\item{\small\bfnew{结构化位置编码}}\index{基于结构化位置编码}(Structural Position Representations)\index{Structural Position Representations}\upcite{DBLP:conf/emnlp/WangTWS19a}。 通过对输入句子进行依存句法分析得到句法树,根据叶子结点在句法树中的深度来表示其绝对位置,并在此基础上利用相对位置编码的思想计算节点之间的相对位置信息。
\item{\small\bfnew{结构化位置表示}}\index{结构化位置表示}(Structural Position Representations)\index{Structural Position Representations}\upcite{DBLP:conf/emnlp/WangTWS19a}。 通过对输入句子进行依存句法分析得到句法树,根据叶子结点在句法树中的深度来表示其绝对位置,并在此基础上利用相对位置表示的思想计算节点之间的相对位置信息。
\parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{MLM}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词进行掩码,之后让模型预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词<Mask>,这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。而使用掩码的方式进行训练也给神经机器翻译提供了新的思路,在本章的其它部分中也会使用到类似方法。
\parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{Masked Language Model}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词进行掩码,之后让模型预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词<Mask>,这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。而使用掩码的方式进行训练也给神经机器翻译提供了新的思路,在本章的其它部分中也会使用到类似方法。
\parinterval 为了保证对相关内容描述的完整性,这里对语音处理的基本知识作简要介绍。不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散的数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,采样的结果与原始的语音越相像。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。 经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。音频处理的整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战}。
\parinterval 为了保证对相关内容描述的完整性,这里对语音处理的基本知识作简要介绍。不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}\index{波形}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散的数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,采样的结果与原始的语音越相像。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。 经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。音频处理的整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战}。
\parinterval 人们在使用机器翻译系统时需要评估系统输出结果的质量。这个过程也被称作机器翻译译文质量评价,简称为{\small\sffamily\bfseries{译文质量评价}}\index{译文质量评价}(Quality Evaluation of Translation)\index{Quality Evaluation of Translation}。在机器翻译的发展进程中,译文质量评价有着非常重要的作用。不论在系统研发的反复迭代中,还是在诸多的机器翻译应用场景中,都存在大量的译文质量评价环节。从某种意义上说,没有译文质量评价,机器翻译也不会发展成今天的样子。比如,本世纪初研究人员提出了译文质量自动评价方法BLEU\upcite{DBLP:conf/acl/PapineniRWZ02}。该方法使得机器系统的评价变得自动、快速、便捷,而且评价过程可以重复。正是由于BLEU等自动评价方法的提出,机器翻译研究人员可以在更短的时间内得到译文质量的评价结果,加速系统研发的进程。
