Commit af42f9e5 by 曹润柘

合并分支 'master' 到 'caorunzhe'

Master

查看合并请求 !219
parents bc2be173 c0472484
......@@ -147,7 +147,7 @@
\draw [->] ([yshift=-1.6em,xshift=-0.4em]vocab.north east) .. controls +(east:1) and +(west:1) .. ([xshift=0.1em,yshift=0.4em]vocabtopn.west) node [pos=0.3,below] (topnlabel) {\scriptsize{top-3}};
{
\node [anchor=north] (cap) at (vocab.south east) {\scriptsize{\textbf{束搜索($b=3$)}}};
\node [anchor=north] (cap) at (vocab.south east) {\scriptsize{\textbf{束搜索($k=3$)}}};
}
}
......
......@@ -897,14 +897,15 @@ a (\vectorn{\emph{s}},\vectorn{\emph{h}}) = \left\{ \begin{array}{ll}
\centering
\caption{GNMT与其他翻译模型对比\upcite{Wu2016GooglesNM}}
\label{tab:10-10}
\begin{tabular}{l l l l}
\multicolumn{1}{l|}{\multirow{2}{*}{\#}} & \multicolumn{2}{c}{BLEU} & \multirow{2}{*}{CPU decoding time} \\
\multicolumn{1}{l|}{} & EN-DE & EN-FR & \\ \hline
\multicolumn{1}{l|}{PBMT} & 20.7 & 37.0 & - \\
\multicolumn{1}{l|}{RNNSearch} & 16.5 & - & - \\
\multicolumn{1}{l|}{LSTM(6 layers)} & - & 31.5 & - \\
\multicolumn{1}{l|}{Deep-Att} & 20.6 & 37.7 & - \\
\multicolumn{1}{l|}{GNMT} & 24.6 & 39.0 & 0.2s per sentence \\
\begin{tabular}{l l l}
\multicolumn{1}{l|}{\multirow{3}{*}{\#}} & \multicolumn{2}{c}{BLEU[\%]} \\
\multicolumn{1}{l|}{} & 英德 & 英法 \\
\multicolumn{1}{l|}{} & EN-DE & EN-FR \\ \hline
\multicolumn{1}{l|}{PBMT} & 20.7 & 37.0 \\
\multicolumn{1}{l|}{RNNSearch} & 16.5 & - \\
\multicolumn{1}{l|}{LSTM(6 layers)} & - & 31.5 \\
\multicolumn{1}{l|}{Deep-Att} & 20.6 & 37.7 \\
\multicolumn{1}{l|}{GNMT} & 24.6 & 39.0 \\
\end{tabular}
\end{table}
%----------------------------------------------
......@@ -915,18 +916,21 @@ a (\vectorn{\emph{s}},\vectorn{\emph{h}}) = \left\{ \begin{array}{ll}
\sectionnewpage
\section{训练及推断}
神经机器翻译模型的训练大多使用基于梯度的方法(见{\chapternine}),本节将介绍这种方法训练循环神经网络的应用细节。进一步,会介绍神经机器翻译模型的推断方法。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\subsection{训练}
\parinterval 第九章已经介绍了神经网络的训练方法。其中最常用的是基于梯度的方法,即:使用一定量样本进行神经网络的前向计算,之后进行反向计算,并得到所有参数的梯度信息,再使用下面的规则进行参数更新:
\parinterval 在基于梯度的方法中,模型参数可以通过损失函数$L$对于参数的梯度进行不断更新。对于第$step$步参数更新,首先进行神经网络的前向计算,之后进行反向计算,并得到所有参数的梯度信息,再使用下面的规则进行参数更新:
\begin{eqnarray}
\vectorn{\emph{w}}_{step+1} = \vectorn{\emph{w}}_{step} - \alpha \cdot \frac{ \partial L(\vectorn{\emph{w}}_{step})} {\partial \vectorn{\emph{w}}_{step} }
\label{eq:10-30}
\end{eqnarray}
\noindent 其中,$\vectorn{\emph{w}}_{step}$表示更新前的模型参数,$\vectorn{\emph{w}}_{step+1}$表示更新后的模型参数,$L(\vectorn{\emph{w}}_{step})$表示模型相对于$\vectorn{\emph{w}}_{step}$的损失,$\frac{\partial L(\vectorn{\emph{w}}_{step})} {\partial \vectorn{\emph{w}}_{step} }$表示损失函数的梯度,$\alpha$是更新的步进值。也就是说,给定一定量的训练数据,不断执行公式\ref{eq:10-30}的过程。反复使用训练数据,直至模型参数达到收敛或者损失函数不再变化。通常,把公式的一次执行称为“一步”更新/训练,把访问完所有样本的训练称为“一轮”训练。
\noindent 其中,$\vectorn{\emph{w}}_{step}$表示更新前的模型参数,$\vectorn{\emph{w}}_{step+1}$表示更新后的模型参数,$L(\vectorn{\emph{w}}_{step})$表示模型相对于$\vectorn{\emph{w}}_{step}$ 的损失,$\frac{\partial L(\vectorn{\emph{w}}_{step})} {\partial \vectorn{\emph{w}}_{step} }$表示损失函数的梯度,$\alpha$是更新的步进值。也就是说,给定一定量的训练数据,不断执行公式\ref{eq:10-30}的过程。反复使用训练数据,直至模型参数达到收敛或者损失函数不再变化。通常,把公式的一次执行称为“一步”更新/训练,把访问完所有样本的训练称为“一轮”训练。
\parinterval 将公式\ref{eq:10-30}应用于神经机器翻译有几个基本问题需要考虑:1)损失函数的选择;2)参数初始化的策略,也就是如何设置$\vectorn{\emph{w}}_0$;3)优化策略和学习率调整策略;4)训练加速。下面对这些问题进行讨论。
......@@ -936,13 +940,13 @@ a (\vectorn{\emph{s}},\vectorn{\emph{h}}) = \left\{ \begin{array}{ll}
\subsubsection{1. 损失函数}
