智能源于数理逻辑,希望将世界万物的所有运转方式归纳成像文法一样符合逻辑规律的推导过程。符号主义的支持者们坚信基于物理符号系统(即符号操作系统)假设和有限合理性原理,就能通过逻辑推理来模拟智能。但被他们忽略的一点是,模拟智能的推理过程需要大量的先验知识支持,哪怕是在现代,生物学界也很难准确解释大脑中神经元的工作原理,因此也很难用符号系统刻画人脑逻辑。此外,联结主义则侧重于利用人工神经网络中神经元的连接去探索并模拟输入与输出之间存在的某种关系,这个过程不需要任何先验知识,其核心思想是“大量简单的计算单元连接到一起可以实现智能行为”,这种思想也推动了反向传播等多种神经网络方法的应用,并发展了包括长短时记忆模型在内的经典建模方法。2019年3月27日,ACM 正式宣布将图灵奖授予 Yoshua Bengio, Geoffrey Hinton 和 Yann LeCun,以表彰他们提出的概念和工作使得深度学习神经网络有了重大突破,这三位获奖人均是人工智能联结主义学派的主要代表,从这件事中也可以看出联结主义对当代人工智能和深度学习的巨大影响。
\vspace{0.3em} \vspace{0.3em}
\parinterval 2)分布式表示 \parinterval 2)分布式表示
...@@ -127,7 +127,7 @@ ...@@ -127,7 +127,7 @@
\subsubsection{1. 端到端学习和表示学习} \subsubsection{1. 端到端学习和表示学习}
\parinterval 端到端学习使机器学习不再依赖传统的特征工程方法,因此也不需要繁琐的数据预处理、特征选择、降维等过程,而是直接利用人工神经网络自动从输入数据中提取、组合更复杂的特征,大大提升了模型能力和工程效率。以图\ref{fig:9-2}中的图像分类为例,在传统方法中,图像分类需要很多阶段的处理。首先,需要提取一些手工设计的图像特征,在将其降维之后,需要利用SVM等分类算法对其进行分类。与这种多阶段的流水线似的处理流程相比,端到端深度学习只训练一个神经网络,输入就是图片的像素表示,输出直接是分类类别。 \parinterval 端到端学习使机器学习不再依赖传统的特征工程方法,因此也不需要繁琐的数据预处理、特征选择、降维等过程,而是直接利用人工神经网络自动从输入数据中提取、组合更复杂的特征,大大提升了模型能力和工程效率。以图\ref{fig:9-2}中的图像分类为例,在传统方法中,图像分类需要很多阶段的处理。首先,需要提取一些手工设计的图像特征,在将其降维之后,需要利用SVM等分类算法对其进行分类。与这种多阶段的流水线似的处理流程相比,端到端深度学习只训练一个神经网络,输入图片的像素表示,输出是图片的类别。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -299,7 +299,7 @@ ...@@ -299,7 +299,7 @@
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
\parinterval 矩阵的{\small\bfnew{数乘}}\index{数乘}(Scalar Multiplication)\index{Scalar Multiplication}是指标量(实数)与矩阵的乘法运算,计算过程是将标量与矩阵的每个元素相乘,最终得到与原矩阵形状相同的矩阵。例如,矩阵$ {\mathbi{A}}={(a_{ij})}_{m\times n} $与标量$ k $进行数乘运算,其结果矩阵$ {\mathbi{B}}={(ka_{ij})}_{m\times n} $,即$ k{(a_{ij})}_{m\times n}={(ka_{ij})}_{m\times n} $。公式\eqref{eq:9-102}\eqref{eq:9-5}展示了矩阵数乘的计算过程: \parinterval 矩阵的{\small\bfnew{数乘}}\index{数乘}也称{\small\bfnew{标量乘法}}\index{标量乘法}(Scalar Multiplication)\index{Scalar Multiplication}是指标量(实数)与矩阵的乘法运算,计算过程是将标量与矩阵的每个元素相乘,最终得到与原矩阵形状相同的矩阵。例如,矩阵$ {\mathbi{A}}={(a_{ij})}_{m\times n} $与标量$ k $进行数乘运算,其结果矩阵$ {\mathbi{B}}={(ka_{ij})}_{m\times n} $,即$ k{(a_{ij})}_{m\times n}={(ka_{ij})}_{m\times n} $。公式\eqref{eq:9-102}\eqref{eq:9-5}展示了矩阵数乘的计算过程:
\begin{eqnarray} \begin{eqnarray}
{\mathbi{A}} & = & {\mathbi{A}} & = &
\begin{pmatrix} \begin{pmatrix}
...@@ -367,7 +367,7 @@ ...@@ -367,7 +367,7 @@
\parinterval 可以将线性方程组用矩阵乘法表示,如对于线性方程组$ \begin{cases} 5x_1+2x_2=y_1\\3x_1+x_2=y_2\end{cases} $,可以表示为$ {\mathbi{A}}{\mathbi{x}}^{\textrm T}={\mathbi{y}}^{\textrm T}$,其中$ {\mathbi{A}} = \begin{pmatrix} 5 & 2\\3 & 1\end{pmatrix} $$ {\mathbi{x}}^{\textrm T} = \begin{pmatrix} x_1\\x_2\end{pmatrix} $$ {\mathbi{y}}^{\textrm T} = \begin{pmatrix} y_1\\y_2\end{pmatrix} $ \parinterval 可以将线性方程组用矩阵乘法表示,如对于线性方程组$ \begin{cases} 5x_1+2x_2=y_1\\3x_1+x_2=y_2\end{cases} $,可以表示为$ {\mathbi{A}}{\mathbi{x}}^{\textrm T}={\mathbi{y}}^{\textrm T}$,其中$ {\mathbi{A}} = \begin{pmatrix} 5 & 2\\3 & 1\end{pmatrix} $$ {\mathbi{x}}^{\textrm T} = \begin{pmatrix} x_1\\x_2\end{pmatrix} $$ {\mathbi{y}}^{\textrm T} = \begin{pmatrix} y_1\\y_2\end{pmatrix} $
\end{spacing} \end{spacing}
\parinterval 矩阵的点乘就是两个形状相同的矩阵各个对应元素相乘,矩阵点乘也被称为{\small\bfnew{按元素乘积}}\index{按元素乘积}(Element-wise Product)\index{Element-wise Product}或Hadamard乘积,记为${\mathbi{A}}\odot {\mathbi{B}}$。例如,对于公式\eqref{eq:9-103}和公式\eqref{eq:9-104}所示的两个矩阵, \parinterval 矩阵的点乘就是两个形状相同的矩阵各个对应元素相乘,矩阵点乘也被称为{\small\bfnew{按元素乘积}}\index{按元素乘积}(Element-wise Product)\index{Element-wise Product}或Hadamard乘积,记为${\mathbi{A}}\odot {\mathbi{B}}$。例如,对于公式\eqref{eq:9-103}和公式\eqref{eq:9-104}所示的两个矩阵,
\begin{eqnarray} \begin{eqnarray}
{\mathbi{A}} &=& {\mathbi{A}} &=&
\begin{pmatrix} \begin{pmatrix}
...@@ -441,7 +441,7 @@ f(c{\mathbi{v}})&=&cf({\mathbi{v}}) ...@@ -441,7 +441,7 @@ f(c{\mathbi{v}})&=&cf({\mathbi{v}})
\subsubsection{6. 范数} \subsubsection{6. 范数}
\parinterval 工程领域,经常会使用被称为{\small\bfnew{范数}}\index{范数}(Norm)\index{Norm}的函数衡量向量大小,范数为向量空间内的所有向量赋予非零的正长度或大小。对于一个$n$维向量$ {\mathbi{x}} $,一个常见的范数函数为$ l_p $ 范数,通常表示为$ {\Vert{\mathbi{x}}\Vert}_p $ ,其中$p\ge 0$,是一个标量形式的参数。常用的$ p $的取值有$ 1 $$ 2 $$ \infty $等。范数的计算方式如下: \parinterval 工程领域,经常会使用被称为{\small\bfnew{范数}}\index{范数}(Norm)\index{Norm}的函数衡量向量大小,范数为向量空间内的所有向量赋予非零的正长度(或大小)。对于一个$n$维向量$ {\mathbi{x}} $,一个常见的范数函数为$ l_p $ 范数,通常表示为$ {\Vert{\mathbi{x}}\Vert}_p $ ,其中$p\ge 0$,是一个标量形式的参数。常用的$ p $的取值有$ 1 $$ 2 $$ \infty $等。范数的计算方式如下:
\begin{eqnarray} \begin{eqnarray}
l_p({\mathbi{x}}) & = & {\Vert{\mathbi{x}}\Vert}_p \nonumber \\ l_p({\mathbi{x}}) & = & {\Vert{\mathbi{x}}\Vert}_p \nonumber \\
& = & {\left (\sum_{i=1}^{n}{{\vert x_{i}\vert}^p}\right )}^{\frac{1}{p}} & = & {\left (\sum_{i=1}^{n}{{\vert x_{i}\vert}^p}\right )}^{\frac{1}{p}}
...@@ -457,15 +457,15 @@ l_p({\mathbi{x}}) & = & {\Vert{\mathbi{x}}\Vert}_p \nonumber \\ ...@@ -457,15 +457,15 @@ l_p({\mathbi{x}}) & = & {\Vert{\mathbi{x}}\Vert}_p \nonumber \\
\parinterval $ l_2 $范数为向量的各个元素平方和的二分之一次方: \parinterval $ l_2 $范数为向量的各个元素平方和的二分之一次方:
\begin{eqnarray} \begin{eqnarray}
{\Vert{\mathbi{x}}\Vert}_2&=&\sqrt{\sum_{i=1}^{n}{{x_{i}}^2}} \nonumber \\ {\Vert{\mathbi{x}}\Vert}_2&=&\sqrt{\sum_{i=1}^{n}{{x_{i}}^2}} \nonumber \\
&=&\sqrt{{\mathbi{x}}^{\textrm T}{\mathbi{x}}} &=&\sqrt{{{\mathbi{x}}\mathbi{x}}^{\textrm T}}
\label{eq:9-16} \label{eq:9-16}
\end{eqnarray} \end{eqnarray}
\parinterval $ l_2 $范数被称为{\small\bfnew{欧几里得范数}}\index{欧几里得范数}(Euclidean Norm)\index{Euclidean Norm}。从几何角度,向量也可以表示为从原点出发的一个带箭头的有向线段,其$ l_2 $范数为线段的长度,也常被称为向量的模。$ l_2 $ 范数在机器学习中非常常用。向量$ {\mathbi{x}} $$ l_2 $范数经常简化表示为$ \Vert{\mathbi{x}}\Vert $,可以通过点积$ {\mathbi{x}}^{\textrm T}{\mathbi{x}} $进行计算。 \parinterval $ l_2 $范数被称为{\small\bfnew{欧几里得范数}}\index{欧几里得范数}(Euclidean Norm)\index{Euclidean Norm}。从几何角度,向量也可以表示为从原点出发的一个带箭头的有向线段,其$ l_2 $范数为线段的长度,也常被称为向量的模。$ l_2 $ 范数在机器学习中非常常用。向量$ {\mathbi{x}} $$ l_2 $范数经常简化表示为$ \Vert{\mathbi{x}}\Vert $,可以通过点积$ {{\mathbi{x}} \mathbi{x}}^{\textrm T} $进行计算。
\parinterval $ l_{\infty} $范数为向量的各个元素的最大绝对值: \parinterval $ l_{\infty} $范数为向量的各个元素的最大绝对值:
\begin{eqnarray} \begin{eqnarray}
{\Vert{\mathbi{x}}\Vert}_{\infty}&=&{\textrm{max}}\{x_1,x_2,\dots,x_n\} {\Vert{\mathbi{x}}\Vert}_{\infty}&=&{\textrm{max}}\{\vert x_1\vert,\vert x_2\vert,\dots,\vert x_n\vert\}
\label{eq:9-17} \label{eq:9-17}
\end{eqnarray} \end{eqnarray}
...@@ -492,7 +492,7 @@ l_p({\mathbi{x}}) & = & {\Vert{\mathbi{x}}\Vert}_p \nonumber \\ ...@@ -492,7 +492,7 @@ l_p({\mathbi{x}}) & = & {\Vert{\mathbi{x}}\Vert}_p \nonumber \\
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
\subsection{人工神经元和感知机} \subsection{人工神经元和感知机}
\parinterval 生物学中,神经元是神经系统的基本组成单元。同样,人工神经元是人工神经网络的基本单元。在人们的想象中,人工神经元应该与生物神经元类似。但事实上,二者在形态上是有明显差别的。如图\ref{fig:9-4} 是一个典型的人工神经元,其本质是一个形似$ y=f({\mathbi{x}}\cdot {\mathbi{w}}+b) $的函数。显而易见,一个神经元主要由$ {\mathbi{x}} $$ {\mathbi{w}} $$ b $$ f $四个部分构成。其中$ {\mathbi{x}} $是一个形如$ (x_1,x_2,\dots,x_n) $ 的实数向量,在一个神经元中担任“输入”的角色。$ {\mathbi{w}} $通常被理解为神经元连接的{\small\sffamily\bfseries{权重}}\index{权重}(Weight)\index{Weight}(对于一个人工神经元,权重是一个向量,表示为$ {\mathbi{w}} $;对于由多个神经元组成的神经网络,权重是一个矩阵,表示为$ {\mathbi{W}} $),其中的每一个元素都对应着一个输入和一个输出,代表着“某输入对某输出的贡献程度”。$ b $被称作偏置(对于一个人工神经元,偏置是一个实数,表示为$b$;对于神经网络中的某一层,偏置是一个向量,表示为${\mathbi{b}}$)。$ f $被称作激活函数,用于对输入向量各项加权和后进行某种变换。可见,一个人工神经元的功能是将输入向量与权重矩阵右乘(做内积)后,加上偏置量,经过一个激活函数得到一个标量结果。 \parinterval 生物学中,神经元是神经系统的基本组成单元。同样,人工神经元是人工神经网络的基本单元。在人们的想象中,人工神经元应该与生物神经元类似。但事实上,二者在形态上是有明显差别的。如图\ref{fig:9-4} 是一个典型的人工神经元,其本质是一个形似$ y=f({\mathbi{x}}{\mathbi{w}}+b) $的函数。显而易见,一个神经元主要由$ {\mathbi{x}} $$ {\mathbi{w}} $$ b $$ f $四个部分构成。其中$ {\mathbi{x}} $是一个形如$ (x_1,x_2,\dots,x_n) $ 的实数向量,在一个神经元中担任“输入”的角色。$ {\mathbi{w}} $通常被理解为神经元连接的{\small\sffamily\bfseries{权重}}\index{权重}(Weight)\index{Weight}(对于一个人工神经元,权重是一个向量,表示为$ {\mathbi{w}} $;对于由多个神经元组成的神经网络,权重是一个矩阵,表示为$ {\mathbi{W}} $),其中的每一个元素都对应着一个输入和一个输出,代表着“某输入对某输出的贡献程度”。$ b $被称作偏置(对于一个人工神经元,偏置是一个实数,表示为$b$;对于神经网络中的某一层,偏置是一个向量,表示为${\mathbi{b}}$)。$ f $被称作激活函数,用于对输入向量各项加权和后进行某种变换。可见,一个人工神经元的功能是将输入向量与权重矩阵右乘(做内积)后,加上偏置量,经过一个激活函数得到一个标量结果。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -511,7 +511,7 @@ l_p({\mathbi{x}}) & = & {\Vert{\mathbi{x}}\Vert}_p \nonumber \\ ...@@ -511,7 +511,7 @@ l_p({\mathbi{x}}) & = & {\Vert{\mathbi{x}}\Vert}_p \nonumber \\
