Commit bd2ef45d by xiaotong

wording (sec 17)

parent 2f9bdcc4
......@@ -3,7 +3,7 @@
\begin{tikzpicture}[node distance = 0,scale = 1]
\tikzstyle{every node}=[scale=1]
\node [anchor=center](ori) at (-0.2,-0.2) {$O$};
\node [anchor=center](ori) at (-0.2,-0.2) {0};
\draw[->,thick](-0.5,0)--(5,0)node[below,scale=0.8]{时间};
\draw[->,thick](0,-2)--(0,2)node[left,scale=0.8]{量化值};
\draw[-,thick](0,0)sin(0.7,1.5)cos(1.4,0)sin(2.1,-1.5)cos(2.8,0)sin(3.5,1.5)cos(4.2,0);
......
......@@ -25,7 +25,7 @@
\parinterval 基于上下文的翻译是机器翻译的一个重要分支。传统方法中,机器翻译通常被定义为对一个句子进行翻译的问题。但是,现实中每句话往往不是独立出现的。比如,人们会使用语音进行表达,或者通过图片来传递信息,这些语音和图片内容都可以伴随着文字一起出现在翻译场景中。此外,句子往往存在于段落或者篇章之中,如果要理解这个句子,也需要整个段落或者篇章的信息。而这些上下文信息都是机器翻译可以利用的。
\parinterval 本章在句子级翻译的基础上将问题扩展为更大上下文中的翻译,具体包括:图像翻译、语音翻译、篇章翻译三个主题。这些问题均为机器翻译应用中的真实需求。同时,使用多模态等信息也是当下自然语言处理的热点方向之一。
\parinterval 本章在句子级翻译的基础上将问题扩展为更大上下文中的翻译,具体包括:语音翻译、图像翻译、篇章翻译三个主题。这些问题均为机器翻译应用中的真实需求。同时,使用多模态等信息也是当下自然语言处理的热点方向之一。
%----------------------------------------------------------------------------------------
% NEW SECTION
......@@ -33,9 +33,9 @@
\section{机器翻译需要更多的上下文}
\parinterval 长期以来,机器翻译的任务都是指句子级翻译。主要原因在于,句子级的翻译建模可以大大简化问题,使得机器翻译方法更容易被实践和验证。但是人类使用语言的过程并不是孤立在一个个句子上进行的。这个问题可以类比于我们学习语言的过程:小孩成长过程中会接受视觉、听觉、触觉等多种信号,这些信号的共同作用使得他们产生对客观世界的“认识”,同时促使其使用“语言”进行表达。从这个角度说,语言能力并不是由单一因素形成的,它往往伴随着其他信息的相互作用,比如,当我们翻译一句话的时候,会用到看到的画面、听到的语调、甚至前面说过句子中的信息。
\parinterval 长期以来,机器翻译都是指句子级翻译。主要原因在于,句子级的翻译建模可以大大简化问题,使得机器翻译方法更容易被实践和验证。但是人类使用语言的过程并不是孤立在一个个句子上进行的。这个问题可以类比于人类学习语言的过程:小孩成长过程中会接受视觉、听觉、触觉等多种信号,这些信号的共同作用使得他们产生对客观世界的“认识”,同时促使他们使用“语言”进行表达。从这个角度说,语言能力并不是由单一因素形成的,它往往伴随着其他信息的相互作用,比如,当我们翻译一句话的时候,会用到看到的画面、听到的语调、甚至前面说过句子中的信息。
\parinterval 从广义上讲,当前句子以外的信息都可以被看作是一种上下文。比如,图\ref{fig:17-1}中,需要把英语句子“A medium sized child jumps off a dusty bank”翻译为汉语。但是,其中的“bank”有多个含义,因此仅仅使用英语句子本身的信息可能会将其翻译为“银行”,而非正确的译文“河床”。但是,图\ref{fig:17-1}中也提供了这个英语句子所对应的图片,显然图片中直接展示了河床,这时“bank”是没有歧义的。通常也会把这种使用图片和文字一起进行机器翻译的任务称作{\small\bfnew{多模态机器翻译}}\index{多模态机器翻译}(Multi-Modal Machine Translation)\index{Multi-Modal Machine Translation}