\parinterval 因为神经机器翻译在每个目标语言位置都会输出一个概率分布,表示这个位置上不同单词出现的可能性,因此需要知道当前位置输出的分布相比于标准答案的“损失”。对于这个问题,常用的是交叉熵损失函数。令$\vectorn{\emph{y}}$表示机器翻译模型输出的分布,$\hat{\vectorn{\emph{y}}}$ 表示标准答案,则交叉熵损失可以被定义为:
\parinterval 神经机器翻译在目标端的每个位置都会输出一个概率分布,表示这个位置上不同单词出现的可能性。设计损失函数时,需要知道当前位置输出的分布相比于标准答案的“差异”。对于这个问题,常用的是交叉熵损失函数。令$\vectorn{\emph{y}}$表示机器翻译模型输出的分布,$\hat{\vectorn{\emph{y}}}$ 表示标准答案,则交叉熵损失可以被定义为:
\begin{eqnarray}
L_{\textrm{ce}}(\vectorn{\emph{y}},\hat{\vectorn{\emph{y}}}) = - \sum_{k=1}^{|V|} \vectorn{\emph{y}}[k] \textrm{log} (\hat{\vectorn{\emph{y}}}[k])
\label{eq:10-3222}
\end{eqnarray}
\noindent 其中$\vectorn{\emph{y}}[k]$$\hat{\vectorn{\emph{y}}}[k]$分别表示向量$\vectorn{\emph{y}}$$\hat{\vectorn{\emph{y}}}$的第$k$维,$|V|$表示输出向量的维度(等于词表大小)。对于一个模型输出的概率分布$\vectorn{\emph{Y}} = \{ \vectorn{\emph{y}}_1,\vectorn{\emph{y}}_2,..., \vectorn{\emph{y}}_n \}$和标准答案分布$\widehat{\vectorn{\emph{Y}}}=\{ \hat{\vectorn{\emph{y}}}_1, \hat{\vectorn{\emph{y}}}_2,...,\hat{\vectorn{\emph{y}}}_n \}$损失函数可以被定义为:
\noindent 其中$\vectorn{\emph{y}}[k]$$\hat{\vectorn{\emph{y}}}[k]$分别表示向量$\vectorn{\emph{y}}$$\hat{\vectorn{\emph{y}}}$的第$k$维,$|V|$表示输出向量的维度(等于词表大小)。假设有$n$个训练样本,模型输出的概率分布为$\vectorn{\emph{Y}} = \{ \vectorn{\emph{y}}_1,\vectorn{\emph{y}}_2,..., \vectorn{\emph{y}}_n \}$,标准答案的分布$\widehat{\vectorn{\emph{Y}}}=\{ \hat{\vectorn{\emph{y}}}_1, \hat{\vectorn{\emph{y}}}_2,...,\hat{\vectorn{\emph{y}}}_n \}$。这个训练样本集合上的损失函数可以被定义为:
\begin{eqnarray}
L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}}(\vectorn{\emph{y}}_j,\hat{\vectorn{\emph{y}}}_j)
\label{eq:10-31}
......@@ -960,22 +964,22 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\parinterval 神经网络的参数主要是各层中的线性变换矩阵和偏置。在训练开始时,需要对参数进行初始化。但是,由于神经机器翻译的网络结构复杂,因此损失函数往往不是凸函数,不同初始化会导致不同的优化结果。而且在大量实践中已经发现,神经机器翻译模型对初始化方式非常敏感,性能优异的系统往往需要特定的初始化方式。
\parinterval 下面以LSTM循环神经网络为例(见\ref{sec:lstm-cell}节),介绍机器翻译模型的初始化方法。这些方法也可以推广到GRU等结构。具体内容如下:
\parinterval 因为LSTM是神经机器翻译中常用的一种模型,下面以LSTM模型为例(见\ref{sec:lstm-cell}节),介绍机器翻译模型的初始化方法。这些方法也可以推广到GRU等结构。具体内容如下:
\begin{itemize}
\vspace{0.5em}
\item LSTM遗忘门偏置初始化为1,也就是始终选择遗忘记忆$\vectorn{\emph{c}}$,这样可以有效防止初始化时$\vectorn{\emph{c}}$里包含的错误信号传播到后面的所有时刻。
\item LSTM遗忘门偏置初始化为1,也就是始终选择遗忘记忆$\vectorn{\emph{c}}$,这样可以有效防止初始化时$\vectorn{\emph{c}}$里包含的错误信号传播到后面的时刻。
\vspace{0.5em}
\item 网络中的其他偏置一般都初始化为0,可以有效防止加入过大或过小的偏置后使得激活函数的输出跑到“饱和区”,也就是梯度接近0的区域,防止训练一开始就无法跳出局部极小的区域。
\vspace{0.5em}
\item 网络的权重矩阵$\vectorn{\emph{w}}$一般使用Xavier参数初始化方法\upcite{pmlr-v9-glorot10a},可以有效稳定训练过程,特别是对于比较“深”的网络。令$d_{in}$$d_{out}$分别表示$\vectorn{\emph{w}}$的输入和输出的维度大小,则该方法的具体实现如下:
\item 网络的权重矩阵$\vectorn{\emph{w}}$一般使用Xavier参数初始化方法\upcite{pmlr-v9-glorot10a},可以有效稳定训练过程,特别是对于比较“深”的网络。令$d_{in}$$d_{out}$分别表示$\vectorn{\emph{w}}$的输入和输出的维度大小\footnote{对于变换$\vectorn{\emph{y}} = \vectorn{\emph{x}} \vectorn{\emph{w}}$$\vectorn{\emph{w}}$的列数为$d_{in}$,行数为$d_{out}$},则该方法的具体实现如下:
\begin{eqnarray}
\vectorn{\emph{w}} \sim U(-\sqrt{ \frac{6} { d_{in} + d_{out} } } , \sqrt{ \frac{6} { d_{in} + d_{out} } })
\label{eq:10-32}
\vspace{0.5em}
\end{eqnarray}
其中$U(a,b)$表示以$[a,b]$为范围的均匀分布$6$是固定值\\
其中$U(a,b)$表示以$[a,b]$为范围的均匀分布。\\
\end{itemize}
%----------------------------------------------------------------------------------------
......@@ -985,32 +989,18 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\subsubsection{3. 优化策略}
%\vspace{0.5em}
\parinterval 公式\ref{eq:10-30}展示了最基本的优化策略,也被称为标准的SGD优化器。实际上,训练神经机器翻译模型时,还有非常多的优化器可以选择,在第九章也有详细介绍,这里考虑Adam优化器。 Adam 通过对梯度的{\small\bfnew{一阶矩估计}}\index{一阶矩估计}(First Moment Estimation)\index{First Moment Estimation}{\small\bfnew{二阶矩估计}}\index{二阶矩估计}(Second Moment Estimation)\index{Second Moment Estimation}进行综合考虑,计算出更新步长。