\subsubsection{1. 感知机\ \dash \ 最简单的人工神经元模型} \subsubsection{1. 感知机\ \dash \ 最简单的人工神经元模型}
\vspace{0.5em} \vspace{0.5em}
\parinterval 感知机是人工神经元的一种实例,在上世纪50-60年代被提出后,对神经网络研究产生了深远的影响。感知机模型如图\ref {fig:9-5}所示,其输入是一个$n$维二值向量$ {\mathbi{x}}=(x_1,x_2,\dots,x_n) $,其中$ x_i=0 $$ 1 $。权重${\mathbi{w}}=(w_1,w_2,\dots,w_n) $,每个输入变量对应一个权重$ w_i $。偏置$ b $是一个实数变量($ -\sigma $)。输出也是一个二值结果,即$ y=0 $$ 1 $$ y $值的判定由输入的加权和是否大于(或小于)一个阈值$ \sigma $决定: \parinterval 感知机是人工神经元的一种实例,在上世纪50年代被提出,对神经网络研究产生了深远的影响。感知机模型如图\ref {fig:9-5}所示,其输入是一个$n$维二值向量$ {\mathbi{x}}=(x_1,x_2,\dots,x_n) $,其中$ x_i=0 $$ 1 $。权重${\mathbi{w}}=(w_1,w_2,\dots,w_n) $,每个输入变量对应一个权重$ w_i $。偏置$ b $是一个实数变量($ -\sigma $)。输出也是一个二值结果,即$ y=0 $$ 1 $$ y $值的判定由输入的加权和是否大于(或小于)一个阈值$ \sigma $决定:
\begin{eqnarray} \begin{eqnarray}
y&=&\begin{cases} 0 & \sum_{i}{x_i\cdot w_i}-\sigma <0\\1 & \sum_{i}{x_i\cdot w_i}-\sigma \geqslant 0\end{cases} y&=&\begin{cases} 0 & \sum_{i}{x_i\cdot w_i}-\sigma <0\\1 & \sum_{i}{x_i\cdot w_i}-\sigma \geqslant 0\end{cases}
\label{eq:9-19} \label{eq:9-19}
...@@ -704,13 +704,13 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -704,13 +704,13 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\vspace{0.5em} \vspace{0.5em}
\item 从代数角度看,对于线性空间$ \textrm V $,任意$ {\mathbi{a}}$${\mathbi{a}}\in {\textrm V} $和数域中的任意$ \alpha $,线性变换$ T(\cdot) $需满足:$ T({\mathbi{a}}+{\mathbi{b}})=T({\mathbi{a}})+T({\mathbi{b}}) $,且$ T(\alpha {\mathbi{a}})=\alpha T({\mathbi{a}}) $ \item 从代数角度看,对于线性空间$ \textrm V $,任意$ {\mathbi{a}}$${\mathbi{a}}\in {\textrm V} $和数域中的任意$ \alpha $,线性变换$ T(\cdot) $需满足:$ T({\mathbi{a}}+{\mathbi{b}})=T({\mathbi{a}})+T({\mathbi{b}}) $,且$ T(\alpha {\mathbi{a}})=\alpha T({\mathbi{a}}) $
\vspace{0.5em} \vspace{0.5em}
\item 从几何角度看,公式中的${\mathbi{x}}\cdot {\mathbi{W}}+{\mathbi{b}}$${\mathbi{x}}$右乘${\mathbi{W}}$相当于对$ {\mathbi{x}} $进行旋转变换。例如,对三个点$ (0,0) $$ (0,1) $$ (1,0) $及其围成的矩形区域右乘如下矩阵: \item 从几何角度看,公式中的${\mathbi{x}}{\mathbi{W}}+{\mathbi{b}}$${\mathbi{x}}$右乘${\mathbi{W}}$相当于对$ {\mathbi{x}} $进行旋转变换。例如,对三个点$ (0,0) $$ (0,1) $$ (1,0) $及其围成的矩形区域右乘如下矩阵:
\begin{eqnarray} \begin{eqnarray}
{\mathbi{W}}&=&\begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1\end{pmatrix} {\mathbi{W}}&=&\begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1\end{pmatrix}
\label{eq:9-106} \label{eq:9-106}
\end{eqnarray} \end{eqnarray}
这样,矩形区域由第一象限旋转90度到了第四象限,如图\ref{fig:9-13}第一步所示。公式$ {\mathbi{x}}\cdot {\mathbi{W}}+{\mathbi{b}}$中的公式中的${\mathbi{b}}$相当于对其进行平移变换。其过程如图\ref{fig:9-13} 第二步所示,偏置矩阵$ {\mathbi{b}}=\begin{pmatrix} 0.5 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix} $将矩形区域沿$x$轴向右平移了一段距离。 这样,矩形区域由第一象限旋转90度到了第四象限,如图\ref{fig:9-13}第一步所示。公式$ {\mathbi{x}} {\mathbi{W}}+{\mathbi{b}}$中的公式中的${\mathbi{b}}$相当于对其进行平移变换。其过程如图\ref{fig:9-13} 第二步所示,偏置矩阵$ {\mathbi{b}}=\begin{pmatrix} 0.5 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix} $将矩形区域沿$x$轴向右平移了一段距离。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -730,7 +730,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -730,7 +730,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter9/Figures/figure-linear-transformation} \input{./Chapter9/Figures/figure-linear-transformation}
\caption{线性变换3维$ \rightarrow $2维数学示意} \caption{线性变换3维$ \rightarrow $2维数学示意}
\label{fig:9-14} \label{fig:9-14}
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
...@@ -842,7 +842,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -842,7 +842,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\end {figure} \end {figure}
%------------------------------------------- %-------------------------------------------
\parinterval 由上面的内容,已经看到通过设置神经元中的参数将目标函数的形状做各种变换,但是看起来目标函数的类型还是比较单一的。而在实际问题中,输入与输出之间的函数关系甚至复杂到无法人为构造或是书写,神经网络又是如何拟合这种复杂的函数关系的呢? \parinterval 由上面的内容,已经看到通过设置神经元中的参数将目标函数的形状做各种变换,但是上例中目标函数的类型还是比较单一的。而在实际问题中,输入与输出之间的函数关系甚至复杂到无法人为构造或是书写,神经网络又是如何拟合这种复杂的函数关系的呢?
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -855,13 +855,13 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -855,13 +855,13 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\parinterval 以如图\ref{fig:9-23}(a)所示的目标函数为例,为了拟合该函数,可以将其看成分成无数小段的分段函数,如图\ref{fig:9-23}(b)所示。 \parinterval 以如图\ref{fig:9-23}(a)所示的目标函数为例,为了拟合该函数,可以将其看成分成无数小段的分段函数,如图\ref{fig:9-23}(b)所示。
\parinterval 如图\ref{fig:9-24}(a)所示,上例中两层神经网络的函数便可以拟合出目标函数的一小段。为了使两层神经网络可以拟合出目标函数更多的一小段,需要增加隐层神经元的个数。如图\ref{fig:9-24}(b),将原本的两层神经网络神经元个数增多一倍,由2个神经元扩展到4个神经元,其函数的分段数也增加一倍,而此时的函数恰好可以拟合目标函数中的两个小段。以此类推,理论上,该两层神经网络便可以通过不断地增加隐层神经元数量去拟合任意函数。 \parinterval 如图\ref{fig:9-24}(a)所示,上例中两层神经网络的函数便可以拟合出目标函数的一小段。为了使两层神经网络可以拟合出目标函数更多的一小段,需要增加隐藏层神经元的个数。如图\ref{fig:9-24}(b),将原本的两层神经网络神经元个数增多一倍,由2个神经元扩展到4个神经元,其函数的分段数也增加一倍,而此时的函数恰好可以拟合目标函数中的两个小段。以此类推,理论上,该两层神经网络便可以通过不断地增加隐藏层神经元数量去拟合任意函数。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter9/Figures/figure-fit} \input{./Chapter9/Figures/figure-fit}
\caption{扩展隐层神经元个数去拟合目标函数更多的“一小段”} \caption{扩展隐层神经元个数去拟合目标函数更多的“一小段”}
\label{fig:9-24} \label{fig:9-24}
\end {figure} \end {figure}
%------------------------------------------- %-------------------------------------------
...@@ -870,7 +870,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -870,7 +870,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item 使用较浅的神经网络去拟合一个比较复杂的函数关系,需要数量极其庞大的神经元和参数,训练难度大。在上面的例子中可以看出,两层神经元仅仅拟合目标函数的两小段,其隐层就需要4个神经元。从另一个角度说,加深网络也可能会达到与宽网络(更多神经元)类似的效果。 \item 使用较浅的神经网络去拟合一个比较复杂的函数关系,需要数量极其庞大的神经元和参数,训练难度大。在上面的例子中可以看出,两层神经元仅仅拟合目标函数的两小段,其隐层就需要4个神经元。从另一个角度说,加深网络也可能会达到与宽网络(更多神经元)类似的效果。
\vspace{0.5em} \vspace{0.5em}
\item 更多层的网络可以提供更多的线性变换和激活函数,对输入的抽象程度更好,因而可以更好的表示数据的特征。 \item 更多层的网络可以提供更多的线性变换和激活函数,对输入的抽象程度更好,因而可以更好的表示数据的特征。
\vspace{0.5em} \vspace{0.5em}
...@@ -902,7 +902,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -902,7 +902,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\subsubsection{1. 张量} \subsubsection{1. 张量}
\parinterval 对于神经网络中的某层神经元${\mathbi{y}}=f({\mathbi{x}}\cdot {\mathbi{W}}+{\mathbi{b}}) $,其中$ {\mathbi{W}} $是权重矩阵,例如$ \begin{pmatrix} 1 & 2\\ 3 & 4\end{pmatrix} $${\mathbi{b}} $ 是偏置向量,例如$ (1,3) $。在这里,输入$ {\mathbi{x}} $和输出$ {\mathbi{y}} $,可以不是简单的向量或是矩阵形式,而是深度学习中更加通用的数学量\ \dash \ {\small\bfnew{张量}}\index{张量}(Tensor)\index{Tensor},比如公式\eqref{eq:9-107}中的几种情况都可以看作是深度学习中定义数据的张量: \parinterval 对于神经网络中的某层神经元${\mathbi{y}}=f({\mathbi{x}}{\mathbi{W}}+{\mathbi{b}}) $,其中$ {\mathbi{W}} $是权重矩阵,例如$ \begin{pmatrix} 1 & 2\\ 3 & 4\end{pmatrix} $${\mathbi{b}} $ 是偏置向量,例如$ (1,3) $。在这里,输入$ {\mathbi{x}} $和输出$ {\mathbi{y}} $,可以不是简单的向量或是矩阵形式,而是深度学习中更加通用的数学量\ \dash \ {\small\bfnew{张量}}\index{张量}(Tensor)\index{Tensor},比如公式\eqref{eq:9-107}中的几种情况都可以看作是深度学习中定义数据的张量:
\begin{eqnarray} \begin{eqnarray}