\parinterval 人们在使用机器翻译系统时需要评估系统输出结果的质量。这个过程也被称作机器翻译译文质量评价,简称为{\small\sffamily\bfseries{译文质量评价}}\index{译文质量评价}(Quality Evaluation of Translation)\index{Quality Evaluation of Translation}。在机器翻译的发展进程中,译文质量评价有着非常重要的作用。不论在系统研发的反复迭代中,还是在诸多的机器翻译应用场景中,都存在大量的译文质量评价环节。从某种意义上说,没有译文质量评价,机器翻译也不会发展成今天的样子。比如,本世纪初研究人员提出了译文质量自动评价方法{\small\sffamily\bfseries{BLEU}}\index{BLEU}(Bilingual Evaluation Understudy)\index{Bilingual Evaluation Understudy}\upcite{DBLP:conf/acl/PapineniRWZ02}。该方法使得机器系统的评价变得自动、快速、便捷,而且评价过程可以重复。正是由于BLEU等自动评价方法的提出,机器翻译研究人员可以在更短的时间内得到译文质量的评价结果,加速系统研发的进程。
\item 译文质量的多角度评价。章节内主要介绍的几种经典方法如BLEU、TER、METEOR等,大都是从某个单一的角度计算机器译文和参考答案的相似性,如何对译文从多个角度进行综合评价是需要进一步思考的问题,\ref{Evaluation method of Multi Strategy fusion}节中介绍的多策略融合评价方法就可以看作是一种多角度评价方法,其思想是将各种评价方法下的译文得分通过某种方式进行组合,从而实现对译文的综合评价。译文质量多角度评价的另一种思路则是直接将BLEU、TER、Meteor等多种指标看做是某种特征,使用分类\upcite{kulesza2004learning,corston2001machine}、回归\upcite{albrecht2008regression}、排序\upcite{duh2008ranking}等机器学习手段形成一种综合度量。此外,也有相关工作专注于多等级的译文质量评价,使用聚类算法将大致译文按其质量分为不同等级,并对不同质量等级的译文按照不同权重组合几种不同的评价方法\upcite{chen2015multi}。
\item 译文质量的多角度评价。章节内主要介绍的几种经典方法如BLEU、TER、METEOR等,大都是从某个单一的角度计算机器译文和参考答案的相似性,如何对译文从多个角度进行综合评价是需要进一步思考的问题,\ref{Evaluation method of Multi Strategy fusion}节中介绍的多策略融合评价方法就可以看作是一种多角度评价方法,其思想是将各种评价方法下的译文得分通过某种方式进行组合,从而实现对译文的综合评价。译文质量多角度评价的另一种思路则是直接将BLEU、TER、Meteor等多种指标看做是某种特征,使用分类\upcite{kulesza2004learning,corston2001machine}、回归\upcite{albrecht2008regression}、排序\upcite{duh2008ranking}等机器学习手段形成一种综合度量。此外,也有相关工作专注于多等级的译文质量评价,使用聚类算法将大致译文按其质量分为不同等级,并对不同质量等级的译文按照不同权重组合几种不同的评价方法\upcite{chen2015multi}。
\parinterval 那么,基于单词的统计机器翻译模型又是如何描述翻译问题的呢?Peter F. Brown等人提出了一个观点\upcite{DBLP:journals/coling/BrownPPM94}:在翻译一个句子时,可以把其中的每个单词翻译成对应的目标语言单词,然后调整这些目标语言单词的顺序,最后得到整个句子的翻译结果,而这个过程可以用统计模型来描述。尽管在人看来使用两个语言单词之间的对应进行翻译是很自然的事,但是对于计算机来说可是向前迈出了一大步。
\parinterval 那么,基于单词的统计机器翻译模型又是如何描述翻译问题的呢?Peter F. Brown等人提出了一个观点\upcite{DBLP:journals/coling/BrownPPM94}:在翻译一个句子时,可以把其中的每个单词翻译成对应的目标语言单词,然后调整这些目标语言单词的顺序,最后得到整个句子的翻译结果,而这个过程可以用统计模型来描述。尽管在人看来使用两个语言之间对应的单词进行翻译是很自然的事,但是对于计算机来说可是向前迈出了一大步。
\parinterval 先来看一个例子。图 \ref{fig:5-1}展示了一个汉语翻译到英语的例子。首先,可以把源语言句子中的单词“我”、“对”、“你”、“感到”和“满意”分别翻译为“I”、“with”、“you”、“am”\ 和“satisfied”,然后调整单词的顺序,比如,“am”放在译文的第2个位置,“you”应该放在最后的位置等等,最后得到译文“I am satisfied with you”。
\parinterval 先来看一个例子。图 \ref{fig:5-1}展示了一个汉语翻译到英语的例子。首先,可以把源语言句子中的单词“我”、“对”、“你”、“感到”和“满意”分别翻译为“I”、“with”、“you”、“am”\ 和“satisfied”,然后调整单词的顺序,比如,“am”放在译文的第2个位置,“you”应该放在最后的位置等等,最后得到译文“I am satisfied with you”。
...
@@ -80,7 +80,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo
...