\parinterval\ref{tab:10-8}从效果上对比了Adam和SGD的区别。通常,Adam收敛的比较快,不同任务基本上可以使用一套配置进行优化,虽性能不算差,但很难达到最优效果。相反,SGD虽能通过在不同的数据集上进行调整,来达到最优的结果,但是收敛速度慢。因此需要根据不同的需求来选择合适的优化器。若需要快得到模型的初步结果,选择Adam较为合适,若是需要在一个任务上得到最优的结果,选择SGD更为合适。
\parinterval 公式\ref{eq:10-30}展示了最基本的优化策略,也被称为标准的SGD优化器。实际上,训练神经机器翻译模型时,还有非常多的优化器可以选择,在{\chapternine}也有详细介绍,这里考虑Adam优化器。 Adam 通过对梯度的{\small\bfnew{一阶矩估计}}\index{一阶矩估计}(First Moment Estimation)\index{First Moment Estimation}{\small\bfnew{二阶矩估计}}\index{二阶矩估计}(Second Moment Estimation)\index{Second Moment Estimation}进行综合考虑,计算出更新步长。
\vspace{-0.5em}
%----------------------------------------------
\begin{table}[htp]
\centering
\caption{ Adam / SGD对比}
\label{tab:10-8}
\begin{tabular}{l | l l }
&使用 &性能 \\ \hline
\rule{0pt}{15pt} Adam &一套配置包打天下 &不算差,但没到极限 \\
\rule{0pt}{15pt} SGD &换一个任务就得调 &效果好 \\
\end{tabular}
\end{table}
%----------------------------------------------
\parinterval 通常,Adam收敛的比较快,不同任务基本上可以使用一套配置进行优化,虽性能不算差,但很难达到最优效果。相反,SGD虽能通过在不同的数据集上进行调整,来达到最优的结果,但是收敛速度慢。因此需要根据不同的需求来选择合适的优化器。若需要快得到模型的初步结果,选择Adam较为合适,若是需要在一个任务上得到最优的结果,选择SGD更为合适。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
\vspace{-2.5em}
\subsubsection{4. 梯度裁剪}
%\vspace{0.5em}
\parinterval 需要注意的是,训练循环神经网络时,反向传播使得网络层之间的梯度重复相乘,在网络层数过深时,如果连乘因子小于1可能造成梯度指数级的减少,甚至趋近于0,导致网络无法优化,也就是梯度消失问题。当连乘因子大于1时,可能会导致梯度的乘积变得异常大,造成梯度爆炸的问题。在这种情况下需要使用“梯度裁剪”来防止梯度超过阈值。梯度裁剪在第九章已经介绍过,这里简单回顾一下。梯度裁剪的具体公式如下:
\parinterval 需要注意的是,训练循环神经网络时,反向传播使得网络层之间的梯度相乘。在网络层数过深时,如果连乘因子小于1可能造成梯度指数级的减少,甚至趋近于0,导致网络无法优化,也就是梯度消失问题。当连乘因子大于1时,可能会导致梯度的乘积变得异常大,造成梯度爆炸的问题。在这种情况下需要使用“梯度裁剪”来防止梯度超过阈值。梯度裁剪在{\chapternine}已经介绍过,这里简单回顾一下。梯度裁剪的具体公式如下:
\vspace{-0.5em}
\begin{eqnarray}
\vectorn{\emph{w}}' = \vectorn{\emph{w}} \cdot \frac{\gamma} {\textrm{max}(\gamma,\| \vectorn{\emph{w}} \|_2)}
......@@ -1018,7 +1008,7 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\end{eqnarray}
%\vspace{0.5em}
\noindent 其中$\gamma$是手工设定的梯度大小阈值, $\| \cdot \|_2$是L2范数,$\vectorn{\emph{w}}'$表示梯度裁剪后的参数。这个公式的含义在于只要梯度大小超过阈值,就按照阈值与当前梯度大小的比例进行放缩。
\noindent 其中$\gamma$是手工设定的梯度大小阈值, $\| \cdot \|_2$是L2范数,$\vectorn{\emph{w}}'$表示梯度裁剪后的参数。这个公式的含义在于只要梯度大小超过阈值,就按照阈值与当前梯度大小的比例进行放缩。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -1041,25 +1031,26 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\parinterval 不同优化器需要的学习率不同,比如Adam一般使用0.001或0.0001,而SGD则在0.1$\sim$1之间进行挑选。在梯度下降法中,都是给定的统一的学习率,整个优化过程中都以确定的步长进行更新因此无论使用哪个优化器,为了保证训练又快又好,通常都需要根据当前的更新次数来动态调整学习率的大小。
\vspace{0.5em}
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter10/Figures/figure-relationship-between-learning-rate-and-number-of-updates}
\caption{学习率与更新次数的变化关系}
\label{fig:10-29}
\end{figure}
%----------------------------------------------
\parinterval\ref{fig:10-29}展示了一种常用的学习率调整策略。它分为两个阶段:预热阶段和衰减阶段。模型训练初期梯度通常很大,如果直接使用较大的学习率很容易让模型陷入局部最优。学习率的预热阶段便是通过在训练初期使学习率从小到大逐渐增加来减缓在初始阶段模型“跑偏”的现象。一般来说,初始学习率太高会使得模型进入一种损失函数曲面非常不平滑的区域,进而使得模型进入一种混乱状态,后续的优化过程很难取得很好的效果。一个常用的学习率预热方法是{\small\bfnew{逐渐预热}}\index{逐渐预热}(Gradual Warmup)\index{Gradual Warmup}。假设预热的更新次数为$T'$,初始学习率为$\alpha_0$,则预热阶段第$t$次更新的学习率为:
\parinterval\ref{fig:10-29}展示了一种常用的学习率调整策略。它分为两个阶段:预热阶段和衰减阶段。模型训练初期梯度通常很大,如果直接使用较大的学习率很容易让模型陷入局部最优。学习率的预热阶段便是通过在训练初期使学习率从小到大逐渐增加来减缓在初始阶段模型“跑偏”的现象。一般来说,初始学习率太高会使得模型进入一种损失函数曲面非常不平滑的区域,进而使得模型进入一种混乱状态,后续的优化过程很难取得很好的效果。一个常用的学习率预热方法是{\small\bfnew{逐渐预热}}\index{逐渐预热}(Gradual Warmup)\index{Gradual Warmup}。假设预热的更新次数为$N$,初始学习率为$\alpha_0$,则预热阶段第$step$次更新的学习率为:
%\vspace{0.5em}
\begin{eqnarray}
\alpha_t = \frac{t}{T'} \alpha_0 \quad,\quad 1 \leq t \leq T'
\alpha_t = \frac{step}{N} \alpha_0 \quad,\quad 1 \leq t \leq T'
\label{eq:10-34}
\end{eqnarray}
%-------
\noindent 另一方面,当模型训练逐渐接近收敛的时候,使用太大学习率会很容易让模型在局部最优解附近震荡,从而错过局部极小,因此需要通过减小学习率来调整更新的步长,以此来不断的逼近局部最优,这一阶段也称为学习率的衰减阶段。学习率衰减的方法有很多,比如指数衰减,余弦衰减等,图\ref{fig:10-29}右侧展示的是{\small\bfnew{分段常数衰减}}\index{分段常数衰减}(Piecewise Constant Decay)\index{Piecewise Constant Decay},即每经过$m$次更新,学习率衰减为原来的$\beta_m$$\beta_m<1$)倍,其中$m$$\beta_m$为经验设置的超参。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter10/Figures/figure-relationship-between-learning-rate-and-number-of-updates}
\caption{学习率与更新次数的变化关系}
\label{fig:10-29}
\end{figure}
%----------------------------------------------
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
......@@ -1069,7 +1060,8 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
%\vspace{0.5em}
\parinterval 机器翻译是自然语言处理中很“重”的任务。因为数据量巨大而且模型较为复杂,模型训练的时间往往很长。比如,使用一千万句的训练数据,性能优异的系统往往需要几天甚至一周的时间。更大规模的数据会导致训练时间更长。特别是使用多层网络同时增加模型容量时(比如增加隐层宽度时),神经机器翻译的训练会更加缓慢。对于这个问题,一个思路是从模型训练算法上进行改进。比如前面提到的Adam就是一种高效的训练策略。另一种思路是利用多设备进行加速,也称作分布式训练。
\vspace{0.5em}
\parinterval 常用的多设备并行化加速方法有数据并行和模型并行,其优缺点的简单对比如表\ref{tab:10-9}所示。数据并行是指把同一个批次的不同样本分到不同设备上进行并行计算。其优点是并行度高,理论上有多大的批次就可以有多少个设备并行计算,但模型体积不能大于单个设备容量的极限。而模型并行是指把“模型”切分成若干模块后分配到不同设备上并行计算。其优点是可以对很大的模型进行运算,但只能有限并行,比如,如果按层对模型进行分割,那么有多少层就需要多少个设备,同时这两种方法可以一起使用进一步提高神经网络的训练速度。具体来说:
%----------------------------------------------
\begin{table}[htp]
\centering
......@@ -1077,13 +1069,12 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\label{tab:10-9}
\begin{tabular}{l | p{12em} p{12em} }
&优点 &缺点 \\ \hline
\rule{0pt}{15pt} 数据并行 &并行度高,理论上有多大的batch(批次)就可以有多少个设备并行计算 &模型不能大于单个设备的极限 \\
\rule{0pt}{15pt} 模型并行 &可以对很大的模型进行运算 &只能有限并行,比如多少层就多少个设备 \\
\rule{0pt}{15pt} 数据并行 &并行度高,理论上有多大的批次(Batch)就可以有多少个设备并行计算 &模型不能大于单个设备的极限 \\
\rule{0pt}{15pt} 模型并行 &可以对很大的模型进行运算 &只能有限并行,比如有多少层就有多少个设备 \\
\end{tabular}
\end{table}
%----------------------------------------------
\parinterval 常用的多设备并行化加速方法有数据并行和模型并行,其优缺点的简单对比如表\ref{tab:10-9}所示。数据并行是指把同一个批次的不同样本分到不同设备上进行并行计算。其优点是并行度高,理论上有多大的批次就可以有多少个设备并行计算,但模型体积不能大于单个设备容量的极限。而模型并行是指把“模型”切分成若干模块后分配到不同设备上并行计算。其优点是可以对很大的模型进行运算,但只能有限并行,比如,如果按层对模型进行分割,那么有多少层就需要多少个设备,同时这两种方法可以一起使用进一步提高神经网络的训练速度。具体来说:
\begin{itemize}
\vspace{0.5em}
......@@ -1100,7 +1091,7 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
%----------------------------------------------
\vspace{0.5em}
\item {\small\bfnew{模型并行}}\index{模型并行}。另一种思路是,把较大的模型分成若干小模型,之后在不同设备上训练小模型。对于循环神经网络,不同层的网络天然就是一个相对独立的模型,因此非常适合使用这种方法。比如,对于$l$层的循环神经网络,把每层都看做一个小模型,然后分发到$l$个设备上并行计算。在序列较长的时候,该方法使其运算时间变为原来的${1}/{l}$。图\ref{fig:10-31}以三层循环网络为例展示了对句子“你\ \ 不错\ 。”进行模型并行的过程。其中,每一层网络都被放到了一个设备上。当模型根据已经生成的第一个词“你”预测下一个词时(图\ref{fig:10-31}(a)),同层的下一个时刻的计算和对“你”的第二层的计算就可以同时开展(图\ref{fig:10-31}(b))。以此类推,就完成了模型的并行计算。
\item {\small\bfnew{模型并行}}\index{模型并行}。另一种思路是,把较大的模型分成若干小模型,之后在不同设备上训练小模型。对于循环神经网络,不同层的网络天然就是一个相对独立的模型,因此非常适合使用这种方法。比如,对于$l$层的循环神经网络,把每层都看做一个小模型,然后分发到$l$个设备上并行计算。在序列较长的时候,该方法使其运算时间变为原来的${1}/{l}$。图\ref{fig:10-31}以三层循环网络为例展示了对句子“你\ \ 不错\ 。”进行模型并行的过程。其中,每一层网络都被放到了一个设备上。当模型根据已经生成的第一个词“你”,并预测下一个词时(图\ref{fig:10-31}(a)),同层的下一个时刻的计算和对“你”的第二层的计算就可以同时开展(图\ref{fig:10-31}(b))。以此类推,就完成了模型的并行计算。
\vspace{0.5em}
\end{itemize}
......@@ -1134,29 +1125,29 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