{\mathbi{x}}&=&\begin{pmatrix} -1 & 3\end{pmatrix}\qquad {\mathbi{x}}&=&\begin{pmatrix} -1 & 3\end{pmatrix}\qquad
{\mathbi{x}}\;\;=\;\;\begin{pmatrix} -1 & 3\\ 0.2 & 2\end{pmatrix}\qquad {\mathbi{x}}\;\;=\;\;\begin{pmatrix} -1 & 3\\ 0.2 & 2\end{pmatrix}\qquad
...@@ -912,13 +912,13 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -912,13 +912,13 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\parinterval 简单来说,张量是一种通用的工具,用于描述由多个数据构成的量。比如,输入的量有三个维度在变化,用矩阵不容易描述,但是用张量却很容易。 \parinterval 简单来说,张量是一种通用的工具,用于描述由多个数据构成的量。比如,输入的量有三个维度在变化,用矩阵不容易描述,但是用张量却很容易。
\parinterval 从计算机实现的角度来看,现在所有深度学习框架都把张量定义为“多维数组”。张量有一个非常重要的属性\ \dash \ {\small\bfnew{}}\index{}(Rank)\index{Rank}。可以将多维数组中“维”的属性与张量的“阶”的属性作类比,这两个属性都表示多维数组(张量)有多少个独立的方向。例如,3是一个标量,相当于一个0维数组或0阶张量;$ {(\begin{array}{cccc} 2 & -3 & 0.8 & 0.2\end{array})}^{\textrm T} $ 是一个向量,相当于一个1维数组或1阶张量;$ \begin{pmatrix} -1 & 3 & 7\\ 0.2 & 2 & 9\end{pmatrix} $是一个矩阵,相当于一个2维数组或2阶张量;如图\ref{fig:9-25}所示,这是一个3 维数组或3阶张量,其中,每个$4 \times 4$的方形代表一个2阶张量,这样的方形有4个,最终形成3阶张量。 \parinterval 从计算机实现的角度来看,现在所有深度学习框架都把张量定义为“多维数组”。张量有一个非常重要的属性\ \dash \ {\small\bfnew{}}\index{}(Rank)\index{Rank}。可以将多维数组中“维”的属性与张量的“阶”的属性作类比,这两个属性都表示多维数组(张量)有多少个独立的方向。例如,3是一个标量,相当于一个0维数组或0阶张量;$ {(\begin{array}{cccc} 2 & -3 & 0.8 & 0.2\end{array})}^{\textrm T} $ 是一个向量,相当于一个1维数组或1阶张量;$ \begin{pmatrix} -1 & 3 & 7\\ 0.2 & 2 & 9\end{pmatrix} $是一个矩阵,相当于一个2维数组或2阶张量;如图\ref{fig:9-25}所示,这是一个4维数组或4阶张量,其中,每个$3 \times 3$的方形代表一个2阶张量,这样的方形有4个,最终形成4阶张量。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
\input{./Chapter9/Figures/figure-tensor-sample} \input{./Chapter9/Figures/figure-tensor-sample}
\caption{3阶张量示例($4 \times 4 \times 4$} \caption{3阶张量示例($4 \times 3 \times 3$}
\label{fig:9-25} \label{fig:9-25}
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
...@@ -931,7 +931,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -931,7 +931,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\subsubsection{2. 张量的矩阵乘法} \subsubsection{2. 张量的矩阵乘法}
\parinterval 对于一个单层神经网络,$ {\mathbi{y}}=f({\mathbi{x}}\cdot{\mathbi{W}}+{\mathbi{b}}) $中的${\mathbi{x}}\cdot {\mathbi{W}} $表示对输入${\mathbi{x}} $进行线性变换,其中${\mathbi{x}}$是输入张量,$ {\mathbi{W}}$是权重矩阵。$ {\mathbi{x}}\cdot {\mathbi{W}} $表示的是矩阵乘法,需要注意的是这里是矩阵乘法而不是张量乘法。 \parinterval 对于一个单层神经网络,$ {\mathbi{y}}=f({\mathbi{x}}{\mathbi{W}}+{\mathbi{b}}) $中的${\mathbi{x}}{\mathbi{W}} $表示对输入${\mathbi{x}} $进行线性变换,其中${\mathbi{x}}$是输入张量,$ {\mathbi{W}}$是权重矩阵。$ {\mathbi{x}} {\mathbi{W}} $表示的是矩阵乘法,需要注意的是这里是矩阵乘法而不是张量乘法。
\parinterval 张量乘以矩阵是怎样计算呢?可以先回忆一下\ref{sec:9.2.1}节的线性代数的知识。假设$ {\mathbi{A}} $$ m\times p $的矩阵,$ {\mathbi{B}} $$ p\times n $的矩阵,对${\mathbi{A}} $${\mathbi{B}}$ 作矩阵乘积的结果是一个$ m\times n $的矩阵${\mathbi{C}}$,其中矩阵${\mathbi{C}}$中第$ i $行、第$ j $列的元素可以表示为: \parinterval 张量乘以矩阵是怎样计算呢?可以先回忆一下\ref{sec:9.2.1}节的线性代数的知识。假设$ {\mathbi{A}} $$ m\times p $的矩阵,$ {\mathbi{B}} $$ p\times n $的矩阵,对${\mathbi{A}} $${\mathbi{B}}$ 作矩阵乘积的结果是一个$ m\times n $的矩阵${\mathbi{C}}$,其中矩阵${\mathbi{C}}$中第$ i $行、第$ j $列的元素可以表示为:
\begin{eqnarray} \begin{eqnarray}
...@@ -969,7 +969,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -969,7 +969,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\subsubsection{3. 张量的单元操作} \subsubsection{3. 张量的单元操作}
\vspace{0.5em} \vspace{0.5em}
\parinterval 对于神经网络中的某层神经元$ {\mathbi{y}}=f({\mathbi{x}}\cdot {\mathbi{W}}+{\mathbi{b}}) $,也包含有其他张量单元操作:1)加法:$ {\mathbi{s}}+{\mathbi{b}}$,其中张量$ {\mathbi{s}}={\mathbi{x}}\cdot {\mathbi{W}} $;2)激活函数:$ f(\cdot) $。具体来说: \parinterval 对于神经网络中的某层神经元$ {\mathbi{y}}=f({\mathbi{x}} {\mathbi{W}}+{\mathbi{b}}) $,也包含有其他张量单元操作:1)加法:$ {\mathbi{s}}+{\mathbi{b}}$,其中张量$ {\mathbi{s}}={\mathbi{x}}{\mathbi{W}} $;2)激活函数:$ f(\cdot) $。具体来说:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
...@@ -984,7 +984,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe ...@@ -984,7 +984,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\end {figure} \end {figure}
%------------------------------------------- %-------------------------------------------
\vspace{0.5em} \vspace{0.5em}
\item 除了单加之外,张量之间也可以使用减法操作、乘法操作。此外也可以对张量作激活操作,这里将其称作为函数的{\small\bfnew{向量化}}\index{向量化}(Vectorization)\index{Vectorization}。例如,对向量(1阶张量)作ReLU激活,ReLU激活函数表达式如下: \item 除了单加之外,张量之间也可以使用减法操作、乘法操作。此外也可以对张量作激活操作,这里将其称作为函数的{\small\bfnew{向量化}}\index{向量化}(Vectorization)\index{Vectorization}。例如,对向量(1阶张量)作ReLU激活,ReLU激活函数表达式如下:
\begin{eqnarray} \begin{eqnarray}
f(x)&=&\begin{cases} 0 & x\le 0 \\x & x>0\end{cases} f(x)&=&\begin{cases} 0 & x\le 0 \\x & x>0\end{cases}
\label{eq:9-26} \label{eq:9-26}
...@@ -1069,7 +1069,7 @@ f(x)&=&\begin{cases} 0 & x\le 0 \\x & x>0\end{cases} ...@@ -1069,7 +1069,7 @@ f(x)&=&\begin{cases} 0 & x\le 0 \\x & x>0\end{cases}
\subsection{前向传播与计算图} \subsection{前向传播与计算图}
\parinterval 有了张量这个工具,可以很容易地实现任意的神经网络。反过来,神经网络都可以被看作是张量的函数。一种经典的神经网络计算模型是:给定输入张量,通过各个神经网络层所对应的张量计算之后,最后得到输出张量。这个过程也被称作{\small\sffamily\bfseries{前向传播}}\index{前向传播}(Forward Propagation\index{Forward Propagation}),它常常被应用在使用神经网络对新的样本进行推断中。 \parinterval 有了张量这个工具,可以很容易地实现任意的神经网络。反过来,神经网络都可以被看作是张量的函数。一种经典的神经网络计算模型是:给定输入张量,各个神经网络层逐层进行张量计算之后,最后得到输出张量。这个过程也被称作{\small\sffamily\bfseries{前向传播}}\index{前向传播}(Forward Propagation\index{Forward Propagation}),它常常被应用在使用神经网络对新的样本进行推断中。
\parinterval 来看一个具体的例子,图\ref{fig:9-37}展示了一个根据天气情况判断穿衣指数(穿衣指数是人们穿衣薄厚的依据)的过程,将当天的天空状况、低空气温、水平气压作为输入,通过一层神经元在输入数据中提取温度、风速两方面的特征,并根据这两方面的特征判断穿衣指数。需要注意的是,在实际的神经网络中,并不能准确地知道神经元究竟可以提取到哪方面的特征,以上表述是为了让读者更好地理解神经网络的建模过程和前向传播过程。这里将上述过程建模为如图\ref{fig:9-37}所示的两层神经网络。 \parinterval 来看一个具体的例子,图\ref{fig:9-37}展示了一个根据天气情况判断穿衣指数(穿衣指数是人们穿衣薄厚的依据)的过程,将当天的天空状况、低空气温、水平气压作为输入,通过一层神经元在输入数据中提取温度、风速两方面的特征,并根据这两方面的特征判断穿衣指数。需要注意的是,在实际的神经网络中,并不能准确地知道神经元究竟可以提取到哪方面的特征,以上表述是为了让读者更好地理解神经网络的建模过程和前向传播过程。这里将上述过程建模为如图\ref{fig:9-37}所示的两层神经网络。
...@@ -1084,11 +1084,11 @@ f(x)&=&\begin{cases} 0 & x\le 0 \\x & x>0\end{cases} ...@@ -1084,11 +1084,11 @@ f(x)&=&\begin{cases} 0 & x\le 0 \\x & x>0\end{cases}
\parinterval 它可以被描述为公式\eqref{eq:9-27},其中隐藏层的激活函数是Tanh函数,输出层的激活函数是Sigmoid函数,${\mathbi{W}}^{[1]}$${\mathbi{b}}^{[1]}$分别表示第一层的权重矩阵和偏置,${\mathbi{W}}^{[2]}$$b^{[2]}$分别表示第二层的权重矩阵和偏置\footnote{注意这里${\mathbi{b}}^{[1]}$是向量而$b^{[2]}$是标量,因而前者加粗后者未加粗} \parinterval 它可以被描述为公式\eqref{eq:9-27},其中隐藏层的激活函数是Tanh函数,输出层的激活函数是Sigmoid函数,${\mathbi{W}}^{[1]}$${\mathbi{b}}^{[1]}$分别表示第一层的权重矩阵和偏置,${\mathbi{W}}^{[2]}$$b^{[2]}$分别表示第二层的权重矩阵和偏置\footnote{注意这里${\mathbi{b}}^{[1]}$是向量而$b^{[2]}$是标量,因而前者加粗后者未加粗}
\begin{eqnarray} \begin{eqnarray}
y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\mathbi{b}}^{[1]})\cdot {\mathbi{W}}^{[2]}+ b^{[2]} ) y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}{\mathbi{W}}^{[1]}+{\mathbi{b}}^{[1]}){\mathbi{W}}^{[2]}+ b^{[2]} )
\label{eq:9-27} \label{eq:9-27}
\end{eqnarray} \end{eqnarray}
\parinterval 前向计算实现如图\ref{fig:9-38}所示,图中对各张量和其他参数的形状做了详细说明。输入$ {\mathbi{x}}=(x_1,x_2,x_3) $是一个$1\times 3$的张量,其三个维度分别对应天空状况、低空气温、水平气压三个方面的数据。输入数据经过隐藏层的线性变换$ {\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\mathbi{b}}^{[1]}$和Tanh函数的激活,得到新的张量$ {\mathbi{a}}=(a_1,a_2) $,其中$a_1$$a_2$分别对应着从输入数据中提取出的温度和风速两方面特征;神经网络在获取到天气情况的特征$ {\mathbi{a}}$后,继续对其进行线性变换${\mathbi{a}}\cdot {\mathbi{W}}^{[2]}+ b^{[2]} $和Sigmoid函数的激活操作,得到神经网络的最终输出$ y $,即神经网络此时预测的穿衣指数。 \parinterval 前向计算实现如图\ref{fig:9-38}所示,图中对各张量和其他参数的形状做了详细说明。输入$ {\mathbi{x}}=(x_1,x_2,x_3) $是一个$1\times 3$的张量,其三个维度分别对应天空状况、低空气温、水平气压三个方面的数据。输入数据经过隐藏层的线性变换$ {\mathbi{x}} {\mathbi{W}}^{[1]}+{\mathbi{b}}^{[1]}$和Tanh函数的激活,得到新的张量$ {\mathbi{a}}=(a_1,a_2) $,其中$a_1$$a_2$分别对应着从输入数据中提取出的温度和风速两方面特征;神经网络在获取到天气情况的特征$ {\mathbi{a}}$后,继续对其进行线性变换${\mathbi{a}} {\mathbi{W}}^{[2]}+ b^{[2]} $和Sigmoid函数的激活操作,得到神经网络的最终输出$ y $,即神经网络此时预测的穿衣指数。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
