Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
aa685589
Commit
aa685589
authored
Jan 10, 2021
by
zengxin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
postscript
parent
70cc8e8a
显示空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
1 行增加
和
1 行删除
+1
-1
ChapterPostscript/postscript.tex
+1
-1
没有找到文件。
ChapterPostscript/postscript.tex
查看文件 @
aa685589
...
...
@@ -40,7 +40,7 @@
\parinterval
如何构建一套好的机器翻译系统呢?假设我们需要给用户提供一套翻译品质不错的机器翻译系统,至少需要考虑三个方面:足够大规模的双语句对集合用于训练、强大的机器翻译技术和错误驱动的打磨过程。从技术应用和产业化角度来看,简单靠提出一个新的机器翻译技术,对于构建一套好的机器翻译系统来说,只能说必要条件,不是充要条件,上述三者缺一不可。
\parinterval
然而,大部分语言对的电子化双语句对集合规模非常小,有的甚至只有一个小规模双语词典。因此资源稀缺语种机器翻译技术研究也成为学术界的研究热点,相信这个课题的突破能大大推动机器翻译技术落地应用。在2017年以前机器翻译市场规模一直很小,主要原因就是机器翻译品质不够好,就算采用最先进的神经机器翻译技术,缺乏足够大规模的双语句对集合作为训练数据,也是巧妇难为无米之炊。从技术研究和应用可行性角度来说,解决资源稀缺语种机器翻译问题非常有价值。通常可以从两个维度来思考,一是如何获取更多双语句对,甚至包括质量低一点的伪双语数据;二是如何利用更少样本实现高效学习,或者如何充分利用单语数据资源或者可比较数据资源来提升模型学习效果。
\parinterval
然而,大部分语言对的电子化双语句对集合规模非常小,有的甚至只有一个小规模双语词典。因此资源稀缺语种机器翻译技术研究也成为学术界的研究热点,相信这个课题的突破能大大推动机器翻译技术落地应用。在2017年以前机器翻译市场规模一直很小,主要原因就是机器翻译品质不够好,就算采用最先进的神经机器翻译技术,缺乏足够大规模的双语句对集合作为训练数据,
我们
也是巧妇难为无米之炊。从技术研究和应用可行性角度来说,解决资源稀缺语种机器翻译问题非常有价值。通常可以从两个维度来思考,一是如何获取更多双语句对,甚至包括质量低一点的伪双语数据;二是如何利用更少样本实现高效学习,或者如何充分利用单语数据资源或者可比较数据资源来提升模型学习效果。
\parinterval
做研究可以搞单点突破,但从可实用机器翻译系统构建来说,需要多技术互补融合,以解决实际问题和改善翻译品质。比如说,业内不少研究人员提出采用知识图谱来改善机器翻译,并希望用于解决稀缺资源语种机器翻译问题;还有一些研究工作引入语言分析技术来改善机器翻译,也有的将基于规则的方法、统计机器翻译技术与神经机器翻译技术互补性融合;另外还可以引入预训练技术来改善机器翻译品质,特别是针对稀缺资源语种机器翻译等等。不仅仅限于上述这些,总体来说,这些思路都具有良好的研究价值,但是从应用角度构建可实用机器翻译系统,还需要更多考虑技术落地可行性才行。比如大规模知识图谱构建的代价和语言分析技术的精度如何,预训练技术对机器翻译帮助的上限等。
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论