%----------------------------------------------------------------------------------------
\subsection{推断}
\parinterval 神经机器翻译的推断是指:利用已经训练好的模型对新的源语言句子进行翻译的过程。具体来说,首先利用编码器生成源语言句子的表示,之后利用解码器预测目标语言译文。也就是,对于源语言句子$\vectorn{\emph{x}}$,生成一个使翻译概率$\funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$最大的目标语言译文$\hat{\vectorn{\emph{y}}}$,如下(详细过程见\ref{sec:10.3.1}节):
\parinterval 神经机器翻译的推断是一个典型的搜索问题(见{\chaptertwo})。这个过程是指:利用已经训练好的模型对新的源语言句子进行翻译的过程。具体来说,首先利用编码器生成源语言句子的表示,之后利用解码器预测目标语言译文。也就是,对于源语言句子$\vectorn{\emph{x}}$,生成一个使翻译概率$\funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$最大的目标语言译文$\hat{\vectorn{\emph{y}}}$,如下(详细过程见\ref{sec:10.3.1} 节):
\begin{eqnarray}
\hat{\vectorn{\emph{y}}} & = & \argmax_{\vectorn{\emph{y}}} \funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}}) \nonumber \\
& = & \argmax_{\vectorn{\emph{y}}} \prod_{j=1}^n \funp{P}(y_j | \vectorn{\emph{y}}_{<j},\vectorn{\emph{x}})
\label{eq:10-35}
\end{eqnarray}
\noindent 在具体实现时,由于当前目标语言单词的生成需要依赖前面单词的生成,因此无法同时生成所有的目标语言单词。理论上,可以枚举所有的$\vectorn{\emph{y}}$,之后利用$\funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$ 的定义对每个$\vectorn{\emph{y}}$进行评价,然后找出最好的$\vectorn{\emph{y}}$。这也被称作{\small\bfnew{全搜索}}\index{全搜索}(Full Search)\index{Full Search}。但是,枚举所有的译文单词序列显然是不现实的。因此,在具体实现时,并不会访问所有可能的译文单词序列,而是用某种策略进行有效的搜索。常用的做法是自左向右逐词生成。比如,对于每一个目标语言位置$j$,可以执行
\parinterval 在具体实现时,由于当前目标语言单词的生成需要依赖前面单词的生成,因此无法同时生成所有的目标语言单词。理论上,可以枚举所有的$\vectorn{\emph{y}}$,之后利用$\funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$ 的定义对每个$\vectorn{\emph{y}}$进行评价,然后找出最好的$\vectorn{\emph{y}}$。这也被称作{\small\bfnew{全搜索}}\index{全搜索}(Full Search)\index{Full Search}。但是,枚举所有的译文单词序列显然是不现实的。因此,在具体实现时,并不会访问所有可能的译文单词序列,而是用某种策略进行有效的搜索。常用的做法是自左向右逐词生成。比如,对于每一个目标语言位置$j$,可以执行
\begin{eqnarray}
\hat{y}_j = \argmax_{y_j} \funp{P}(y_j | \hat{\vectorn{\emph{y}}}_{<j} , \vectorn{\emph{x}})
\label{eq:10-36}
\end{eqnarray}
\noindent 其中,$\hat{y}_j$表示位置$j$概率最高的单词,$\hat{\vectorn{\emph{y}}}_{<j} = \{ \hat{y}_1,...,\hat{y}_{j-1} \}$表示已经生成的最优译文单词序列。也就是,把最优的译文看作是所有位置上最优单词的组合。显然,这是一种{\small\bfnew{贪婪搜索}}\index{贪婪搜索}(Greedy Search)\index{Greedy Search},因为无法保证$\{ \hat{y}_1,...,\hat{y}_{n} \}$是全局最优解。一种缓解这个问题的方法是,在每步中引入更多的候选。这里定义$\hat{y}_{jk} $ 表示在目标语言第$j$个位置排名在第$k$位的单词。在每一个位置$j$,可以生成$K$个最可能的单词,而不是1个,这个过程可以被描述为
\noindent 其中,$\hat{y}_j$表示位置$j$概率最高的单词,$\hat{\vectorn{\emph{y}}}_{<j} = \{ \hat{y}_1,...,\hat{y}_{j-1} \}$表示已经生成的最优译文单词序列。也就是,把最优的译文看作是所有位置上最优单词的组合。显然,这是一种{\small\bfnew{贪婪搜索}}\index{贪婪搜索}(Greedy Search)\index{Greedy Search},因为无法保证$\{ \hat{y}_1,...,\hat{y}_{n} \}$是全局最优解。一种缓解这个问题的方法是,在每步中引入更多的候选。这里定义$\hat{y}_{jk} $ 表示在目标语言第$j$个位置排名在第$k$位的单词。在每一个位置$j$,可以生成$k$个最可能的单词,而不是1个,这个过程可以被描述为
\begin{eqnarray}
\{ \hat{y}_{j1},...,\hat{y}_{jk} \} = \argmax_{ \{ \hat{y}_{j1},...,\hat{y}_{jk} \} }
\funp{P}(y_j | \{ \hat{\vectorn{\emph{y}}}_{<{j^{\textrm{*}}}} \},\vectorn{\emph{x}})
\funp{P}(y_j | \{ \hat{\vectorn{\emph{y}}}_{<{j\ast}} \},\vectorn{\emph{x}})
\label{eq:10-37}
\end{eqnarray}
\noindent 这里,$\{ \hat{y}_{j1},...,\hat{y}_{jk} \}$表示对于位置$j$翻译概率最大的前$K$个单词,$\{ \hat{\vectorn{\emph{y}}}_{<j^{\ast}} \}$表示前$j-1$步top-K单词组成的所有历史。${\hat{\vectorn{\emph{y}}}_{<j^{\ast}}}$可以被看作是一个集合,里面每一个元素都是一个目标语言单词序列,这个序列是前面生成的一系列top-K单词的某种组成。$\funp{P}(y_j | \{ \hat{\vectorn{\emph{y}}}_{<{j^{\textrm{*}}}} \},\vectorn{\emph{x}})$表示基于\{$ \hat{\vectorn{\emph{y}}}_{<j^{\ast}} $\}的某一条路径生成$y_j$的概率\footnote{严格来说,$ \funp{P} (y_j | {\hat{\vectorn{\emph{y}}}_{<j^{\ast}} })$不是一个准确的数学表达,这里通过这种写法强调$y_j$是由\{$ \hat{\vectorn{\emph{y}}}_{<j^{\ast}} $\}中的某个译文单词序列作为条件生成的。} 。这种方法也被称为{\small\bfnew{束搜索}}\index{束搜索}(Beam Search)\index{Beam Search},意思是搜索时始终考虑一个集束内的候选。