\centering \centering
...@@ -1098,7 +1098,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma ...@@ -1098,7 +1098,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval\ref{fig:9-38}实际上是神经网络的一种{\small\bfnew{计算图}}\index{计算图}(Computation Graph)\index{Computation Graph}表示。现在很多深度学习框架都是把神经网络转化为计算图,这样可以把复杂的运算分解为简单的运算,称为{\small\bfnew{算子}}\index{算子}Calculus\index{Calculus})。通过对计算图中节点的遍历,可以方便地完成神经网络的计算。比如,可以对图中节点进行拓扑排序(由输入到输出),之后依次访问每个节点,同时完成相应的计算,这也就实现了一个前向计算的过程。 \parinterval\ref{fig:9-38}实际上是神经网络的一种{\small\bfnew{计算图}}\index{计算图}(Computation Graph)\index{Computation Graph}表示。现在很多深度学习框架都是把神经网络转化为计算图,这样可以把复杂的运算分解为简单的运算,称为{\small\bfnew{算子}}\index{算子}Operator\index{Operator})。通过对计算图中节点的遍历,可以方便地完成神经网络的计算。比如,可以对图中节点进行拓扑排序(由输入到输出),之后依次访问每个节点,同时完成相应的计算,这也就实现了一个前向计算的过程。
\parinterval 使用计算图的另一个优点在于,这种方式易于参数梯度的计算。在后面的内容中会看到,计算神经网络中参数的梯度是模型训练的重要步骤。在计算图中,可以使用{\small\bfnew{反向传播}}\index{反向传播} (Backward Propagation\index{Backward Propagation})的方式逐层计算不同节点上的梯度信息。在\ref{sec9:para-training} 节会看到使用计算图这种结构可以非常方便、高效地计算反向传播中所需的梯度信息。 \parinterval 使用计算图的另一个优点在于,这种方式易于参数梯度的计算。在后面的内容中会看到,计算神经网络中参数的梯度是模型训练的重要步骤。在计算图中,可以使用{\small\bfnew{反向传播}}\index{反向传播} (Backward Propagation\index{Backward Propagation})的方式逐层计算不同节点上的梯度信息。在\ref{sec9:para-training} 节会看到使用计算图这种结构可以非常方便、高效地计算反向传播中所需的梯度信息。
...@@ -1109,7 +1109,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma ...@@ -1109,7 +1109,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma
\sectionnewpage \sectionnewpage
\section{神经网络的参数训练} \section{神经网络的参数训练}
\parinterval 简单来说,神经网络可以被看作是由变量和函数组成的表达式,例如:$ {\mathbi{y}}={\mathbi{x}}+{\mathbi{b}} $$ {\mathbi{y}}={\textrm{ReLU}}({\mathbi{x}}\cdot {\mathbi{W}}+{\mathbi{b}}) $$ {\mathbi{y}}={\textrm{Sigmoid}}({\textrm{ReLU}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\mathbi{b}}^{[1]})\cdot {\mathbi{W}}^{[2]}+{\mathbi{b}}^{[2]}) $等等,其中的$ {\mathbi{x}} $$ {\mathbi{y}} $作为输入和输出向量, ${\mathbi{W}}$${\mathbi{b}}$等其他变量作为{\small\sffamily\bfseries{模型参数}}\index{模型参数}(Model Parameters)\index{Model Parameters}。确定了函数表达式和模型参数,也就确定了神经网络模型。通常,表达式的形式需要系统开发者设计,而模型参数的数量有时会非常巨大,因此需要自动学习,这个过程也被称为模型学习或训练。为了实现这个目标,通常会准备一定量的带有标准答案的数据,称之为有标注数据。这些数据会用于对模型参数的学习,这也对应了统计模型中的参数估计过程。在机器学习中,一般把这种使用有标注数据进行统计模型参数训练的过程称为{\small\sffamily\bfseries{有指导的训练}}\index{有指导的训练}{\small\sffamily\bfseries{有监督的训练}}\index{有监督的训练}(Supervised Training)\index{Supervised Training}。在本章中,如果没有特殊说明,模型训练都是指有监督的训练。那么神经网络内部是怎样利用有标注数据对参数进行训练的呢? \parinterval 简单来说,神经网络可以被看作是由变量和函数组成的表达式,例如:$ {\mathbi{y}}={\mathbi{x}}+{\mathbi{b}} $$ {\mathbi{y}}={\textrm{ReLU}}({\mathbi{x}} {\mathbi{W}}+{\mathbi{b}}) $$ {\mathbi{y}}={\textrm{Sigmoid}}({\textrm{ReLU}}({\mathbi{x}}{\mathbi{W}}^{[1]}+{\mathbi{b}}^{[1]}){\mathbi{W}}^{[2]}+{\mathbi{b}}^{[2]}) $等等,其中的$ {\mathbi{x}} $$ {\mathbi{y}} $作为输入和输出向量, ${\mathbi{W}}$${\mathbi{b}}$等其他变量作为{\small\sffamily\bfseries{模型参数}}\index{模型参数}(Model Parameters)\index{Model Parameters}。确定了函数表达式和模型参数,也就确定了神经网络模型。通常,表达式的形式需要系统开发者设计,而模型参数的数量有时会非常巨大,因此需要自动学习,这个过程也被称为模型学习或训练。为了实现这个目标,通常会准备一定量的带有标准答案的数据,称之为有标注数据。这些数据会用于对模型参数的学习,这也对应了统计模型中的参数估计过程。在机器学习中,一般把这种使用有标注数据进行统计模型参数训练的过程称为{\small\sffamily\bfseries{有指导的训练}}\index{有指导的训练}{\small\sffamily\bfseries{有监督的训练}}\index{有监督的训练}(Supervised Training)\index{Supervised Training}。在本章中,如果没有特殊说明,模型训练都是指有监督的训练。那么神经网络内部是怎样利用有标注数据对参数进行训练的呢?
\parinterval 为了回答这个问题,可以把模型参数的学习过程看作是一个优化问题,即找到一组参数,使得模型达到某种最优的状态。这个问题又可以被转化为两个新的问题: \parinterval 为了回答这个问题,可以把模型参数的学习过程看作是一个优化问题,即找到一组参数,使得模型达到某种最优的状态。这个问题又可以被转化为两个新的问题:
...@@ -1129,7 +1129,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma ...@@ -1129,7 +1129,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma
\subsection{损失函数} \subsection{损失函数}
\parinterval 在神经网络的有监督学习中,训练模型的数据是由输入和正确答案所组成的样本构成的。假设有多个输入样本$ \{{\mathbi{x}}^{[1]}\dots,{\mathbi{x}}^{[n]}\} $,每一个$ {\mathbi{x}}^{[i]}$都对应一个正确答案$ {\mathbi{y}}^{[i]} $$ \{{\mathbi{x}}^{[i]},{\mathbi{y}}^{[i]}\} $就构成一个优化神经网络的{\small\sffamily\bfseries{训练数据集}}\index{训练数据集合}(Training Data Set)\index{Training Data Set}。对于一个神经网络模型${\mathbi{y}}=f({\mathbi{x}}) $,每个$ {\mathbi{x}}^{[i]} $也会有一个输出$ {\hat{\mathbi{y}}}^{[i]} $。如果可以度量正确答案$ {\mathbi{y}}^{[i]} $和神经网络输出$ {\hat{\mathbi{y}}}^{[i]} $之间的偏差,进而通过调整网络参数减小这种偏差,就可以得到更好的模型。 \parinterval 在神经网络的有监督学习中,训练模型的数据是由输入和正确答案所组成的样本构成的。假设有多个输入样本$ \{{\mathbi{x}}^{[1]}\dots,{\mathbi{x}}^{[n]}\} $,每一个$ {\mathbi{x}}^{[i]}$都对应一个正确答案$ {\mathbi{y}}^{[i]} $$ \{{\mathbi{x}}^{[i]},{\mathbi{y}}^{[i]}\} $就构成一个优化神经网络的{\small\sffamily\bfseries{训练数据集}}\index{训练数据集}(Training Data Set)\index{Training Data Set}。对于一个神经网络模型${\mathbi{y}}=f({\mathbi{x}}) $,每个$ {\mathbi{x}}^{[i]} $也会有一个输出$ {\hat{\mathbi{y}}}^{[i]} $。如果可以度量正确答案$ {\mathbi{y}}^{[i]} $和神经网络输出$ {\hat{\mathbi{y}}}^{[i]} $之间的偏差,进而通过调整网络参数减小这种偏差,就可以得到更好的模型。
%---------------------------------------------- %----------------------------------------------
\begin{figure}[htp] \begin{figure}[htp]
...@@ -1159,8 +1159,8 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma ...@@ -1159,8 +1159,8 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma
\rule{0pt}{15pt} Logistic损失 & $ L={\textrm{log}}(1+{\mathbi{y}}^{[i]}\cdot {\hat{\mathbi{y}}}^{[i]}) $ & 回归 \\ \rule{0pt}{15pt} Logistic损失 & $ L={\textrm{log}}(1+{\mathbi{y}}^{[i]}\cdot {\hat{\mathbi{y}}}^{[i]}) $ & 回归 \\
\rule{0pt}{15pt} 平方损失 & $ L={({\mathbi{y}}^{[i]}-{\hat{\mathbi{y}}}^{[i]})}^2 $ & 回归 \\ \rule{0pt}{15pt} 平方损失 & $ L={({\mathbi{y}}^{[i]}-{\hat{\mathbi{y}}}^{[i]})}^2 $ & 回归 \\
\rule{0pt}{15pt} 指数损失 & $ L={\textrm{exp}}(-{\mathbi{y}}^{[i]}\cdot{\hat{\mathbi{y}}}^{[i]}) $ & AdaBoost \\ \rule{0pt}{15pt} 指数损失 & $ L={\textrm{exp}}(-{\mathbi{y}}^{[i]}\cdot{\hat{\mathbi{y}}}^{[i]}) $ & AdaBoost \\
\rule{0pt}{15pt} 交叉熵损失 & $ L=-\sum_{k}{\hat{\mathbi{y}}}^{[i]}_{k}{\textrm {log}} {\mathbi{y}}^{[i]}_{k} $ & 多分类 \\ \rule{0pt}{15pt} 交叉熵损失 & $ L=-\sum_{k}{{y}}^{[i]}_{k}{\textrm {log}}{\hat{{y}}}^{[i]}_{k}$ & 多分类 \\
\rule{0pt}{15pt} & 其中,${\mathbi{y}}^{[i]}_{k}$ 表示 ${\mathbi{y}}^{[i]}$的第$k$ \rule{0pt}{15pt} & 其中,${{y}}^{[i]}_{k}$ 表示 ${\mathbi{y}}^{[i]}$的第$k$
\end{tabular} \end{tabular}
\end{table} \end{table}
%-------------------------------------------------------------------- %--------------------------------------------------------------------
...@@ -1182,7 +1182,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma ...@@ -1182,7 +1182,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma
\noindent 其中,$ \widehat{\bm \theta} $表示在训练数据上使损失的平均值达到最小的参数,$n$为训练数据总量。$ \frac{1}{n}\sum \limits_{i=1}^{n}{L({\mathbi{x}}^{[i]},{\mathbi{y}}^{[i]};{\bm \theta})} $也被称作{\small\sffamily\bfseries{代价函数}}\index{代价函数}(Cost Function)\index{Cost Function},它是损失函数均值期望的估计,记为$ J({\bm \theta}) $ \noindent 其中,$ \widehat{\bm \theta} $表示在训练数据上使损失的平均值达到最小的参数,$n$为训练数据总量。$ \frac{1}{n}\sum \limits_{i=1}^{n}{L({\mathbi{x}}^{[i]},{\mathbi{y}}^{[i]};{\bm \theta})} $也被称作{\small\sffamily\bfseries{代价函数}}\index{代价函数}(Cost Function)\index{Cost Function},它是损失函数均值期望的估计,记为$ J({\bm \theta}) $