@@ -80,7 +80,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo
\parinterval 公式\eqref{eq:5-8}定义的$g(\seq{s},\seq{t})$存在的问题是没有考虑词序信息。这里用一个简单的例子说明这个问题。如图\ref{fig:5-8}所示,源语言句子“我 对 你 感到 满意”有两个翻译结果,第一个翻译结果是“I am satisfied with you”,第二个是“I with you am satisfied”。虽然这两个译文包含的目标语单词是一样的,但词序存在很大差异。比如,它们都选择了“satisfied”作为源语单词“满意”的译文,但是在第一个翻译结果中“satisfied”处于第3个位置,而第二个结果中处于最后的位置。显然第一个翻译结果更符合英语的表达习惯,翻译的质量更高。遗憾的是,对于有明显差异的两个译文,公式\eqref{eq:5-8}计算得到的函数$g(\cdot)$的值却是一样的。
\parinterval 公式\eqref{eq:5-8}定义的$g(\seq{s},\seq{t})$存在的问题是没有考虑词序信息。这里用一个简单的例子说明这个问题。如图\ref{fig:5-8}所示,源语言句子“我 对 你 感到 满意”有两个翻译结果,第一个翻译结果是“I am satisfied with you”,第二个是“I with you am satisfied”。虽然这两个译文包含的目标语单词是一样的,但词序存在很大差异。比如,它们都选择了“satisfied”作为源语单词“满意”的译文,但是在第一个翻译结果中“satisfied”处于第3个位置,而第二个结果中处于最后的位置。显然第一个翻译结果更符合英语的表达习惯,翻译的质量更高。遗憾的是,对于有明显差异的两个译文,公式\eqref{eq:5-8}计算得到的函数$g(\cdot)$的得分却是一样的。
\item 随着词对齐概念的不断深入,也有很多词对齐方面的工作并不依赖IBM模型。比如,可以直接使用判别式模型利用分类器解决词对齐问题\upcite{ittycheriah2005maximum};使用带参数控制的动态规划方法来提高词对齐准确率\upcite{DBLP:conf/naacl/GaleC91};甚至可以把对齐的思想用于短语和句法结构的双语对应\upcite{xiao2013unsupervised};无监督的对称词对齐方法,正向和反向模型联合训练,结合数据的相似性\upcite{DBLP:conf/naacl/LiangTK06};除了GIZA++,研究人员也开发了很多优秀的自动对齐工具,比如,FastAlign\upcite{DBLP:conf/naacl/DyerCS13}、Berkeley Word Aligner\upcite{taskar2005a}等,这些工具现在也有很广泛的应用。
\item 随着词对齐概念的不断深入,也有很多词对齐方面的工作并不依赖IBM模型。比如,可以直接使用判别模型利用分类器解决词对齐问题\upcite{ittycheriah2005maximum};使用带参数控制的动态规划方法来提高词对齐准确率\upcite{DBLP:conf/naacl/GaleC91};甚至可以把对齐的思想用于短语和句法结构的双语对应\upcite{xiao2013unsupervised};无监督的对称词对齐方法,正向和反向模型联合训练,结合数据的相似性\upcite{DBLP:conf/naacl/LiangTK06};除了GIZA++,研究人员也开发了很多优秀的自动对齐工具,比如,FastAlign\upcite{DBLP:conf/naacl/DyerCS13}、Berkeley Word Aligner\upcite{taskar2005a}等,这些工具现在也有很广泛的应用。
\parinterval 通常把$d(j|i,m,l)$称为扭曲度函数。这里$\funp{P}(\varphi_i|\varphi_1^{i-1},\seq{t})={\funp{P}(\varphi_i|t_i)}$和${\funp{P}(\pi_{ik}=j|\pi_{i1}^{k-1},}$$\pi_{1}^{i-1},\tau_0^l,\varphi_0^l,\seq{t})=d(j|i,m,l)$仅对$1\le i \le l$成立。这样就完成了图\ref{fig:6-7}中第1、3和4部分的建模。
\parinterval 通常把$d(j|i,m,l)$称为扭曲度函数。这里$\funp{P}(\varphi_i|\varphi_1^{i-1},\seq{t})={\funp{P}(\varphi_i|t_i)}$和${\funp{P}(\pi_{ik}=j|\pi_{i1}^{k-1},}$$\pi_{1}^{i-1},\tau_0^l,\varphi_0^l,\seq{t})=d(j|i,m,l)$仅对$1\le i \le l$成立。这样就完成了图\ref{fig:6-7}中第1、3和4部分的建模。
\parinterval 如图\ref{fig:7-16}所示,按照从左到右的顺序对一个句子“在/桌子/上/的/苹果”进行翻译,得到的译文“on the table the apple”的语序是不对的。虽然可以使用$n$-gram语言模型对语序进行建模,但是此处仍然需要用更加准确的方式描述目标语短语间的次序。一般,把这个问题称为短语调序,或者简称{\small\bfnew{调序}}\index{调序}(Reordering)\index{Reordering}。通常,基于短语的调序模型会作为判别式模型的特征参与到翻译过程中来。接下来,会介绍3 种不同的调序方法,分别是基于距离的调序、基于方向的调序(MSD模型)以及基于分类的调序。
\parinterval 如图\ref{fig:7-16}所示,按照从左到右的顺序对一个句子“在/桌子/上/的/苹果”进行翻译,得到的译文“on the table the apple”的语序是不对的。虽然可以使用$n$-gram语言模型对语序进行建模,但是此处仍然需要用更加准确的方式描述目标语短语间的次序。一般,把这个问题称为短语调序,或者简称{\small\bfnew{调序}}\index{调序}(Reordering)\index{Reordering}。通常,基于短语的调序模型会作为判别模型的特征参与到翻译过程中来。接下来,会介绍3 种不同的调序方法,分别是基于距离的调序、基于方向的调序(MSD模型)以及基于分类的调序。
%----------------------------------------------
%----------------------------------------------
\begin{figure}[htp]
\begin{figure}[htp]
...