\parinterval 广义上,当前句子以外的信息都可以被看作是一种上下文。比如,图\ref{fig:17-1}中,需要把英语句子“A medium sized child jumps off a dusty bank”翻译为汉语。但是,其中的“bank”有多个含义,因此仅仅使用英语句子本身的信息可能会将其翻译为“银行”,而非正确的译文“河床”。但是,图\ref{fig:17-1}中也提供了这个英语句子所对应的图片,显然图片中直接展示了河床,这时“bank”是没有歧义的。通常也会把这种使用图片和文字一起进行机器翻译的任务称作{\small\bfnew{多模态机器翻译}}\index{多模态机器翻译}(Multi-Modal Machine Translation)\index{Multi-Modal Machine Translation}
%----------------------------------------------
\begin{figure}[htp]
......@@ -47,14 +47,14 @@
%-------------------------------------------
\parinterval {\small\bfnew{模态}}\index{模态}(Modality)\index{Modality}是指某一种信息来源。例如,视觉、听觉、嗅觉、味觉都可以被看作是不同的模态。因此视频、语音、文字等都可以被看作是承载这些模态的媒介。在机器翻译中使用多模态这个概念,更多是为了区分某些不同于文字的信息。除了图像等视觉模态信息,机器翻译也可以利用语音模态信息。比如,直接对语音进行翻译,甚至直接用语音表达出翻译结果。
\parinterval 此外,除了不同信息源所引入的上下文,机器翻译也可以利用文字本身的上下文。比如,翻译一篇文章中的某个句子时,可以根据整个篇章的内容进行翻译。显然这种篇章的语境是有助于机器翻译的。在本章后面的内容中,会就机器翻译中使用不同上下文(多模态和篇章信息)的方法展开讨论。
\parinterval 此外,除了不同信息源所引入的上下文,机器翻译也可以利用文字本身的上下文。比如,翻译一篇文章中的某个句子时,可以根据整个篇章的内容进行翻译。显然这种篇章的语境是有助于机器翻译的。在本章接下来的内容中,会对机器翻译中使用不同上下文(多模态和篇章信息)的方法展开讨论。
%----------------------------------------------------------------------------------------
% NEW SECTION
%----------------------------------------------------------------------------------------
\section{语音翻译}
\parinterval 语音,是人类日常生活与交流中最常用的一种信息载体。从日常聊天、国际旅游,到国际会议、跨国合作,对于语言进行翻译的需求不断增加。甚至在有些场景下,用语音进行交互要比用文本进行交互频繁的多。因此,{\small\bfnew{语音翻译}}\index{语音翻译}(Speech Translation)\index{Speech Translation}也成为了语音处理和机器翻译相结合的重要产物。根据目标语言的载体类型,可以将语音翻译分为{\small\bfnew{语音到文本翻译}}\index{语音到文本翻译}(Speech-to-Text Translation)\index{Speech-to-Text Translation}{\small\bfnew{语音到语音翻译}}\index{语音到语音翻译}(Speech-to-Speech Translation)\index{Speech-to-Speech Translation};基于翻译的实时性,还可以分为{\small\bfnew{实时语音翻译}}\index{实时语音翻译}(即同声传译,Simultaneous Translation)\index{Simultaneous Translation}{\small\bfnew{离线语音翻译}}(Offline Speech Translation)\index{离线语音翻译}\index{Offline Speech Translation}。本节主要关注离线语音到文本翻译方法(简称为语音翻译),分别从音频处理、级联语音翻译和端到端语音翻译进行介绍。
\parinterval 语音,是人类交流中最常用的一种信息载体。从日常聊天、出国旅游,到国际会议、跨国合作,对于语音进行翻译的需求不断增加。甚至在有些场景下,用语音进行交互要比用文本进行交互频繁得多。因此,{\small\bfnew{语音翻译}}\index{语音翻译}(Speech Translation)\index{Speech Translation}也成为了语音处理和机器翻译相结合的重要产物。