\parinterval 参数优化的核心问题是:找到使代价函数$ J({\bm\theta}) $达到最小的$ \bm \theta $。然而$ J({\bm\theta}) $可能会包含大量的参数,比如,基于神经网络的机器翻译模型的参数量可能会超过一亿个。这时不可能用手动方法进行调参。为了实现高效的参数优化,比较常用的手段是使用{\small\bfnew{梯度下降方法}}\index{梯度下降方}(The Gradient Descent Method)\index{The Gradient Descent Method} \parinterval 参数优化的核心问题是:找到使代价函数$ J({\bm\theta}) $达到最小的$ \bm \theta $。然而$ J({\bm\theta}) $可能会包含大量的参数,比如,基于神经网络的机器翻译模型的参数量可能会超过一亿个。这时不可能用手动方法进行调参。为了实现高效的参数优化,比较常用的手段是使用{\small\bfnew{梯度下降}}\index{梯度下降}(The Gradient Descent Method)\index{The Gradient Descent Method}
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION % NEW SUBSUB-SECTION
...@@ -1201,7 +1201,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma ...@@ -1201,7 +1201,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma
\end{figure} \end{figure}
%------------------------------------------- %-------------------------------------------
\parinterval 应用梯度下降算法时,首先需要初始化参数${\bm \theta}$。一般情况下深度学习中的参数应该初始化为一个不太大的随机数。一旦初始化${\bm \theta}$后,就开始对模型进行不断的更新,{\small\sffamily\bfseries{参数更新的规则}}\index{参数更新的规则}Update Rule)\index{Update Rule}如下: \parinterval 应用梯度下降算法时,首先需要初始化参数${\bm \theta}$。一般情况下深度学习中的参数应该初始化为一个不太大的随机数。一旦初始化${\bm \theta}$后,就开始对模型进行不断的更新,{\small\sffamily\bfseries{参数更新的规则}}\index{参数更新的规则}Parameter Update Rule)\index{Parameter Update Rule}如下:
\begin{eqnarray} \begin{eqnarray}
{\bm \theta}_{t+1}&=&{\bm \theta}_{t}-\alpha \cdot \frac{\partial J({\bm \theta})}{\partial {\bm \theta}} {\bm \theta}_{t+1}&=&{\bm \theta}_{t}-\alpha \cdot \frac{\partial J({\bm \theta})}{\partial {\bm \theta}}
\label{eq:9-29} \label{eq:9-29}
...@@ -1218,7 +1218,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma ...@@ -1218,7 +1218,7 @@ y&=&{\textrm{Sigmoid}}({\textrm{Tanh}}({\mathbi{x}}\cdot {\mathbi{W}}^{[1]}+{\ma
\noindent {\small\sffamily\bfseries{1)批量梯度下降\index{批量梯度下降}(Batch Gradient Descent)\index{Batch Gradient Descent}}} \noindent {\small\sffamily\bfseries{1)批量梯度下降\index{批量梯度下降}(Batch Gradient Descent)\index{Batch Gradient Descent}}}
\vspace{0.5em} \vspace{0.5em}
\parinterval 批量梯度下降是梯度下降方法中最原始的形式,这种梯度下降方法在每一次迭代时使用所有的样本进行参数更新。参数优化的目标函数如下: \parinterval 批量梯度下降是梯度下降法中最原始的形式,这种梯度下降法在每一次迭代时使用所有的样本进行参数更新。参数优化的目标函数如下:
\begin{eqnarray} \begin{eqnarray}
J({\bm \theta})&=&\frac{1}{n}\sum_{i=1}^{n}{L({\mathbi{x}}^{[i]},{\mathbi{y}}^{[i]};{\bm \theta})} J({\bm \theta})&=&\frac{1}{n}\sum_{i=1}^{n}{L({\mathbi{x}}^{[i]},{\mathbi{y}}^{[i]};{\bm \theta})}
\label{eq:9-30} \label{eq:9-30}
...@@ -1301,7 +1301,7 @@ J({\bm \theta})&=&\frac{1}{m}\sum_{i=j}^{j+m-1}{L({\mathbi{x}}^{[i]},{\mathbi{y} ...@@ -1301,7 +1301,7 @@ J({\bm \theta})&=&\frac{1}{m}\sum_{i=j}^{j+m-1}{L({\mathbi{x}}^{[i]},{\mathbi{y}
\noindent {\small\sffamily\bfseries{2)符号微分\index{符号微分}(Symbolic Differentiation)\index{Symbolic Differentiation}}} \noindent {\small\sffamily\bfseries{2)符号微分\index{符号微分}(Symbolic Differentiation)\index{Symbolic Differentiation}}}
\vspace{0.5em} \vspace{0.5em}
\parinterval 顾名思义,符号微分就是通过建立符号表达式求解微分的方法:借助符号表达式和求导公式,推导出目标函数关于自变量的微分表达式,最后再带入具体数值得到微分结果。例如,对于表达式$ L({\bm \theta})={\mathbi{x}}\cdot {\bm \theta}+2{\bm \theta}^2 $,可以手动推导出微分表达式$ \frac{\partial L({\bm \theta})}{\partial {\bm \theta}}=\mathbi{x}+4{\bm \theta} $,最后将具体数值$ \mathbi{x} = {(\begin{array}{cc} 2 & -3\end{array})} $$ {\bm \theta} = {(\begin{array}{cc} -1 & 1\end{array})} $带入后,得到微分结果$\frac{\partial L({\bm \theta})}{\partial {\bm \theta}}= {(\begin{array}{cc} 2 & -3\end{array})}+4{(\begin{array}{cc} -1 & 1\end{array})}= {(\begin{array}{cc} -2 & 1\end{array})}$ \parinterval 顾名思义,符号微分就是通过建立符号表达式求解微分的方法:借助符号表达式和求导公式,推导出目标函数关于自变量的微分表达式,最后再带入具体数值得到微分结果。例如,对于表达式$ L({\bm \theta})={\mathbi{x}}{\bm \theta}+2{\bm \theta}^2 $,可以手动推导出微分表达式$ \frac{\partial L({\bm \theta})}{\partial {\bm \theta}}=\mathbi{x}+4{\bm \theta} $,最后将具体数值$ \mathbi{x} = {(\begin{array}{cc} 2 & -3\end{array})} $$ {\bm \theta} = {(\begin{array}{cc} -1 & 1\end{array})} $带入后,得到微分结果$\frac{\partial L({\bm \theta})}{\partial {\bm \theta}}= {(\begin{array}{cc} 2 & -3\end{array})}+4{(\begin{array}{cc} -1 & 1\end{array})}= {(\begin{array}{cc} -2 & 1\end{array})}$
\parinterval 使用这种求梯度的方法,要求必须将目标函数转化成一种完整的数学表达式,这个过程中存在{\small\bfnew{表达式膨胀}}\index{表达式膨胀}(Expression Swell)\index{Expression Swell}的问题,很容易导致符号微分求解的表达式急速“膨胀”,大大增加系统存储和处理表达式的负担。关于这个问题的一个实例请看表\ref{tab:9-4}。在深层的神经网络中,神经元数量和参数量极大,损失函数的表达式会非常冗长,不易存储和管理,而且,仅仅写出损失函数的微分表达式就是一个很庞大的工作量。从另一方面来说,这里真正需要的是微分的结果值,而不是微分表达式,推导微分表达式仅仅是求解过程中的中间产物。 \parinterval 使用这种求梯度的方法,要求必须将目标函数转化成一种完整的数学表达式,这个过程中存在{\small\bfnew{表达式膨胀}}\index{表达式膨胀}(Expression Swell)\index{Expression Swell}的问题,很容易导致符号微分求解的表达式急速“膨胀”,大大增加系统存储和处理表达式的负担。关于这个问题的一个实例请看表\ref{tab:9-4}。在深层的神经网络中,神经元数量和参数量极大,损失函数的表达式会非常冗长,不易存储和管理,而且,仅仅写出损失函数的微分表达式就是一个很庞大的工作量。从另一方面来说,这里真正需要的是微分的结果值,而不是微分表达式,推导微分表达式仅仅是求解过程中的中间产物。
...@@ -1394,9 +1394,9 @@ $+2x^2+x+1)$ & \ \ $(x^4+2x^3+2x^2+x+1)$ & $+6x+1$ \\ ...@@ -1394,9 +1394,9 @@ $+2x^2+x+1)$ & \ \ $(x^4+2x^3+2x^2+x+1)$ & $+6x+1$ \\
\label{eq:9-200} \label{eq:9-200}
\end{eqnarray} \end{eqnarray}
\noindent 其中,$ \alpha $是一个超参数,表示更新步幅的大小,称作学习率。当然,这是一种最基本的梯度下降法。如果函数的形状非均向,比如呈延伸状,搜索最优点的路径就会非常低效,因为这时梯度的方向并没有指向最小值的方向,并且随着参数的更新,梯度方向往往呈锯齿状,这将是一条相当低效的路径;此外这种梯度下降算法并不是总能到达最优点,而是在其附近徘徊;还有一个最令人苦恼的问题\ \dash \ 设置学习率,如果学习率设置的比较小,会导致训练收敛速度慢,如果学习率设置的比较大,会导致训练过程中因为优化幅度过大而频频跳过最优点。我们希望网络在优化的时候损失函数有一个很好的收敛速度同时又不至于摆动幅度太大。 \noindent 其中,$ \alpha $是一个超参数,表示更新步幅的大小,称作学习率。当然,这是一种最基本的梯度下降法。如果函数的形状非均向,比如呈延伸状,搜索最优点的路径就会非常低效,因为这时梯度的方向并没有指向最小值的方向,并且随着参数的更新,梯度方向往往呈锯齿状,这将是一条相当低效的路径;此外这种梯度下降算法并不是总能到达最优点,而是在其附近徘徊;还有一个最令人苦恼的问题\ \dash \ 设置学习率,如果学习率设置的比较小,会导致训练收敛速度慢,如果学习率设置的比较大,会导致训练过程中因为优化幅度过大而频频跳过最优点。我们希望网络在优化的时候损失函数有一个很好的收敛速度同时又不至于摆动幅度太大。
\parinterval 针对以上问题,很多学者尝试对梯度下降法做出改进,如Momentum\upcite{qian1999momentum}, AdaGrad\upcite{duchi2011adaptive}, Adadelta\upcite{Zeiler2012ADADELTAAA}, RMSProp\upcite{tieleman2012rmsprop}, Adam\upcite{kingma2014adam}, AdaMax\upcite{kingma2014adam}, Nadam\upcite{Dozat2016IncorporatingNM}, AMSGrad\upcite{Reddi2018OnTC}等等,在这里将介绍Momentum、AdaGrad、RMSProp、Adam这4 种方法。 \parinterval 针对以上问题,很多学者尝试对梯度下降法做出改进,如Momentum\upcite{qian1999momentum}, AdaGrad\upcite{duchi2011adaptive}, Adadelta\upcite{Zeiler2012ADADELTAAA}, RMSProp\upcite{tieleman2012rmsprop}, Adam\upcite{kingma2014adam}, AdaMax\upcite{kingma2014adam}, Nadam\upcite{Dozat2016IncorporatingNM}, AMSGrad\upcite{Reddi2018OnTC}等等,在这里将介绍Momentum、AdaGrad、RMSProp、Adam这4 种方法。
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% %
...@@ -1547,7 +1547,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f ...@@ -1547,7 +1547,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\parinterval 梯度裁剪的思想是设置一个梯度剪切阈值。在更新梯度的时候,如果梯度超过这个阈值,就将其强制限制在这个范围之内。假设梯度为${\mathbi{g}}$,梯度剪切阈值为$\sigma $,梯度裁剪过程可描述为下式: \parinterval 梯度裁剪的思想是设置一个梯度剪切阈值。在更新梯度的时候,如果梯度超过这个阈值,就将其强制限制在这个范围之内。假设梯度为${\mathbi{g}}$,梯度剪切阈值为$\sigma $,梯度裁剪过程可描述为下式:
\begin{eqnarray} \begin{eqnarray}
{\mathbi{g}}&=&{\textrm{min}}(\frac{\sigma}{\Vert {\mathbi{g}}\Vert},1){\mathbi{g}} {\mathbi{g}'}&=&{\textrm{min}}(\frac{\sigma}{\Vert {\mathbi{g}}\Vert},1){\mathbi{g}}
\label{eq:9-43} \label{eq:9-43}
\end{eqnarray} \end{eqnarray}
...@@ -1562,9 +1562,9 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f ...@@ -1562,9 +1562,9 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\parinterval 为了使神经网络模型训练更加稳定,通常还会考虑其他策略。 \parinterval 为了使神经网络模型训练更加稳定,通常还会考虑其他策略。
\begin{itemize} \begin{itemize}