\noindent 这里,$\{ \hat{y}_{j1},...,\hat{y}_{jk} \}$表示对于位置$j$翻译概率最大的前$k$个单词,$\{ \hat{\vectorn{\emph{y}}}_{<j\ast} \}$表示前$j-1$步top-k单词组成的所有历史。${\hat{\vectorn{\emph{y}}}_{<j\ast}}$可以被看作是一个集合,里面每一个元素都是一个目标语言单词序列,这个序列是前面生成的一系列top-k单词的某种组成。$\funp{P}(y_j | \{ \hat{\vectorn{\emph{y}}}_{<{j^{\textrm{*}}}} \},\vectorn{\emph{x}})$表示基于\{$ \hat{\vectorn{\emph{y}}}_{<j\ast} $\}的某一条路径生成$y_j$的概率\footnote{严格来说,$ \funp{P} (y_j | {\hat{\vectorn{\emph{y}}}_{<j\ast} })$不是一个准确的数学表达,这里通过这种写法强调$y_j$是由\{$ \hat{\vectorn{\emph{y}}}_{<j\ast} $\}中的某个译文单词序列作为条件生成的。} 。这种方法也被称为{\small\bfnew{束搜索}}\index{束搜索}(Beam Search)\index{Beam Search},意思是搜索时始终考虑一个集束内的候选。
\parinterval 不论是贪婪搜索还是束搜索都是一个自左向右的过程,也就是每个位置的处理需要等前面位置处理完才能执行。这是一种典型的{\small\bfnew{自回归模型}}\index{自回归模型}(Autoregressive Model)\index{Autoregressive Model},它通常用来描述时序上的随机过程,其中每一个时刻的结果对时序上其他部分的结果有依赖\upcite{NIPS2017_7181}。相对应的,也有{\small\bfnew{非自回归模型}}\index{非自回归模型}(Non-autoregressive Model)\index{Non-autoregressive Model},它消除了不同时刻结果之间的直接依赖\upcite{Gu2017NonAutoregressiveNM}。由于自回归模型是当今神经机器翻译主流的推断方法,这里仍以自回归的贪婪搜索和束搜索为基础进行讨论。
\parinterval 不论是贪婪搜索还是束搜索都是一个自左向右的过程,也就是每个位置的处理需要等前面位置处理完才能执行。这是一种典型的{\small\bfnew{自回归模型}}\index{自回归模型}(Autoregressive Model)\index{Autoregressive Model},它通常用来描述时序上的随机过程,其中每一个时刻的结果对时序上其他部分的结果有依赖\upcite{Akaike1969autoregressive}。相对应的,也有{\small\bfnew{非自回归模型}}\index{非自回归模型}(Non-autoregressive Model)\index{Non-autoregressive Model},它消除了不同时刻结果之间的直接依赖\upcite{Gu2017NonAutoregressiveNM}。由于自回归模型是当今神经机器翻译主流的推断方法,这里仍以自回归的贪婪搜索和束搜索为基础进行讨论。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -1179,7 +1170,7 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\vspace{0.2em}
\parinterval 解码端的每一步Softmax层会输出所有单词的概率,由于是基于贪心的方法,这里会选择概率最大(top-1)的单词作为输出。这个过程可以参考图\ref{fig:10-33}的内容。选择分布中概率最大的单词“Have”作为得到的第一个单词,并再次送入解码器,作为第二步的输入同时预测下一个单词。以此类推,直到生成句子的终止符为止,就得到了完整的译文。
\parinterval 贪婪搜索的优点在于速度快。在对翻译速度有较高要求的场景中,贪婪搜索是一种十分有效的对系统加速的方法。而且贪婪搜索的原理非常简单,易于快速原型。不过,由于每一步只保留一个最好的局部结果,贪婪搜索往往会带来翻译品质上的损失。
\parinterval 贪婪搜索的优点在于速度快。在对翻译速度有较高要求的场景中,贪婪搜索是一种十分有效的系统加速方法。而且贪婪搜索的原理非常简单,易于快速原型。不过,由于每一步只保留一个最好的局部结果,贪婪搜索往往会带来翻译品质上的损失。
%----------------------------------------------
\begin{figure}[htp]
......@@ -1197,14 +1188,7 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\subsubsection{2. 束搜索}
\vspace{0.5em}
\parinterval 束搜索是一种启发式图搜索算法。相比于全搜索,它可以减少搜索所占用的空间和时间,在每一步扩展的时候,剪掉一些质量比较差的结点,保留下一些质量较高的结点。具体到机器翻译任务,对于每一个目标语言位置,束搜索选择了概率最大的前$K$个单词进行扩展(其中$K$叫做束宽度,或简称为束宽)。如图\ref{fig:10-34}所示,假设\{$y_1, y_2,..., y_n$\}表示生成的目标语言序列,且$K=3$,则束搜索的具体过程为:在预测第一个位置时,可以通过模型得到$y_1$的概率分布,选取概率最大的前3个单词作为候选结果(假设分别为“have”, “has”, “it”)。在预测第二个位置的单词时,模型针对已经得到的三个候选结果(“have”, “has”, “it”)计算第二个单词的概率分布。例如,可以在将“have”作为第二步的输入,计算$y_2$的概率分布。此时,译文序列的概率为:
\begin{eqnarray}
\funp{P} (y_2,y_1 | \vectorn{\emph{x}}) & = & \funp{P} (y_2, \textrm{“have”} | \vectorn{\emph{x}}) \nonumber \\
& = & \funp{P}(y_2 | \textrm{“have”} , \vectorn{\emph{x}}) \cdot \funp{P} (\textrm{“have”} | \vectorn{\emph{x}})
\label{eq:10-38}
\end{eqnarray}
\noindent 类似的,对“has”和“it”进行同样的操作,分别计算得到$ \funp{P} (y_2, \textrm{“have”} | \vectorn{\emph{x}})$$ \funp{P} (y_2, \textrm{“has”} | \vectorn{\emph{x}})$\\ $ \funp{P} (y_2, \textrm{“it”} | \vectorn{\emph{x}})$,因为$y_2$对应$|V|$种可能,总共可以得到$3 \times |V|$种结果。然后从中选取使序列概率$\funp{P}(y_2,y_1| \vectorn{\emph{x}})$最大的前三个$y_2$作为新的输出结果,这样便得到了前两个位置的top-3译文。在预测其他位置时也是如此,不断重复此过程直到推断结束。可以看到,束搜索的搜索空间大小与束宽度有关,也就是:束宽度越大,搜索空间越大,更有可能搜索到质量更高的译文,但同时搜索会更慢。束宽度等于3,意味着每次只考虑三个最有可能的结果,贪婪搜索实际上便是集束宽度为1的情况。在神经机器翻译系统实现中,一般束宽度设置在4~8之间。