@@ -565,7 +565,7 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1
...
@@ -565,7 +565,7 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1
\parinterval 生物学中,神经元是神经系统的基本组成单元。同样,人工神经元是人工神经网络的基本单元。在人们的想象中,人工神经元应该与生物神经元类似。但事实上,二者在形态上是有明显差别的。如图\ref{fig:9-4} 是一个典型的人工神经元,其本质是一个形似$ y=f({\mathbi{x}}\cdot{\mathbi{w}}+b)$的函数。显而易见,一个神经元主要由${\mathbi{x}}$,${\mathbi{w}}$,$ b $,$ f $四个部分构成。其中${\mathbi{x}}$是一个形如$(x_1,x_2,\dots,x_n)$ 的实数向量,在一个神经元中担任“输入”的角色。${\mathbi{w}}$通常被理解为神经元连接的{\small\sffamily\bfseries{权重}}\index{权重}(Weight)\index{Weight}(对于一个人工神经元,权重是一个向量,表示为${\mathbi{w}}$;对于由多个神经元组成的神经网络,权重是一个矩阵,表示为${\mathbi{W}}$),其中的每一个元素都对应着一个输入和一个输出,代表着“某输入对某输出的贡献程度”。$ b $被称作偏置(对于一个人工神经元,偏置是一个实数,表示为$b$;对于神经网络中的某一层,偏置是一个向量,表示为${\mathbi{b}}$)。$ f $被称作激活函数,用于对输入向量各项加权和后进行某种变换。可见,一个人工神经元的功能是将输入向量与权重矩阵右乘(做内积)后,加上偏置量,经过一个激活函数得到一个标量结果。
\parinterval 生物学中,神经元是神经系统的基本组成单元。同样,人工神经元是人工神经网络的基本单元。在人们的想象中,人工神经元应该与生物神经元类似。但事实上,二者在形态上是有明显差别的。如图\ref{fig:9-4} 是一个典型的人工神经元,其本质是一个形似$ y=f({\mathbi{x}}{\mathbi{w}}+b)$的函数。显而易见,一个神经元主要由${\mathbi{x}}$,${\mathbi{w}}$,$ b $,$ f $四个部分构成。其中${\mathbi{x}}$是一个形如$(x_1,x_2,\dots,x_n)$ 的实数向量,在一个神经元中担任“输入”的角色。${\mathbi{w}}$通常被理解为神经元连接的{\small\sffamily\bfseries{权重}}\index{权重}(Weight)\index{Weight}(对于一个人工神经元,权重是一个向量,表示为${\mathbi{w}}$;对于由多个神经元组成的神经网络,权重是一个矩阵,表示为${\mathbi{W}}$),其中的每一个元素都对应着一个输入和一个输出,代表着“某输入对某输出的贡献程度”。$ b $被称作偏置(对于一个人工神经元,偏置是一个实数,表示为$b$;对于神经网络中的某一层,偏置是一个向量,表示为${\mathbi{b}}$)。$ f $被称作激活函数,用于对输入向量各项加权和后进行某种变换。可见,一个人工神经元的功能是将输入向量与权重矩阵右乘(做内积)后,加上偏置量,经过一个激活函数得到一个标量结果。
\parinterval 感知机是人工神经元的一种实例,在上世纪50-60年代被提出后,对神经网络研究产生了深远的影响。感知机模型如图\ref{fig:9-5}所示,其输入是一个$n$维二值向量${\mathbi{x}}=(x_1,x_2,\dots,x_n)$,其中$ x_i=0$或$1$。权重${\mathbi{w}}=(w_1,w_2,\dots,w_n)$,每个输入变量对应一个权重$ w_i $。偏置$ b $是一个实数变量($-\sigma$)。输出也是一个二值结果,即$ y=0$或$1$。$ y $值的判定由输入的加权和是否大于(或小于)一个阈值$\sigma$决定:
\parinterval 感知机是人工神经元的一种实例,在上世纪50年代被提出,对神经网络研究产生了深远的影响。感知机模型如图\ref{fig:9-5}所示,其输入是一个$n$维二值向量${\mathbi{x}}=(x_1,x_2,\dots,x_n)$,其中$ x_i=0$或$1$。权重${\mathbi{w}}=(w_1,w_2,\dots,w_n)$,每个输入变量对应一个权重$ w_i $。偏置$ b $是一个实数变量($-\sigma$)。输出也是一个二值结果,即$ y=0$或$1$。$ y $值的判定由输入的加权和是否大于(或小于)一个阈值$\sigma$决定:
\parinterval 张量乘以矩阵是怎样计算呢?可以先回忆一下\ref{sec:9.2.1}节的线性代数的知识。假设${\mathbi{A}}$为$ m\times p $的矩阵,${\mathbi{B}}$为$ p\times n $的矩阵,对${\mathbi{A}}$ 和${\mathbi{B}}$ 作矩阵乘积的结果是一个$ m\times n $的矩阵${\mathbi{C}}$,其中矩阵${\mathbi{C}}$中第$ i $行、第$ j $列的元素可以表示为:
\parinterval 张量乘以矩阵是怎样计算呢?可以先回忆一下\ref{sec:9.2.1}节的线性代数的知识。假设${\mathbi{A}}$为$ m\times p $的矩阵,${\mathbi{B}}$为$ p\times n $的矩阵,对${\mathbi{A}}$ 和${\mathbi{B}}$ 作矩阵乘积的结果是一个$ m\times n $的矩阵${\mathbi{C}}$,其中矩阵${\mathbi{C}}$中第$ i $行、第$ j $列的元素可以表示为:
\parinterval 前向计算实现如图\ref{fig:9-38}所示,图中对各张量和其他参数的形状做了详细说明。输入${\mathbi{x}}=(x_1,x_2,x_3)$是一个$1\times3$的张量,其三个维度分别对应天空状况、低空气温、水平气压三个方面的数据。输入数据经过隐藏层的线性变换${\mathbi{x}}\cdot{\mathbi{W}}^{[1]}+{\mathbi{b}}^{[1]}$和Tanh函数的激活,得到新的张量${\mathbi{a}}=(a_1,a_2)$,其中$a_1$,$a_2$分别对应着从输入数据中提取出的温度和风速两方面特征;神经网络在获取到天气情况的特征${\mathbi{a}}$后,继续对其进行线性变换${\mathbi{a}}\cdot{\mathbi{W}}^{[2]}+ b^{[2]}$和Sigmoid函数的激活操作,得到神经网络的最终输出$ y $,即神经网络此时预测的穿衣指数。
\parinterval 前向计算实现如图\ref{fig:9-38}所示,图中对各张量和其他参数的形状做了详细说明。输入${\mathbi{x}}=(x_1,x_2,x_3)$是一个$1\times3$的张量,其三个维度分别对应天空状况、低空气温、水平气压三个方面的数据。输入数据经过隐藏层的线性变换${\mathbi{x}}{\mathbi{W}}^{[1]}+{\mathbi{b}}^{[1]}$和Tanh函数的激活,得到新的张量${\mathbi{a}}=(a_1,a_2)$,其中$a_1$,$a_2$分别对应着从输入数据中提取出的温度和风速两方面特征;神经网络在获取到天气情况的特征${\mathbi{a}}$后,继续对其进行线性变换${\mathbi{a}}{\mathbi{W}}^{[2]}+ b^{[2]}$和Sigmoid函数的激活操作,得到神经网络的最终输出$ y $,即神经网络此时预测的穿衣指数。
\parinterval 在神经网络的有监督学习中,训练模型的数据是由输入和正确答案所组成的样本构成的。假设有多个输入样本$\{{\mathbi{x}}^{[1]}\dots,{\mathbi{x}}^{[n]}\}$,每一个${\mathbi{x}}^{[i]}$都对应一个正确答案${\mathbi{y}}^{[i]}$,$\{{\mathbi{x}}^{[i]},{\mathbi{y}}^{[i]}\}$就构成一个优化神经网络的{\small\sffamily\bfseries{训练数据集合}}\index{训练数据集合}(Training Data Set)\index{Training Data Set}。对于一个神经网络模型${\mathbi{y}}=f({\mathbi{x}})$,每个${\mathbi{x}}^{[i]}$也会有一个输出${\hat{\mathbi{y}}}^{[i]}$。如果可以度量正确答案${\mathbi{y}}^{[i]}$和神经网络输出${\hat{\mathbi{y}}}^{[i]}$之间的偏差,进而通过调整网络参数减小这种偏差,就可以得到更好的模型。