\item {\small\bfnew{批量标准化}}\index{批量标准化}(Batch Normalization)\index{Batch Normalization}。批量标准化,顾名思义,是以进行学习时的小批量样本为单位进行标准化\upcite{ioffe2015batch}。具体而言,就是对神经网络隐层输出的每一个维度,沿着批次的方向进行均值为0、方差为1的标准化。在深层神经网络中,每一层网络都可以使用批量标准化操作。这样使神经网络任意一层的输入不至于过大或过小,从而防止隐层中异常值导致模型状态的巨大改变。 \item {\small\bfnew{批量标准化}}\index{批量标准化}(Batch Normalization)\index{Batch Normalization}。批量标准化,顾名思义,是以进行学习时的小批量样本为单位进行标准化\upcite{ioffe2015batch}。具体而言,就是对神经网络隐藏层输出的每一个维度,沿着批次的方向进行均值为0、方差为1的标准化。在深层神经网络中,每一层网络都可以使用批量标准化操作。这样使神经网络任意一层的输入不至于过大或过小,从而防止隐藏层中异常值导致模型状态的巨大改变。
\item {\small\bfnew{层标准化}}\index{层标准化}(Layer Normalization)\index{Layer Normalization}。类似的,层标准化更多是针对自然语言处理这种序列处理任务\upcite{Ba2016LayerN},它和批量标准化的原理是一样的,只是标准化操作是在序列上同一层网络的输出结果上进行的,也就是标准化操作沿着序列方向进行。这种方法可以很好的避免序列上不同位置神经网络输出结果的不可比性。同时由于标准化后所有的结果都转化到一个可比的范围,使得隐层状态可以在不同层之间进行自由组合。 \item {\small\bfnew{层标准化}}\index{层标准化}(Layer Normalization)\index{Layer Normalization}。类似的,层标准化更多是针对自然语言处理这种序列处理任务\upcite{Ba2016LayerN},它和批量标准化的原理是一样的,只是标准化操作是在序列上同一层网络的输出结果上进行的,也就是标准化操作沿着序列方向进行。这种方法可以很好的避免序列上不同位置神经网络输出结果的不可比性。同时由于标准化后所有的结果都转化到一个可比的范围,使得隐层状态可以在不同层之间进行自由组合。
\item {\small\bfnew{残差网络}}\index{残差网络}(Residual Networks)\index{Residual Networks}。最初,残差网络是为了解决神经网络持续加深时的模型退化问题\upcite{DBLP:journals/corr/HeZRS15},但是残差结构对解决梯度消失和梯度爆炸问题也有所帮助。有了残差结构,可以很轻松的构建几十甚至上百层的神经网络,而不用担心层数过深造成的梯度消失问题。残差网络的结构如图\ref{fig:9-51}所示。图\ref{fig:9-51}中右侧的曲线叫做{\small\bfnew{跳接}}\index{跳接}(Skip Connection)\index{Skip Connection},通过跳接在激活函数前,将上一层(或几层)之前的输出与本层计算的输出相加,将求和的结果输入到激活函数中作为本层的输出。假设残差结构的输入为$ {\mathbi{x}}_l $,输出为$ {\mathbi{x}}_{l+1} $,则有 \item {\small\bfnew{残差网络}}\index{残差网络}(Residual Networks)\index{Residual Networks}。最初,残差网络是为了解决神经网络持续加深时的模型退化问题\upcite{DBLP:journals/corr/HeZRS15},但是残差结构对解决梯度消失和梯度爆炸问题也有所帮助。有了残差结构,可以很轻松的构建几十甚至上百层的神经网络,而不用担心层数过深造成的梯度消失问题。残差网络的结构如图\ref{fig:9-51}所示。图\ref{fig:9-51}中右侧的曲线叫做{\small\bfnew{跳接}}\index{跳接}(Skip Connection)\index{Skip Connection},通过跳接在激活函数前,将上一层(或几层)之前的输出与本层计算的输出相加,将求和的结果输入到激活函数中作为本层的输出。假设残差结构的输入为$ {\mathbi{x}}_l $,输出为$ {\mathbi{x}}_{l+1} $,则有
\begin{eqnarray} \begin{eqnarray}
...@@ -1725,12 +1725,12 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f ...@@ -1725,12 +1725,12 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\vspace{0.5em} \vspace{0.5em}
\item $ \frac{\partial L}{\partial {\mathbi{h}}^K} $表示损失函数$ L $相对网络输出$ {\mathbi{h}}^K $的梯度。比如,对于平方损失$ L=\frac{1}{2}{\Vert {\mathbi{y}}-{\mathbi{h}}^K\Vert}^2 $,有$ \frac{\partial L}{\partial {\mathbi{h}}^K}= {\mathbi{y}} -{\mathbi{h}}^K $。计算结束后,将$ \frac{\partial L}{\partial {\mathbi{h}}^K} $向前传递。 \item $ \frac{\partial L}{\partial {\mathbi{h}}^K} $表示损失函数$ L $相对网络输出$ {\mathbi{h}}^K $的梯度。比如,对于平方损失$ L=\frac{1}{2}{\Vert {\mathbi{y}}-{\mathbi{h}}^K\Vert}^2 $,有$ \frac{\partial L}{\partial {\mathbi{h}}^K}= {\mathbi{y}} -{\mathbi{h}}^K $。计算结束后,将$ \frac{\partial L}{\partial {\mathbi{h}}^K} $向前传递。
\vspace{0.5em} \vspace{0.5em}
\item $ \frac{\partial f^T({\mathbi{s}}^K)}{\partial {\mathbi{s}}^K} $表示激活函数相对于其输入$ {\mathbi{s}}^K $的梯度。比如,对于Sigmoid函数$ f({\mathbi{s}})=\frac{1}{1+{\textrm e}^{- {\mathbi{s}}}}$,有$ \frac{\partial f({\mathbi{s}})}{\partial {\mathbi{s}}}=f({\mathbi{s}}) (1-f({\mathbi{s}}))$ \item $ \frac{\partial f^K({\mathbi{s}}^K)}{\partial {\mathbi{s}}^K} $表示激活函数相对于其输入$ {\mathbi{s}}^K $的梯度。比如,对于Sigmoid函数$ f({\mathbi{s}})=\frac{1}{1+{\textrm e}^{- {\mathbi{s}}}}$,有$ \frac{\partial f({\mathbi{s}})}{\partial {\mathbi{s}}}=f({\mathbi{s}}) (1-f({\mathbi{s}}))$
\vspace{0.5em} \vspace{0.5em}
\end{itemize} \end{itemize}
\end{spacing} \end{spacing}
\parinterval 这个过程可以得到$ {\mathbi{s}}^K $节点处的梯度$ {\bm \pi}^K= \frac{\partial L}{\partial {\mathbi{s}}^K} $,在后续的过程中可以直接使用其作为前一层提供的梯度计算结果,而不需要从$ {\mathbi{h}}^K $节点处重新计算。这也体现了自动微分与符号微分的差别,对于计算图的每一个阶段,并不需要得到完的微分表达式,而是通过前一层提供的梯度,直接计算当前的梯度即可,这样避免了大量的重复计算。 \parinterval 这个过程可以得到$ {\mathbi{s}}^K $节点处的梯度$ {\bm \pi}^K= \frac{\partial L}{\partial {\mathbi{s}}^K} $,在后续的过程中可以直接使用其作为前一层提供的梯度计算结果,而不需要从$ {\mathbi{h}}^K $节点处重新计算。这也体现了自动微分与符号微分的差别,对于计算图的每一个阶段,并不需要得到完的微分表达式,而是通过前一层提供的梯度,直接计算当前的梯度即可,这样避免了大量的重复计算。
\parinterval 在得到$ {\bm \pi}^K= \frac{\partial L}{\partial {\mathbi{s}}^K} $之后,下一步的目标是:1)计算损失函数$ L $相对于第$ K-1 $层与输出层之间连接权重$ {\mathbi{W}}^K $的梯度;2)计算损失函数$ L $相对于神经网络第$ K-1 $层输出结果$ {\mathbi{h}}^{K-1} $的梯度。这部分内容如图\ref{fig:9-55}所示。 \parinterval 在得到$ {\bm \pi}^K= \frac{\partial L}{\partial {\mathbi{s}}^K} $之后,下一步的目标是:1)计算损失函数$ L $相对于第$ K-1 $层与输出层之间连接权重$ {\mathbi{W}}^K $的梯度;2)计算损失函数$ L $相对于神经网络第$ K-1 $层输出结果$ {\mathbi{h}}^{K-1} $的梯度。这部分内容如图\ref{fig:9-55}所示。
...@@ -1912,7 +1912,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f ...@@ -1912,7 +1912,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\parinterval $ {\mathbi{o}}_{i-3} $$ {\mathbi{o}}_{i-2} $$ {\mathbi{o}}_{i-1} $为该语言模型的输入(绿色方框),输入为每个词(如上文的$ w_{i-1}$$ w_{i-2}$等)的One-hot向量表示(维度大小与词表大小一致),每个One-hot向量仅一维为1,其余为0,比如:$ (0,0,1,\dots,0) $ 表示词表中第三个单词。之后把One-hot向量乘以一个矩阵$ \mathbi{C} $得到单词的分布式表示(紫色方框)。令$ {\mathbi{o}}_i $为第$ i $个词的One-hot表示,$ {\mathbi{e}}_i $为第$ i $个词的分布式表示,则分布式表示$ {\mathbi{e}}_i $的计算方式如下: \parinterval $ {\mathbi{o}}_{i-3} $$ {\mathbi{o}}_{i-2} $$ {\mathbi{o}}_{i-1} $为该语言模型的输入(绿色方框),输入为每个词(如上文的$ w_{i-1}$$ w_{i-2}$等)的One-hot向量表示(维度大小与词表大小一致),每个One-hot向量仅一维为1,其余为0,比如:$ (0,0,1,\dots,0) $ 表示词表中第三个单词。之后把One-hot向量乘以一个矩阵$ \mathbi{C} $得到单词的分布式表示(紫色方框)。令$ {\mathbi{o}}_i $为第$ i $个词的One-hot表示,$ {\mathbi{e}}_i $为第$ i $个词的分布式表示,则分布式表示$ {\mathbi{e}}_i $的计算方式如下:
\begin{eqnarray} \begin{eqnarray}
{\mathbi{e}}_i&=&{\mathbi{o}}_i\cdot{\mathbi{C}} {\mathbi{e}}_i&=&{\mathbi{o}}_i{\mathbi{C}}
\label{eq:9-60} \label{eq:9-60}
\end{eqnarray} \end{eqnarray}
...@@ -1924,7 +1924,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f ...@@ -1924,7 +1924,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\subsubsection{3. 隐藏层和输出层} \subsubsection{3. 隐藏层和输出层}
\parinterval 把得到的$ {\mathbi{e}}_0 $$ {\mathbi{e}}_1 $$ {\mathbi{e}}_2 $三个向量级联在一起,经过两层网络,最后通过Softmax函数(橙色方框)得到输出,具体过程为: \parinterval 把得到的$ {\mathbi{e}}_1 $$ {\mathbi{e}}_2 $$ {\mathbi{e}}_3 $三个向量级联在一起,经过两层网络,最后通过Softmax函数(橙色方框)得到输出,具体过程为:
\begin{eqnarray} \begin{eqnarray}
{\mathbi{y}}&=&{\textrm{Softmax}}({\mathbi{h}}_0{\mathbi{U}})\label{eq:9-61}\\ {\mathbi{y}}&=&{\textrm{Softmax}}({\mathbi{h}}_0{\mathbi{U}})\label{eq:9-61}\\
{\mathbi{h}}_0&=&{\textrm{Tanh}}([{\mathbi{e}}_{i-3},{\mathbi{e}}_{i-2},{\mathbi{e}}_{i-1}]{\mathbi{H}}+{\mathbi{d}}) {\mathbi{h}}_0&=&{\textrm{Tanh}}([{\mathbi{e}}_{i-3},{\mathbi{e}}_{i-2},{\mathbi{e}}_{i-1}]{\mathbi{H}}+{\mathbi{d}})
...@@ -1958,7 +1958,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f ...@@ -1958,7 +1958,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\parinterval 值得注意的是,在FNNLM中,单词已经不再是一个孤立的符号串,而是被表示为一个实数向量。这样,两个单词之间可以通过向量计算某种相似度或距离。这导致相似的单词会具有相似的分布,进而缓解$n$-gram语言模型的问题\ \dash \ 明明意思很相近的两个词但是概率估计的结果差异性却很大。 \parinterval 值得注意的是,在FNNLM中,单词已经不再是一个孤立的符号串,而是被表示为一个实数向量。这样,两个单词之间可以通过向量计算某种相似度或距离。这导致相似的单词会具有相似的分布,进而缓解$n$-gram语言模型的问题\ \dash \ 明明意思很相近的两个词但是概率估计的结果差异性却很大。
\parinterval 在FNNLM中,所有的参数、输入、输出都是连续变量,因此FNNLM也是一个典型的连续空间模型。通过使用交叉熵等损失函数,可以很容易地对FNNLM进行优化。比如,可以使用梯度下降法对FNNLM的模型参数进行训练。 \parinterval 在FNNLM中,所有的参数、输入、输出都是连续变量,因此FNNLM也是一个典型的连续空间模型。通过使用交叉熵等损失函数,可以很容易地对FNNLM进行优化。比如,可以使用梯度下降法对FNNLM的模型参数进行训练。
\parinterval 虽然FNNLM形式简单,却为处理自然语言提供了一个全新的视角。首先,该模型重新定义了“词是什么”\ \dash \ 它并非词典的一项,而是可以用一个连续实数向量进行表示的可计算的“量”。此外,由于$n$-gram不再是离散的符号序列,模型不需要记录$n$-gram,所以很好的缓解了上面所提到的数据稀疏问题,模型体积也大大减小。 \parinterval 虽然FNNLM形式简单,却为处理自然语言提供了一个全新的视角。首先,该模型重新定义了“词是什么”\ \dash \ 它并非词典的一项,而是可以用一个连续实数向量进行表示的可计算的“量”。此外,由于$n$-gram不再是离散的符号序列,模型不需要记录$n$-gram,所以很好的缓解了上面所提到的数据稀疏问题,模型体积也大大减小。
......