\parinterval 束搜索是一种启发式图搜索算法。相比于全搜索,它可以减少搜索所占用的空间和时间,在每一步扩展的时候,剪掉一些质量比较差的结点,保留下一些质量较高的结点。具体到机器翻译任务,对于每一个目标语言位置,束搜索选择了概率最大的前$K$个单词进行扩展(其中$k$叫做束宽度,或简称为束宽)。如图\ref{fig:10-34}所示,假设\{$y_1, y_2,..., y_n$\}表示生成的目标语言序列,且$k=3$,则束搜索的具体过程为:在预测第一个位置时,可以通过模型得到$y_1$的概率分布,选取概率最大的前3个单词作为候选结果(假设分别为“have”, “has”, “it”)。在预测第二个位置的单词时,模型针对已经得到的三个候选结果(“have”, “has”, “it”)计算第二个单词的概率分布。因为$y_2$对应$|V|$种可能,总共可以得到$3 \times |V|$种结果。然后从中选取使序列概率$\funp{P}(y_2,y_1| \vectorn{\emph{x}})$最大的前三个$y_2$作为新的输出结果,这样便得到了前两个位置的top-3译文。在预测其他位置时也是如此,不断重复此过程直到推断结束。可以看到,束搜索的搜索空间大小与束宽度有关,也就是:束宽度越大,搜索空间越大,更有可能搜索到质量更高的译文,但同时搜索会更慢。束宽度等于3,意味着每次只考虑三个最有可能的结果,贪婪搜索实际上便是集束宽度为1的情况。在神经机器翻译系统实现中,一般束宽度设置在4~8之间。
%----------------------------------------------
\begin{figure}[htp]
......@@ -1221,7 +1205,7 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\subsubsection{3. 长度惩罚}
\parinterval 这里用$ \funp{P} (\vectorn{\emph{y}} | \vectorn{\emph{x}}) = \prod_{j=1}^n \funp{P}(y_j | \vectorn{\emph{y}}_{<j},\vectorn{\emph{x}}) $作为翻译模型。直接实现这个公式有一个明显的缺点:当句子过长时乘法运算容易产生溢出,也就是多个数相乘可能会产生浮点数无法表示的运算结果。为了解决这个问题,可以利用对数操作将乘法转换为加法,得到新的概率公式:$\textrm{log } \funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}}) = \sum_{j=1}^n \textrm{log }\funp{P} (y_j | \vectorn{\emph{y}}_{<j}, \vectorn{\emph{x}}) $,对数函数不会改变函数的单调性,因此在具体实现时,通常用$\textrm{log }\funp{P} (\vectorn{\emph{y}} | \vectorn{\emph{x}})$表示句子的得分,而不用$\funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$
\parinterval 这里用$ \funp{P} (\vectorn{\emph{y}} | \vectorn{\emph{x}}) = \prod_{j=1}^n \funp{P}(y_j | \vectorn{\emph{y}}_{<j},\vectorn{\emph{x}}) $作为翻译模型。直接实现这个公式有一个明显的缺点:当句子过长时乘法运算容易产生溢出,也就是多个数相乘可能会产生浮点数无法表示的运算结果。为了解决这个问题,可以利用对数操作将乘法转换为加法,得到新的计算方式:$\textrm{log } \funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}}) = \sum_{j=1}^n \textrm{log }\funp{P} (y_j | \vectorn{\emph{y}}_{<j}, \vectorn{\emph{x}}) $,对数函数不会改变函数的单调性,因此在具体实现时,通常用$\textrm{log }\funp{P} (\vectorn{\emph{y}} | \vectorn{\emph{x}})$表示句子的得分,而不用$\funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$
\parinterval 不管是使用$\funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$还是$\textrm{log } \funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$计算句子得分,还面临两个问题:
......@@ -1253,7 +1237,7 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\label{eq:10-41}
\end{eqnarray}
\noindent 显然,当目标语言$y$短时,$\textrm{lp}(\vectorn{\emph{y}})$的值越小,因为$\textrm{log } \funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$是负数,所以句子得分$\textrm{score} ( \vectorn{\emph{y}} , \vectorn{\emph{x}})$越小。也就是说,模型会惩罚译文过短的结果。当覆盖度较高时,同样会使得分变低。通过这样的惩罚机制,使模型得分更为合理,从而帮助模型选择出质量更高的译文。
\noindent 显然,当目标语言$\vectorn{\emph{y}}$短时,$\textrm{lp}(\vectorn{\emph{y}})$的值越小,因为$\textrm{log } \funp{P}(\vectorn{\emph{y}} | \vectorn{\emph{x}})$是负数,所以句子得分$\textrm{score} ( \vectorn{\emph{y}} , \vectorn{\emph{x}})$越小。也就是说,模型会惩罚译文过短的结果。当覆盖度较高时,同样会使得分变低。通过这样的惩罚机制,使模型得分更为合理,从而帮助模型选择出质量更高的译文。
%----------------------------------------------------------------------------------------
% NEW SECTION
......@@ -1269,11 +1253,11 @@ L(\vectorn{\emph{Y}},\widehat{\vectorn{\emph{Y}}}) = \sum_{j=1}^n L_{\textrm{ce}
\vspace{0.5em}
\item 循环神经网络有很多变种结构。比如,除了RNN、LSTM、GRU,还有其他改进的循环单元结构,如LRN\upcite{DBLP:journals/corr/abs-1905-13324}、SRU\upcite{Lei2017TrainingRA}、ATR\upcite{Zhang2018SimplifyingNM}