\parinterval 在神经网络的有监督学习中,训练模型的数据是由输入和正确答案所组成的样本构成的。假设有多个输入样本$\{{\mathbi{x}}^{[1]}\dots,{\mathbi{x}}^{[n]}\}$,每一个${\mathbi{x}}^{[i]}$都对应一个正确答案${\mathbi{y}}^{[i]}$,$\{{\mathbi{x}}^{[i]},{\mathbi{y}}^{[i]}\}$就构成一个优化神经网络的{\small\sffamily\bfseries{训练数据集}}\index{训练数据集}(Training Data Set)\index{Training Data Set}。对于一个神经网络模型${\mathbi{y}}=f({\mathbi{x}})$,每个${\mathbi{x}}^{[i]}$也会有一个输出${\hat{\mathbi{y}}}^{[i]}$。如果可以度量正确答案${\mathbi{y}}^{[i]}$和神经网络输出${\hat{\mathbi{y}}}^{[i]}$之间的偏差,进而通过调整网络参数减小这种偏差,就可以得到更好的模型。
\parinterval 在得到${\bm\pi}^K=\frac{\partial L}{\partial{\mathbi{s}}^K}$之后,下一步的目标是:1)计算损失函数$ L $相对于第$ K-1$层与输出层之间连接权重${\mathbi{W}}^K $的梯度;2)计算损失函数$ L $相对于神经网络第$ K-1$层输出结果${\mathbi{h}}^{K-1}$的梯度。这部分内容如图\ref{fig:9-55}所示。
\parinterval 在得到${\bm\pi}^K=\frac{\partial L}{\partial{\mathbi{s}}^K}$之后,下一步的目标是:1)计算损失函数$ L $相对于第$ K-1$层与输出层之间连接权重${\mathbi{W}}^K $的梯度;2)计算损失函数$ L $相对于神经网络第$ K-1$层输出结果${\mathbi{h}}^{K-1}$的梯度。这部分内容如图\ref{fig:9-55}所示。
publisher={Annual Conference on Neural Information Processing Systems},
publisher={Conference on Neural Information Processing Systems},
pages={4565--4573},
pages={4565--4573},
year={2016}
year={2016}
}
}
@inproceedings{Duan2017OneShotIL,
@inproceedings{Duan2017OneShotIL,
title={One-Shot Imitation Learning},
title={One-Shot Imitation Learning},
author={Yan Duan and Marcin Andrychowicz and Bradly C. Stadie and Jonathan Ho and Jonas Schneider and Ilya Sutskever and Pieter Abbeel and Wojciech Zaremba},
author={Yan Duan and Marcin Andrychowicz and Bradly C. Stadie and Jonathan Ho and Jonas Schneider and Ilya Sutskever and Pieter Abbeel and Wojciech Zaremba},
publisher={CoRR},
publisher={Conference on Neural Information Processing Systems},