根据目标语言的载体类型,可以将语音翻译分为{\small\bfnew{语音到文本翻译}}\index{语音到文本翻译}(Speech-to-Text Translation)\index{Speech-to-Text Translation}{\small\bfnew{语音到语音翻译}}\index{语音到语音翻译}(Speech-to-Speech Translation)\index{Speech-to-Speech Translation};基于翻译的实时性,还可以分为{\small\bfnew{实时语音翻译}}\index{实时语音翻译}(即同声传译,Simultaneous Translation)\index{Simultaneous Translation}{\small\bfnew{离线语音翻译}}(Offline Speech Translation)\index{离线语音翻译}\index{Offline Speech Translation}。本节主要关注离线语音到文本翻译方法(简称为语音翻译),分别从音频处理、级联语音翻译和端到端语音翻译几个角度开展介绍。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -62,7 +62,7 @@
\subsection{音频处理}
\parinterval 不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,结果的损失则越小。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。我们日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战}
\parinterval 为了保证对相关内容描述的完整性,这里对语音处理的基本知识作简要介绍。不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,结果的损失则越小。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。我们日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。 经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。音频处理的整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战}
%----------------------------------------------------------------------------------------------------
\begin{figure}[htp]
......@@ -75,7 +75,7 @@
\parinterval 经过上面的描述可以看出,音频的表示实际上是一个非常长的采样点序列,这导致了直接使用现有的深度学习技术处理音频序列较为困难。并且,原始的音频信号中可能包含着较多的噪声、环境声或冗余信息,也会对模型产生干扰。因此,一般会对音频序列进行处理来提取声学特征,具体为将长序列的采样点序列转换为短序列的特征向量序列,再用于下游系统模块。虽然已有一些工作不依赖特征提取,直接在原始的采样点序列上进行声学建模和模型训练\upcite{DBLP:conf/interspeech/SainathWSWV15},但目前的主流方法仍然是基于声学特征进行建模\upcite{DBLP:conf/icassp/MohamedHP12}
\parinterval 声学特征提取的第一步是预处理。其流程主要是对音频进行预加重、分帧和加窗。预加重用来提升音频信号中的高频部分,目的是使频谱更加平滑。分帧(原理如图\ref{fig:17-3})是基于短时平稳假设,即根据生物学特征,语音信号是一个缓慢变化的过程,10ms$\thicksim$30ms的信号片段是相对平稳的。基于这个假设,一般将每25ms作为一帧来提取特征,这个时间称为{\small\bfnew{帧长}}\index{帧长}(Frame Length)\index{Frame Length}。同时,为了保证不同帧之间的信号平滑性,使每两个相邻帧之间存在一定的重合部分。一般每隔10ms取一帧,这个时长称为{\small\bfnew{帧移}}\index{帧移}(Frame Shift)\index{Frame Shift}。为了缓解分帧带来的频谱泄漏,对每帧的信号进行加窗处理使其幅度在两段渐变到0,一般采用的是{\small\bfnew{汉明窗}}\index{汉明窗}(Hamming)\index{Hamming}\upcite{洪青阳2020语音识别原理与应用}