...@@ -52,7 +52,7 @@ ...@@ -52,7 +52,7 @@
\node [secnode,anchor=south west,fill=cyan!20,minimum width=14.0em,align=center] (sec13) at ([yshift=0.5em,xshift=0.5em]part4.south west) {第十三章\hspace{1em} 神经机器翻译模型训练}; \node [secnode,anchor=south west,fill=cyan!20,minimum width=14.0em,align=center] (sec13) at ([yshift=0.5em,xshift=0.5em]part4.south west) {第十三章\hspace{1em} 神经机器翻译模型训练};
\node [secnode,anchor=west,fill=cyan!20,minimum width=14.0em,align=center] (sec14) at ([xshift=0.6em]sec13.east) {第十四章\hspace{1em} 神经机器翻译模型推断}; \node [secnode,anchor=west,fill=cyan!20,minimum width=14.0em,align=center] (sec14) at ([xshift=0.6em]sec13.east) {第十四章\hspace{1em} 神经机器翻译模型推断};
\node [secnode,anchor=south west,fill=green!30,minimum width=9em,minimum height=4.5em,align=center] (sec15) at ([yshift=0.8em]sec13.north west) {第十五章\\ 神经机器翻译 \\ 结构优化}; \node [secnode,anchor=south west,fill=green!30,minimum width=9em,minimum height=4.5em,align=center] (sec15) at ([yshift=0.8em]sec13.north west) {第十五章\\ 神经机器翻译 \\ 结构优化};
\node [secnode,anchor=south west,fill=green!30,minimum width=9em,minimum height=4.5em,align=center] (sec16) at ([xshift=0.8em]sec15.south east) {第十六章\\ 低资源 \\ 神经机器翻译}; \node [secnode,anchor=south west,fill=green!30,minimum width=9em,minimum height=4.5em,align=center] (sec16) at ([xshift=0.8em]sec15.south east) {第十六章\\ 低资源神经 \\ 机器翻译};
\node [secnode,anchor=south west,fill=green!30,minimum width=9em,minimum height=4.5em,align=center] (sec17) at ([xshift=0.8em]sec16.south east) {第十七章\\ 多模态、多层次 \\ 机器翻译}; \node [secnode,anchor=south west,fill=green!30,minimum width=9em,minimum height=4.5em,align=center] (sec17) at ([xshift=0.8em]sec16.south east) {第十七章\\ 多模态、多层次 \\ 机器翻译};
\node [secnode,anchor=south west,fill=amber!25,minimum width=28.7em,align=center] (sec18) at ([yshift=0.8em]sec15.north west) {第十八章\hspace{1em} 机器翻译应用技术}; \node [secnode,anchor=south west,fill=amber!25,minimum width=28.7em,align=center] (sec18) at ([yshift=0.8em]sec15.north west) {第十八章\hspace{1em} 机器翻译应用技术};
\node [rectangle,draw,dotted,thick,inner sep=0.1em,fill opacity=1] [fit = (sec13) (sec14)] (nmtbasebox) {}; \node [rectangle,draw,dotted,thick,inner sep=0.1em,fill opacity=1] [fit = (sec13) (sec14)] (nmtbasebox) {};
......
...@@ -99,7 +99,7 @@ ...@@ -99,7 +99,7 @@
\vspace{0.5em} \vspace{0.5em}
其中,第一部分是本书的基础知识部分,包含统计建模、语言分析、机器翻译评价等。在第一章对机器翻译的历史及现状进行介绍之后,第二章通过语言建模任务将统计建模的思想阐述出来,同时这部分内容也会作为后续机器翻译模型及方法的基础。第三章重点介绍机器翻译所涉及的词法和法分析方法,旨在为后续相关概念的使用进行铺垫,同时进一步展示统计建模思想在相关问题上的应用。第四章相对独立,系统地介绍了机器翻译结果的评价方法,这部分内容也是机器翻译建模及系统设计所需的前置知识。 其中,第一部分是本书的基础知识部分,包含统计建模、语言分析、机器翻译评价等。在第一章对机器翻译的历史及现状进行介绍之后,第二章通过语言建模任务将统计建模的思想阐述出来,同时这部分内容也会作为后续机器翻译模型及方法的基础。第三章重点介绍机器翻译所涉及的词法和法分析方法,旨在为后续相关概念的使用进行铺垫,同时进一步展示统计建模思想在相关问题上的应用。第四章相对独立,系统地介绍了机器翻译结果的评价方法,这部分内容也是机器翻译建模及系统设计所需的前置知识。
本书的第二部分主要介绍统计机器翻译的基本模型。第五章是整个机器翻译建模的基础。第六章进一步对扭曲度和产出率两个概念进行介绍,同时给出相关的翻译模型,这些模型在后续章节的内容中都有涉及。第七章和第八章分别介绍了基于短语和句法的模型。它们都是统计机器翻译的经典模型,其思想也构成了机器翻译成长过程中最精华的部分。 本书的第二部分主要介绍统计机器翻译的基本模型。第五章是整个机器翻译建模的基础。第六章进一步对扭曲度和产出率两个概念进行介绍,同时给出相关的翻译模型,这些模型在后续章节的内容中都有涉及。第七章和第八章分别介绍了基于短语和句法的模型。它们都是统计机器翻译的经典模型,其思想也构成了机器翻译成长过程中最精华的部分。
......
...@@ -748,6 +748,20 @@ new ...@@ -748,6 +748,20 @@ new
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% chapter 3------------------------------------------------------ %%%%% chapter 3------------------------------------------------------
@book{新华字典,
title={新华字典(第11版)},
author={中国社会科学院语言研究所词典编辑室},
year={2011},
publisher={商务印书馆}
}
@book{国语辞典,
title={国语辞典},
author={中国大辞典编纂处},
year={2011},
publisher={商务印书馆国际有限公司}
}
@inproceedings{ng2002discriminative, @inproceedings{ng2002discriminative,
author = {Ng, Andrew Y and Jordan, Michael I}, author = {Ng, Andrew Y and Jordan, Michael I},
title = {On Discriminative vs. Generative Classifiers: {A} comparison of logistic title = {On Discriminative vs. Generative Classifiers: {A} comparison of logistic
...@@ -5402,8 +5416,7 @@ author = {Yoshua Bengio and ...@@ -5402,8 +5416,7 @@ author = {Yoshua Bengio and
@inproceedings{garcia-martinez2016factored, @inproceedings{garcia-martinez2016factored,
title={Factored Neural Machine Translation Architectures}, title={Factored Neural Machine Translation Architectures},
author={Mercedes {Garcia-Martinez} and Loïc {Barrault} and Fethi {Bougares}}, author={Mercedes {Garcia-Martinez} and Loïc {Barrault} and Fethi {Bougares}},
publisher={International Workshop on Spoken Language Translation (IWSLT'16)}, publisher={International Workshop on Spoken Language Translation},
notes={Sourced from Microsoft Academic - https://academic.microsoft.com/paper/2949810612},
year={2016} year={2016}
} }
@inproceedings{DBLP:conf/acl/Kudo18, @inproceedings{DBLP:conf/acl/Kudo18,
...@@ -5695,7 +5708,7 @@ author = {Yoshua Bengio and ...@@ -5695,7 +5708,7 @@ author = {Yoshua Bengio and
@inproceedings{britz2017effective, @inproceedings{britz2017effective,
title={Effective domain mixing for neural machine translation}, title={Effective domain mixing for neural machine translation},
author={Britz, Denny and Le, Quoc and Pryzant, Reid}, author={Britz, Denny and Le, Quoc and Pryzant, Reid},
publisher={Proceedings of the Second Conference on Machine Translation}, publisher={Annual Meeting of the Association for Computational Linguistics},
pages={118--126}, pages={118--126},
year={2017} year={2017}
} }
...@@ -5770,7 +5783,7 @@ author = {Yoshua Bengio and ...@@ -5770,7 +5783,7 @@ author = {Yoshua Bengio and
Wolfgang Menzel}, Wolfgang Menzel},
title = {Automatic Threshold Detection for Data Selection in Machine Translation}, title = {Automatic Threshold Detection for Data Selection in Machine Translation},
pages = {483--488}, pages = {483--488},
publisher = {Proceedings of the Second Conference on Machine Translation}, publisher = {Annual Meeting of the Association for Computational Linguistics},
year = {2017} year = {2017}
} }
@inproceedings{DBLP:conf/wmt/BiciciY11, @inproceedings{DBLP:conf/wmt/BiciciY11,
...@@ -5778,7 +5791,7 @@ author = {Yoshua Bengio and ...@@ -5778,7 +5791,7 @@ author = {Yoshua Bengio and
Deniz Yuret}, Deniz Yuret},
title = {Instance Selection for Machine Translation using Feature Decay Algorithms}, title = {Instance Selection for Machine Translation using Feature Decay Algorithms},
pages = {272--283}, pages = {272--283},
publisher = {Proceedings of the Sixth Workshop on Statistical Machine Translation}, publisher = {Annual Meeting of the Association for Computational Linguistics},
year = {2011} year = {2011}
} }
@inproceedings{poncelas2018feature, @inproceedings{poncelas2018feature,
...@@ -6047,7 +6060,7 @@ author = {Yoshua Bengio and ...@@ -6047,7 +6060,7 @@ author = {Yoshua Bengio and
@inproceedings{hoang2018iterative, @inproceedings{hoang2018iterative,
title={Iterative back-translation for neural machine translation}, title={Iterative back-translation for neural machine translation},
author={Hoang, Vu Cong Duy and Koehn, Philipp and Haffari, Gholamreza and Cohn, Trevor}, author={Hoang, Vu Cong Duy and Koehn, Philipp and Haffari, Gholamreza and Cohn, Trevor},
publisher={Proceedings of the 2nd Workshop on Neural Machine Translation and Generation}, publisher={Annual Meeting of the Association for Computational Linguistics},
pages={18--24}, pages={18--24},
year={2018} year={2018}
} }
...@@ -6257,7 +6270,7 @@ author = {Yoshua Bengio and ...@@ -6257,7 +6270,7 @@ author = {Yoshua Bengio and
Jingbo Zhu}, Jingbo Zhu},
title = {Dynamic Curriculum Learning for Low-Resource Neural Machine Translation}, title = {Dynamic Curriculum Learning for Low-Resource Neural Machine Translation},
pages = {3977--3989}, pages = {3977--3989},
publisher = {International Committee on Computational Linguistics}, publisher = {International Conference on Computational Linguistics},
year = {2020} year = {2020}
} }
@inproceedings{DBLP:conf/acl/ZhouYWWC20, @inproceedings{DBLP:conf/acl/ZhouYWWC20,
...@@ -6307,7 +6320,7 @@ author = {Yoshua Bengio and ...@@ -6307,7 +6320,7 @@ author = {Yoshua Bengio and
Andrew McCallum}, Andrew McCallum},
title = {Active Bias: Training More Accurate Neural Networks by Emphasizing title = {Active Bias: Training More Accurate Neural Networks by Emphasizing
High Variance Samples}, High Variance Samples},
publisher = {Annual Conference on Neural Information Processing Systems}, publisher = {Conference on Neural Information Processing Systems},
pages = {1002--1012}, pages = {1002--1012},
year = {2017} year = {2017}
} }
...@@ -6360,7 +6373,7 @@ author = {Yoshua Bengio and ...@@ -6360,7 +6373,7 @@ author = {Yoshua Bengio and
title = {Investigating Catastrophic Forgetting During Continual Training for title = {Investigating Catastrophic Forgetting During Continual Training for
Neural Machine Translation}, Neural Machine Translation},
pages = {4315--4326}, pages = {4315--4326},
publisher = {International Committee on Computational Linguistics}, publisher = {International Conference on Computational Linguistics},
year = {2020} year = {2020}
} }
@inproceedings{DBLP:conf/cvpr/RebuffiKSL17, @inproceedings{DBLP:conf/cvpr/RebuffiKSL17,
...@@ -6392,7 +6405,7 @@ author = {Yoshua Bengio and ...@@ -6392,7 +6405,7 @@ author = {Yoshua Bengio and
Oriol Vinyals and Oriol Vinyals and
Navdeep Jaitly and Navdeep Jaitly and
Noam Shazeer}, Noam Shazeer},
publisher = {Annual Conference on Neural Information Processing Systems}, publisher = {Conference on Neural Information Processing Systems},
pages = {1171--1179}, pages = {1171--1179},
year = {2015} year = {2015}
} }
...@@ -6835,7 +6848,7 @@ author = {Yoshua Bengio and ...@@ -6835,7 +6848,7 @@ author = {Yoshua Bengio and
@inproceedings{Gu2019LevenshteinT, @inproceedings{Gu2019LevenshteinT,
title={Levenshtein Transformer}, title={Levenshtein Transformer},
author={Jiatao Gu and Changhan Wang and Jake Zhao}, author={Jiatao Gu and Changhan Wang and Jake Zhao},
publisher = {Annual Conference on Neural Information Processing Systems}, publisher = {Conference on Neural Information Processing Systems},
pages = {11179--11189}, pages = {11179--11189},
year = {2019}, year = {2019},
} }
...@@ -6963,7 +6976,7 @@ author = {Yoshua Bengio and ...@@ -6963,7 +6976,7 @@ author = {Yoshua Bengio and
@inproceedings{Jiang2012LearnedPF, @inproceedings{Jiang2012LearnedPF,
title={Learned Prioritization for Trading Off Accuracy and Speed}, title={Learned Prioritization for Trading Off Accuracy and Speed},
author={Jiarong Jiang and Adam R. Teichert and Hal Daum{\'e} and Jason Eisner}, author={Jiarong Jiang and Adam R. Teichert and Hal Daum{\'e} and Jason Eisner},
publisher={Annual Conference on Neural Information Processing Systems}, publisher={Conference on Neural Information Processing Systems},
