\parinterval 图\ref{fig:3.3-5}展示了一个具体的例子,有一个可见状态序列$T F F T$,假设初始隐含状态是$A$,图中线上的概率值是对应的转移概率与发射概率的乘积,比如图中隐含状态$A$开始,下一个隐含状态是$A$且可见状态是$F$的概率是0.45,下一个隐含状态是$B$且可见状态是$F$的概率是0.55。图中可以看出,由于有较大的值,当可见状态序列为$T F F T$时,隐马尔可夫计算出的最有可能的隐含状态序列为$A A A A$。但是如果对训练集进行统计可能会发现,当可见序列为$T F F T$ 时,对应的隐含状态是$A A A A$的概率可能是比较大的,但也可能是比较小的。这个例子中出现预测偏差的主要原因是:由于比其他状态转移概率要大得多,隐含状态的预测一直停留在状态$A$。
\parinterval 在上文提到的评价指标中,无论是准确率、召回率还是$\rm F_{mean}$,都是基于单个词汇信息衡量译文质量,而忽略了语序问题。为了将语序问题考虑进来,Meteor会考虑更长的匹配:将机器译文按照最长匹配长度分块,并对“块数”较多的机器译文给予惩罚。例如上例中,机器译文被分为了三个“块”——“Can I have it”、“like he”、“?”在这种情况下,看起来上例中的准确率、召回率都还不错,但最终会受到很严重的惩罚。这种罚分机制能够识别出机器译文中的词序问题,因为当待测译文词序与参考答案相差较大时,机器译文将会被分割得比较零散,这种惩罚机制的计算公式如式\eqref{eq:4-11},其中$\rm count_{chunks}$表示匹配的块数。
\parinterval 在上文提到的评价指标中,无论是准确率、召回率还是$\textrm F_{mean}$,都是基于单个词汇信息衡量译文质量,而忽略了语序问题。为了将语序问题考虑进来,Meteor会考虑更长的匹配:将机器译文按照最长匹配长度分块,并对“块数”较多的机器译文给予惩罚。例如上例中,机器译文被分为了三个“块”——“Can I have it”、“like he”、“?”在这种情况下,看起来上例中的准确率、召回率都还不错,但最终会受到很严重的惩罚。这种罚分机制能够识别出机器译文中的词序问题,因为当待测译文词序与参考答案相差较大时,机器译文将会被分割得比较零散,这种惩罚机制的计算公式如式\eqref{eq:4-11},其中$\textrm{count}_{\textrm{chunks}}$表示匹配的块数。