\parinterval 声学特征提取的第一步是预处理。其流程主要是对音频进行预加重、分帧和加窗。预加重用来提升音频信号中的高频部分,目的是使频谱更加平滑。分帧(原理如图\ref{fig:17-3}所示)是基于短时平稳假设,即根据生物学特征,语音信号是一个缓慢变化的过程,10ms$\thicksim$30ms的信号片段是相对平稳的。基于这个假设,一般将每25ms作为一帧来提取特征,这个时间称为{\small\bfnew{帧长}}\index{帧长}(Frame Length)\index{Frame Length}。同时,为了保证不同帧之间的信号平滑性,使每两个相邻帧之间存在一定的重合部分。一般每隔10ms取一帧,这个时长称为{\small\bfnew{帧移}}\index{帧移}(Frame Shift)\index{Frame Shift}。为了缓解分帧带来的频谱泄漏,对每帧的信号进行加窗处理使其幅度在两段渐变到0,一般采用的是{\small\bfnew{汉明窗}}\index{汉明窗}(Hamming)\index{Hamming}\upcite{洪青阳2020语音识别原理与应用}
%----------------------------------------------------------------------------------------------------
\begin{figure}[htp]
\centering
......@@ -87,7 +87,7 @@
\parinterval 经过了上述的预处理操作,可以得到音频对应的帧序列,之后通过不同的操作来提取不同类型的声学特征。常用的声学特征包括{\small\bfnew{Mel频率倒谱系数}}\index{Mel频率倒谱系数}(Mel-Frequency Cepstral Coefficient,MFCC)\index{Mel-Frequency Cepstral Coefficient}{\small\bfnew{感知线性预测系数}}\index{感知线性预测系数}(Perceptual Lienar Predictive,PLP)\index{Perceptual Lienar Predictive}{\small\bfnew{滤波器组}}\index{滤波器组}(Filter-bank,Fbank)\index{Filter-bank}等。MFCC、PLP和Fbank特征都需要对预处理后的音频做{\small\bfnew{短时傅里叶变换}}\index{短时傅里叶变换}(Short-time Fourier Tranform,STFT)\index{Short-time Fourier Tranform},得到具有规律的线性分辨率。之后再经过特定的操作,得到各种声学特征。不同声学特征的特点是不同的,MFCC去相关性较好,PLP抗噪性强,FBank可以保留更多的语音原始特征。在语音翻译中,比较常用的声学特征为FBank或MFCC\upcite{洪青阳2020语音识别原理与应用}
\parinterval 某种程度上讲,提取到的声学特征可以理解计算机视觉中的像素特征,或者自然语言处理中的词嵌入表示。不同之处在于,声学特征更加复杂多变,可能存在着较多的噪声和冗余信息。此外,相比对应的文字序列,音频提取到的特征序列长度要大十倍以上。比如,人类正常交流中每秒钟一般可以说2-3个字,而每秒钟的语音可以提取得到100帧的特征序列。巨大的长度比差异也为语音翻译中对声学特征建模带来了困难。
\parinterval 某种程度上讲,提取到的声学特征可以类比于计算机视觉中的像素特征,或者自然语言处理中的词嵌入表示。不同之处在于,声学特征更加复杂多变,可能存在着较多的噪声和冗余信息。此外,相比对应的文字序列,音频提取到的特征序列长度要大十倍以上。比如,人类正常交流中每秒钟一般可以说2-3个字,而每秒钟的语音可以提取得到100帧的特征序列。巨大的长度比差异也为语音翻译中对声学特征建模带来了困难。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -96,7 +96,7 @@
\subsection{级联式语音翻译}
\label{sec:cascaded-speech-translation}
\parinterval 实现语音翻译最简单的思路是基于级联的方式,即:先通过{\small\bfnew{自动语音识别}}\index{自动语音识别}(Automatic Speech Recognition,ASR)\index{Automatic Speech Recognition}系统将语音识别为源语言文本,然后利用机器翻译系统将源语言文本翻译为目标语言文本。这种做法的好处在于语音识别和机器翻译模型可以分别进行训练,有很多数据资源以及成熟技术可以分别运用到两个系统中。因此,级联语音翻译是很长时间以来的主流方法,深受工业界的青睐。级联语音翻译主要的流程如图\ref{fig:17-4}所示。
\parinterval 实现语音翻译最简单的思路是基于级联的方式,即:先通过{\small\bfnew{自动语音识别}}\index{自动语音识别}(Automatic Speech Recognition,ASR)\index{Automatic Speech Recognition}系统将语音转化为源语言文本,然后利用机器翻译系统将源语言文本翻译为目标语言文本。这种做法的好处在于语音识别和机器翻译模型可以分别进行训练,有很多数据资源以及成熟技术可以分别运用到两个系统中。因此,级联语音翻译是很长时间以来的主流方法,深受工业界的青睐。级联语音翻译主要的流程如图\ref{fig:17-4}所示。