pages={1340--1348}, pages={1340--1348},
year= {2012} year= {2012}
} }
...@@ -7123,7 +7136,7 @@ author = {Yoshua Bengio and ...@@ -7123,7 +7136,7 @@ author = {Yoshua Bengio and
author = {Paul Michel and author = {Paul Michel and
Omer Levy and Omer Levy and
Graham Neubig}, Graham Neubig},
publisher = {Annual Conference on Neural Information Processing Systems}, publisher = {Conference on Neural Information Processing Systems},
pages = {14014--14024}, pages = {14014--14024},
year = {2019} year = {2019}
} }
...@@ -7157,7 +7170,7 @@ author = {Yoshua Bengio and ...@@ -7157,7 +7170,7 @@ author = {Yoshua Bengio and
title={Generative Neural Machine Translation}, title={Generative Neural Machine Translation},
author={Harshil Shah and author={Harshil Shah and
David Barber}, David Barber},
publisher={Annual Conference on Neural Information Processing Systems}, publisher={Conference on Neural Information Processing Systems},
pages={1353--1362}, pages={1353--1362},
year={2018} year={2018}
} }
...@@ -7246,7 +7259,7 @@ author = {Yoshua Bengio and ...@@ -7246,7 +7259,7 @@ author = {Yoshua Bengio and
Jeff Pool and Jeff Pool and
John Tran and John Tran and
William J. Dally}, William J. Dally},
publisher={Annual Conference on Neural Information Processing Systems}, publisher={Conference on Neural Information Processing Systems},
pages={1135--1143}, pages={1135--1143},
year={2015} year={2015}
} }
...@@ -7281,9 +7294,8 @@ author = {Yoshua Bengio and ...@@ -7281,9 +7294,8 @@ author = {Yoshua Bengio and
Tinghui Zhou and Tinghui Zhou and
Gao Huang and Gao Huang and
Trevor Darrell}, Trevor Darrell},
publisher={ArXiv}, publisher={International Conference on Learning Representations},
year={2019}, year={2019}
volume={abs/1810.05270}
} }
@inproceedings{Liu2017LearningEC, @inproceedings{Liu2017LearningEC,
author = {Zhuang Liu and author = {Zhuang Liu and
...@@ -7341,8 +7353,8 @@ author = {Zhuang Liu and ...@@ -7341,8 +7353,8 @@ author = {Zhuang Liu and
Luke Zettlemoyer and Luke Zettlemoyer and
Omer Levy}, Omer Levy},
title = {Aligned Cross Entropy for Non-Autoregressive Machine Translation}, title = {Aligned Cross Entropy for Non-Autoregressive Machine Translation},
publisher = {CoRR}, publisher = { International Conference on Machine Learning},
volume = {abs/2004.01655}, volume = {119},
year = {2020}, year = {2020},
} }
@inproceedings{Shao2020MinimizingTB, @inproceedings{Shao2020MinimizingTB,
...@@ -7394,9 +7406,8 @@ author = {Zhuang Liu and ...@@ -7394,9 +7406,8 @@ author = {Zhuang Liu and
@inproceedings{Zhou2020UnderstandingKD, @inproceedings{Zhou2020UnderstandingKD,
title={Understanding Knowledge Distillation in Non-autoregressive Machine Translation}, title={Understanding Knowledge Distillation in Non-autoregressive Machine Translation},
author={Chunting Zhou and Graham Neubig and Jiatao Gu}, author={Chunting Zhou and Graham Neubig and Jiatao Gu},
publisher={ArXiv}, publisher={International Conference on Learning Representations},
year={2020}, year={2020}
volume={abs/1911.02727}
} }
@inproceedings{Wang2019NonAutoregressiveMT, @inproceedings{Wang2019NonAutoregressiveMT,
title={Non-Autoregressive Machine Translation with Auxiliary Regularization}, title={Non-Autoregressive Machine Translation with Auxiliary Regularization},
...@@ -7417,6 +7428,15 @@ author = {Zhuang Liu and ...@@ -7417,6 +7428,15 @@ author = {Zhuang Liu and
pages={2395--2404}, pages={2395--2404},
year={2018} year={2018}
} }
@inproceedings{DBLP:conf/nips/SternSU18,
author = {Mitchell Stern and
Noam Shazeer and
Jakob Uszkoreit},
title = {Blockwise Parallel Decoding for Deep Autoregressive Models},
publisher = {Annual Conference on Neural Information Processing Systems 2018},
pages = {10107--10116},
year = {2018},
}
@inproceedings{Tu2020ENGINEEI, @inproceedings{Tu2020ENGINEEI,
title={ENGINE: Energy-Based Inference Networks for Non-Autoregressive Machine Translation}, title={ENGINE: Energy-Based Inference Networks for Non-Autoregressive Machine Translation},
author={Lifu Tu and Richard Yuanzhe Pang and Sam Wiseman and Kevin Gimpel}, author={Lifu Tu and Richard Yuanzhe Pang and Sam Wiseman and Kevin Gimpel},
...@@ -7456,16 +7476,16 @@ author = {Zhuang Liu and ...@@ -7456,16 +7476,16 @@ author = {Zhuang Liu and
@inproceedings{Ho2016GenerativeAI, @inproceedings{Ho2016GenerativeAI,
title={Generative Adversarial Imitation Learning}, title={Generative Adversarial Imitation Learning},
author={Jonathan Ho and Stefano Ermon}, author={Jonathan Ho and Stefano Ermon},
publisher={Annual Conference on Neural Information Processing Systems}, publisher={Conference on Neural Information Processing Systems},
pages={4565--4573}, pages={4565--4573},
year={2016} year={2016}
} }
@inproceedings{Duan2017OneShotIL, @inproceedings{Duan2017OneShotIL,
title={One-Shot Imitation Learning}, title={One-Shot Imitation Learning},
author={Yan Duan and Marcin Andrychowicz and Bradly C. Stadie and Jonathan Ho and Jonas Schneider and Ilya Sutskever and Pieter Abbeel and Wojciech Zaremba}, author={Yan Duan and Marcin Andrychowicz and Bradly C. Stadie and Jonathan Ho and Jonas Schneider and Ilya Sutskever and Pieter Abbeel and Wojciech Zaremba},
publisher={CoRR}, publisher={Conference on Neural Information Processing Systems},
year={2017}, year={2017},
volume={abs/1703.07326} pages= {1087--1098}
} }
@inproceedings{Wang2018SemiAutoregressiveNM, @inproceedings{Wang2018SemiAutoregressiveNM,
title={Semi-Autoregressive Neural Machine Translation}, title={Semi-Autoregressive Neural Machine Translation},
...@@ -7486,7 +7506,7 @@ author = {Zhuang Liu and ...@@ -7486,7 +7506,7 @@ author = {Zhuang Liu and
@inproceedings{Kasai2020NonAutoregressiveMT, @inproceedings{Kasai2020NonAutoregressiveMT,
title={Non-Autoregressive Machine Translation with Disentangled Context Transformer}, title={Non-Autoregressive Machine Translation with Disentangled Context Transformer},
author={Jungo Kasai and J. Cross and Marjan Ghazvininejad and Jiatao Gu}, author={Jungo Kasai and J. Cross and Marjan Ghazvininejad and Jiatao Gu},
publisher={arXiv: Computation and Language}, publisher={International Conference on Machine Learning},
year={2020} year={2020}
} }
@inproceedings{Zhou2019SynchronousBN, @inproceedings{Zhou2019SynchronousBN,
...@@ -7517,7 +7537,7 @@ author = {Zhuang Liu and ...@@ -7517,7 +7537,7 @@ author = {Zhuang Liu and
@inproceedings{Xiao2016ALA, @inproceedings{Xiao2016ALA,
title={A Loss-Augmented Approach to Training Syntactic Machine Translation Systems}, title={A Loss-Augmented Approach to Training Syntactic Machine Translation Systems},
author={Tong Xiao and Derek F. Wong and Jingbo Zhu}, author={Tong Xiao and Derek F. Wong and Jingbo Zhu},
publisher={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, publisher={IEEE Transactions on Audio, Speech, and Language Processing},
year={2016}, year={2016},
volume={24}, volume={24},
pages={2069-2083} pages={2069-2083}
...@@ -7571,7 +7591,7 @@ author = {Zhuang Liu and ...@@ -7571,7 +7591,7 @@ author = {Zhuang Liu and
Ran El-Yaniv and Ran El-Yaniv and
Yoshua Bengio}, Yoshua Bengio},
title = {Binarized Neural Networks}, title = {Binarized Neural Networks},
publisher = {Annual Conference on Neural Information Processing Systems}, publisher = {Conference on Neural Information Processing Systems},
pages = {4107--4115}, pages = {4107--4115},
year = {2016} year = {2016}
} }
...@@ -7702,7 +7722,7 @@ author = {Zhuang Liu and ...@@ -7702,7 +7722,7 @@ author = {Zhuang Liu and
author = {Alexei Baevski and author = {Alexei Baevski and
Michael Auli}, Michael Auli},
title = {Adaptive Input Representations for Neural Language Modeling}, title = {Adaptive Input Representations for Neural Language Modeling},
publisher = {arXiv preprint arXiv:1809.10853}, publisher = {International Conference on Learning Representations},
year = {2019} year = {2019}
} }
@inproceedings{DBLP:journals/corr/abs-2006-04768, @inproceedings{DBLP:journals/corr/abs-2006-04768,
...@@ -7736,8 +7756,7 @@ author = {Zhuang Liu and ...@@ -7736,8 +7756,7 @@ author = {Zhuang Liu and
Dawei Song and Dawei Song and
Ming Zhou}, Ming Zhou},
title = {A Tensorized Transformer for Language Modeling}, title = {A Tensorized Transformer for Language Modeling},
publisher = {CoRR}, publisher = {Conference on Neural Information Processing Systems},
volume = {abs/1906.09777},
year = {2019} year = {2019}
} }
@inproceedings{DBLP:conf/nips/YangLSL19, @inproceedings{DBLP:conf/nips/YangLSL19,
...@@ -7816,7 +7835,7 @@ author = {Zhuang Liu and ...@@ -7816,7 +7835,7 @@ author = {Zhuang Liu and
Zhongjun He and Zhongjun He and
Hua Wu and Hua Wu and
Haifeng Wang}, Haifeng Wang},
publisher={arXiv preprint arXiv:1909.01101}, publisher={Conference on Empirical Methods in Natural Language Processing},
year={2019} year={2019}
} }
@inproceedings{DBLP:conf/aclnmt/KoehnK17, @inproceedings{DBLP:conf/aclnmt/KoehnK17,
...@@ -7876,7 +7895,7 @@ author = {Zhuang Liu and ...@@ -7876,7 +7895,7 @@ author = {Zhuang Liu and
@inproceedings{Eisner2011LearningST, @inproceedings{Eisner2011LearningST,
title={Learning Speed-Accuracy Tradeoffs in Nondeterministic Inference Algorithms}, title={Learning Speed-Accuracy Tradeoffs in Nondeterministic Inference Algorithms},
author={J. Eisner and Hal Daum{\'e}}, author={J. Eisner and Hal Daum{\'e}},
publisher={Annual Conference on Neural Information Processing Systems}, publisher={Conference on Neural Information Processing Systems},
year={2011} year={2011}
} }
@inproceedings{Kazimi2017CoverageFC, @inproceedings{Kazimi2017CoverageFC,
...@@ -8929,7 +8948,7 @@ author = {Zhuang Liu and ...@@ -8929,7 +8948,7 @@ author = {Zhuang Liu and
Jesse Bettencourt and Jesse Bettencourt and
David Duvenaud}, David Duvenaud},
title = {Neural Ordinary Differential Equations}, title = {Neural Ordinary Differential Equations},
publisher = {Annual Conference on Neural Information Processing Systems}, publisher = {Conference on Neural Information Processing Systems},
pages = {6572--6583}, pages = {6572--6583},
year = {2018} year = {2018}
} }
...@@ -9189,7 +9208,7 @@ author = {Zhuang Liu and ...@@ -9189,7 +9208,7 @@ author = {Zhuang Liu and
Michael Wilber and Michael Wilber and
Serge Belongie}, Serge Belongie},
title = {Residual Networks Behave Like Ensembles of Relatively Shallow Networks}, title = {Residual Networks Behave Like Ensembles of Relatively Shallow Networks},
publisher = {Annual Conference on Neural Information Processing Systems}, publisher = {Conference on Neural Information Processing Systems},
pages = {550--558}, pages = {550--558},
year = {2016} year = {2016}
} }
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论