Commit b89d9900 by 曹润柘

更新 chapter8.tex

parent ce5179f3
......@@ -519,7 +519,7 @@ span\textrm{[0,4]}&=&\textrm{“猫} \quad \textrm{喜欢} \quad \textrm{吃} \q
\vspace{0.5em}
\item 把层次短语文法转化为乔姆斯基范式,这样可以直接使用原始的CKY方法进行分析;
\vspace{0.5em}
\item 对CKY方法进行改造。解码的核心任务要知道每个跨度是否能匹配规则的源语言部分。实际上,层次短语模型的文法是一种特殊的文法。这种文法规则的源语言部分最多包含两个变量,而且变量不能连续。这样的规则会对应一种特定类型的模版,比如,对于包含两个变量的规则,它的源语言部分形如$\alpha_0 \funp{X}_1 \alpha_1 \funp{X}_2 \alpha_2$。其中,$\alpha_0$$\alpha_1$$\alpha_2$表示终结符串,$\funp{X}_1$$\funp{X}_2$是变量。显然,如果$\alpha_0$$\alpha_1$$\alpha_2$确定下来那么$\funp{X}_1$$\funp{X}_2$的位置也就确定了下来。因此,对于每一个词串,都可以很容易的生成这种模版,进而完成匹配。而$\funp{X}_1$$\funp{X}_2$和原始CKY中匹配二叉规则本质上是一样的。由于这种方法并不需要对CKY方法进行过多调整,因此层次短语系统中广泛使用这种改造的CKY方法进行解码。
\item 对CKY方法进行改造。解码的核心任务要知道每个跨度是否能匹配规则的源语言部分。实际上,层次短语模型的文法是一种特殊的文法。这种文法规则的源语言部分最多包含两个变量,而且变量不能连续。这样的规则会对应一种特定类型的模版,比如,对于包含两个变量的规则,它的源语言部分形如$\alpha_0 \funp{X}_1 \alpha_1 \funp{X}_2 \alpha_2$。其中,$\alpha_0$$\alpha_1$$\alpha_2$表示终结符串,$\funp{X}_1$$\funp{X}_2$是变量。显然,如果$\alpha_0$$\alpha_1$$\alpha_2$确定下来那么$\funp{X}_1$$\funp{X}_2$的位置也就确定了下来。因此,对于每一个词串,都可以很容易的生成这种模版,进而完成匹配。而$\funp{X}_1$$\funp{X}_2$和原始CKY中匹配二叉规则本质上是一样的。由于这种方法并不需要对CKY方法进行过多调整,因此层次短语系统中广泛使用这种改造的CKY方法进行解码。
\vspace{0.5em}
\end{itemize}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论