%----------------------------------------------------------------------------------------------------
\begin{figure}[htp]
......@@ -107,7 +107,7 @@
\end{figure}
%----------------------------------------------------------------------------------------------------
\parinterval 由于声学特征提取在上一节中已经进行了描述,而且文本翻译可以直接使用本书介绍的统计机器翻译或者神经机器翻译。因此下面简要介绍一下语音识别模型,以便读者对级联式语音翻译系统有一个完整的认识。其中的部分概念在后续介绍的端到端语言翻译中也会有所涉及。
\parinterval 由于声学特征提取在上一节中已经进行了描述,而且文本翻译可以直接使用本书介绍的统计机器翻译或者神经机器翻译方法。因此下面简要介绍一下语音识别模型,以便读者对级联式语音翻译系统有一个完整的认识。其中的部分概念在后续介绍的端到端语言翻译中也会有所涉及。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -115,9 +115,9 @@
\subsubsection{1. 语音识别方法}
\parinterval 传统的语音识别模型和统计机器翻译相似,需要利用声学模型、语言模型和发音词典联合进行识别,系统较为复杂\upcite{DBLP:journals/ftsig/GalesY07,DBLP:journals/taslp/MohamedDH12,DBLP:journals/spm/X12a}。而近些年来,随着神经网络的发展,基于神经网络的端到端语音识别模型逐渐成为主流,大大简化了训练流程\upcite{DBLP:conf/nips/ChorowskiBSCB15,DBLP:conf/icassp/ChanJLV16}。目前的端到端语音识别模型主要基于序列到序列结构,编码器根据输入的声学特征进一步提取高级特征,解码器根据编码器提取的特征识别对应的文本。在后文中即将介绍的端到端语音翻译模型也是使用十分相似的结构。因此,从某种意义上说,语音识别和翻译的端到端方法与神经机器翻译是一致的。
\parinterval 传统的语音识别模型和统计机器翻译相似,需要利用声学模型、语言模型和发音词典联合进行识别,系统较为复杂\upcite{DBLP:journals/ftsig/GalesY07,DBLP:journals/taslp/MohamedDH12,DBLP:journals/spm/X12a}。而近些年来,随着神经网络的发展,基于神经网络的端到端语音识别模型逐渐受到关注,大大简化了训练流程\upcite{DBLP:conf/nips/ChorowskiBSCB15,DBLP:conf/icassp/ChanJLV16}。目前的端到端语音识别模型主要基于序列到序列结构,编码器根据输入的声学特征进一步提取高级特征,解码器根据编码器提取的特征识别对应的文本。在后文中即将介绍的端到端语音翻译模型也是基于十分相似的结构。因此,从某种意义上说,语音识别和翻译的端到端方法与神经机器翻译是一致的。
\parinterval 语音识别目前广泛使用基于Transformer的模型结构(见{\chaptertwelve}),如图\ref{fig:17-5}所示。可以看出,相比文本翻译,模型结构上唯一的区别在于编码器的输入为声学特征,以及编码器底层会使用额外的卷积层来减小输入序列的长度,从而降低长序列带来的显存占用以及建模困难。由于语音对应的特征序列过长,在计算注意力模型的时候,会占用大量的内存/显存,从而降低计算效率,过长的序列也会增加模型训练的难度。因此,通常会先对语音特征做一个下采样,缩小语音的序列长度。目前一个常用的做法,是在输入的语音特征上进行两层步长为2的卷积操作,从而将输入序列的长度缩小为之前的1/4。通过大量的语音-标注平行数据对模型进行训练,可以得到高质量的语音识别模型。
\parinterval 语音识别目前广泛使用基于Transformer的模型结构(见{\chaptertwelve}),如图\ref{fig:17-5}所示。可以看出,相比文本翻译,模型结构上唯一的区别在于编码器的输入为声学特征,以及编码器底层会使用额外的卷积层来减小输入序列的长度,从而降低长序列带来的显存占用以及建模困难。由于语音对应的特征序列过长,在计算注意力模型的时候,会占用大量的内存/显存,过长的序列也会增加模型训练的难度。因此,通常会先对语音特征做一个下采样,缩小语音的序列长度。目前一个常用的做法,是在输入的语音特征上进行两层步长为2的卷积操作,从而将输入序列的长度缩小为之前的1/4。 通过大量的语音-标注平行数据对模型进行训练,可以得到高质量的语音识别模型。