\vspace{0.5em}
\item 注意力机制的使用是机器翻译乃至整个自然语言处理近几年获得成功的重要因素之一\upcite{Liu_2019_CVPR,DBLP:journals/corr/abs-1811-00498,MoradiInterrogating}。早期,有研究者尝试将注意力机制和统计机器翻译的词对齐进行统一\upcite{WangNeural}。近两年,也有研究已经发现注意力模型可以捕捉一些语言现象\upcite{DBLP:journals/corr/abs-1905-09418},比如,在Transformer的多头注意力中,不同头往往会捕捉到不同的信息,比如,有些头对低频词更加敏感,有些头更适合词意消歧,甚至有些头可以捕捉句法信息。此外,由于注意力机制增加了模型的复杂性,而且随着网络层数的增多,神经机器翻译中也存在大量的冗余,因此研发轻量的注意力模型也是具有实践意义的方向\upcite{Xiao2019SharingAW}
\item 注意力机制的使用是机器翻译乃至整个自然语言处理近几年获得成功的重要因素之一\upcite{bahdanau2014neural,DBLP:journals/corr/LuongPM15}。早期,有研究者尝试将注意力机制和统计机器翻译的词对齐进行统一\upcite{WangNeural}{\color{red} 不止这一篇,和李北确认一下})。近两年,也有研究已经发现注意力模型可以捕捉一些语言现象\upcite{DBLP:journals/corr/abs-1905-09418}{\color{red} 这一部分应该放到Transformer那一章,如果前面的内容比较少(RNN+attention),可以说一下,attention在其它人任务中的一些应用}),比如,在Transformer 的多头注意力中,不同头往往会捕捉到不同的信息,比如,有些头对低频词更加敏感,有些头更适合词意消歧,甚至有些头可以捕捉句法信息。此外,由于注意力机制增加了模型的复杂性,而且随着网络层数的增多,神经机器翻译中也存在大量的冗余,因此研发轻量的注意力模型也是具有实践意义的方向\upcite{Xiao2019SharingAW}
\vspace{0.5em}
\item 一般来说,神经机器翻译的计算过程是没有人工干预的,翻译流程也无法用人类的知识直接进行解释,因此一个有趣的方向是在神经机器翻译中引入先验知识,使得机器翻译的行为更“像”人。比如,可以使用句法树来引入人类的语言学知识\upcite{Yang2017TowardsBH,Wang2019TreeTI},基于句法的神经机器翻译也包含大量的树结构的神经网络建模\upcite{DBLP:journals/corr/abs-1809-01854,DBLP:journals/corr/abs-1808-09374}。此外,也可以把用户定义的词典或者翻译记忆加入到翻译过程来\upcite{DBLP:journals/corr/ZhangZ16c,Dai2019TransformerXLAL},使得用户的约束可以直接反映到机器翻译的结果上来。先验知识的种类还有很多,包括词对齐\upcite{li-etal-2019-word}、篇章信息\upcite{Werlen2018DocumentLevelNM,DBLP:journals/corr/abs-1805-10163}等等,都是神经机器翻译中能够使用的信息。
\item 一般来说,神经机器翻译的计算过程是没有人工干预的,翻译流程也无法用人类的知识直接进行解释,因此一个有趣的方向是在神经机器翻译中引入先验知识,使得机器翻译的行为更“像”人。比如,可以使用句法树来引入人类的语言学知识\upcite{Yang2017TowardsBH,Wang2019TreeTI},基于句法的神经机器翻译也包含大量的树结构的神经网络建模\upcite{DBLP:journals/corr/abs-1809-01854,DBLP:journals/corr/abs-1808-09374}。此外,也可以把用户定义的词典或者翻译记忆加入到翻译过程来\upcite{DBLP:journals/corr/ZhangZ16c}{\color{red} 应该还有论文,基于先验知识的,一般都会描述词典,清华liuyang他们,还有liuqun老师组都发过相关的,基于先验知识或者词语约束的翻译}),使得用户的约束可以直接反映到机器翻译的结果上来。先验知识的种类还有很多,包括词对齐\upcite{li-etal-2019-word}、 篇章信息\upcite{Werlen2018DocumentLevelNM,DBLP:journals/corr/abs-1805-10163} 等等,都是神经机器翻译中能够使用的信息。
\vspace{0.5em}
\item 神经机器翻译依赖成本较高的GPU设备,因此对模型的裁剪和加速也是很多系统研发人员所感兴趣的方向。比如,从工程上,可以考虑减少运算强度,比如使用低精度浮点数\upcite{Ott2018ScalingNM}或者整数\upcite{DBLP:journals/corr/abs-1906-00532,Lin2020TowardsF8}进行计算,或者引入缓存机制来加速模型的推断;也可以通过对模型参数矩阵的剪枝\upcite{DBLP:journals/corr/SeeLM16},甚至对模块的剪枝\upcite{Zhang2018SpeedingUN},来减小整个模型的体积;另一种方法是知识精炼\upcite{kim-rush-2016-sequence}。利用大模型训练小模型,这样往往可以得到比单独训练小模型更好的效果\upcite{DBLP:journals/corr/ChenLCL17,Hinton2015Distilling}
\item {\color{red} 这部分感觉放到Transformer那章更加合适,因为很多都是在Transformer上做的})神经机器翻译依赖成本较高的GPU设备,因此对模型的裁剪和加速也是很多系统研发人员所感兴趣的方向。比如,从工程上,可以考虑减少运算强度,比如使用低精度浮点数\upcite{Ott2018ScalingNM} 或者整数\upcite{DBLP:journals/corr/abs-1906-00532,Lin2020TowardsF8}进行计算,或者引入缓存机制来加速模型的推断;也可以通过对模型参数矩阵的剪枝来减小整个模型的体积\upcite{DBLP:journals/corr/SeeLM16};另一种方法是知识精炼\upcite{Hinton2015Distilling,kim-rush-2016-sequence}。 利用大模型训练小模型,这样往往可以得到比单独训练小模型更好的效果\upcite{DBLP:journals/corr/ChenLCL17}
\end{itemize}
......@@ -4749,6 +4749,14 @@ pages ={157-166},
//publisher = "Association for Computational Linguistics",
pages = "1317--1327",
}
@article{Akaike1969autoregressive,
author = {Hirotugu Akaike},
title = {Fitting autoregressive models for prediction},
journal = {Annals of the institute of Statistical Mathematics},
volume = {21(1)},
year = {2015},
pages = {243--247},
}
%%%%% chapter 10------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论