%----------------------------------------------------------------------------------------------------
\begin{figure}[htp]
......@@ -147,7 +147,7 @@
\parinterval 可以看出,词格可以保存多条搜索路径,路径中保存了输入序列的时间信息以及解码过程,翻译模型基于更丰富的词格信息进行翻译,可以降低语音识别模型带来的误差\upcite{DBLP:conf/acl/ZhangGCF19,DBLP:conf/acl/SperberNPW19}。但在端到端语音识别模型中,一般基于束搜索方法进行解码,且解码序列的长度与输入序列并不匹配,相比传统声学模型解码丢失了语音的时间信息,因此这种基于词格的方法主要集中在传统语音识别模型上和端到端文本翻译模型上。
\parinterval 为了错误传播问题带来的影响,一种思路是通过一个后处理模型修正识别结果中的错误,再送给文本翻译模型进行翻译。这一做法在工业界得到了广泛应用,但由于每个模型只能串行地计算,也会带来额外的计算代价以及运算时间。另外一种思路是训练更加健壮的文本翻译模型,使其可以处理输入中存在的噪声或误差\upcite{DBLP:conf/acl/LiuTMCZ18}。随着技术的不断发展,如何利用单个模型实现语音翻译成为了人们关注的热点,也就是端到端语音翻译,我们在下一节中进行介绍。
\parinterval 为了降低错误传播问题带来的影响,一种思路是通过一个后处理模型修正识别结果中的错误,再送给文本翻译模型进行翻译。也可以进一步对文本做{\small\bfnew{顺滑}}\index{顺滑}(Disfluency Detection\index{Disfluency Detection}),使得送给翻译系统的文本更加干净、流畅,比如除去一些导致停顿的语气词。这一做法在工业界得到了广泛应用,但由于每个模型只能串行地计算,也会带来额外的计算代价以及运算时间。另外一种思路是训练更加健壮的文本翻译模型,使其可以处理输入中存在的噪声或误差\upcite{DBLP:conf/acl/LiuTMCZ18}。 随着技术的不断发展,如何利用单个模型实现语音翻译成为了人们关注的热点,也就是端到端语音翻译,在下一节将进行重点介绍。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -160,11 +160,11 @@
%----------------------------------------------------------------------------------------------------
\begin{itemize}
\vspace{0.5em}
\item 错误传播问题。级联模型导致的一个很严重的问题在于,语音识别模型得到的文本如果存在错误,这些错误很可能在翻译过程中被放大,从而使最后翻译结果出现比较大的差。比如识别时在句尾少生成了个“吗”,会导致翻译模型将疑问句翻译为陈述句。
\item 错误传播问题。级联模型导致的一个很严重的问题在于,语音识别模型得到的文本如果存在错误,这些错误很可能在翻译过程中被放大,从而使最后翻译结果出现比较大的差。比如识别时在句尾少生成了个“吗”,会导致翻译模型将疑问句翻译为陈述句。
\vspace{0.5em}
\item 翻译效率问题。由于需要语音识别模型和文本标注模型只能串行地计算,翻译效率相对较低,而实际很多场景中都需要达到低延时的翻译。
\vspace{0.5em}
\item 语音中的副语言信息丢失。将语音识别为文本的过程中,语音中包含的语气、情感、音调等信息会丢失,而同一句话在不同的语气中表达的意思很可能是不同的,导致翻译出现偏差。尤其是在实际使用时,由于语音识别结果通常并不包含标点,还需要额外的后处理模型将标点还原,也会带来额外的计算代价。
\item 语音中的副语言信息丢失。将语音识别为文本的过程中,语音中包含的语气、情感、音调等信息会丢失,而同一句话在不同的语气中表达的意思很可能是不同的。尤其是在实际中,由于语音识别结果通常并不包含标点,还需要额外的后处理模型将标点还原,也会带来额外的计算代价。
\vspace{0.5em}
\end{itemize}
%----------------------------------------------------------------------------------------------------
......@@ -183,7 +183,7 @@
\end{itemize}
%----------------------------------------------------------------------------------------------------
\parinterval 因此,端到端模型受到了研究人员的关注。以Transformer模型为例,图\ref{fig:17-7}展示了端到端语音翻译的架构(下文中语音翻译模型均指端到端的模型)。该模型采用的也是序列到序列架构,编码器的输入是从语音中提取的特征(比如FBank特征)。编码器底层采用和语音识别模型相同的卷积结构来降低序列的长度(见\ref{sec:cascaded-speech-translation}节)。之后的流程和标准的神经机器翻译是完全一致的,编码器对语音特征进行编码,解码器根据编码结果生成目标语言的翻译结果。
\parinterval 以Transformer模型为例,图\ref{fig:17-7}展示了端到端语音翻译的架构(下文中语音翻译模型均指端到端的模型)。该模型采用的也是序列到序列架构,编码器的输入是从语音中提取的特征(比如FBank特征)。编码器底层采用和语音识别模型相同的卷积结构来降低序列的长度(见\ref{sec:cascaded-speech-translation}节)。之后的流程和标准的神经机器翻译是完全一致的,编码器对语音特征进行编码,解码器根据编码结果生成目标语言的翻译结果。
%----------------------------------------------------------------------------------------------------
\begin{figure}[htp]
......@@ -206,12 +206,14 @@
\end{itemize}
%----------------------------------------------------------------------------------------------------
\parinterval 针对这两个问题,研究人员们也提出了很多方法进行缓解,包括多任务学习、迁移学习等,主要思想都是利用语音识别或文本翻译数据来指导语音模型学习。并且,文本翻译中的很多方法和思想都对语音翻译技术的发展提供了思路。如何将其他领域现有的工作在语音翻译任务上验证,并针对语音这一信息载体进行特定的建模适应,是语音翻译任务当前的研究重点\upcite{DBLP:conf/mtsummit/GangiNCDT19}
\parinterval 针对这两个问题,研究人员们也提出了很多方法进行缓解,包括多任务学习、迁移学习等,主要思想都是利用语音识别或文本翻译数据来指导模型的学习。并且,文本翻译中的很多方法和思想都对语音翻译技术的发展提供了思路。如何将其他领域现有的工作在语音翻译任务上验证,并针对语音这一信息载体进行特定的建模适应,是语音翻译研究当前的重点\upcite{DBLP:conf/mtsummit/GangiNCDT19}
%----------------------------------------------------------------------------------------------------
\noindent{\small\bfnew{1)多任务学习}}
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
\subsubsection{1. 多任务学习}
\parinterval 针对语音翻译模型建模复杂度较高问题,常用的一个方法是进行多任务学习,使模型在训练过程中有更多的监督信息,从而使模型收敛地更加充分。使用多个任务强化主任务(机器翻译),在本书的{\chapterfifteen}{\chaptersixteen}也有所涉及。从这个角度说,机器翻译中很多问题的解决手段都是一致的。
\parinterval 一种常用的改进语言翻译的思路是进行多任务学习,让模型在训练过程中得到更多的监督信息。使用多个任务强化主任务(机器翻译),在本书的{\chapterfifteen}{\chaptersixteen}也有所涉及。从这个角度说,机器翻译中很多问题的解决手段都是一致的。
\parinterval 语音语言中多任务学习主要借助语音对应的标注信息,也就是源语言文本。{\small\bfnew{连接时序分类}}\index{连接时序分类}(Connectionist Temporal Classification,CTC)\index{Connectionist Temporal Classification}\upcite{DBLP:conf/icml/GravesFGS06}是语音处理中最简单有效的一种多任务学习方法\upcite{DBLP:journals/jstsp/WatanabeHKHH17,DBLP:conf/icassp/KimHW17},也被广泛应用于文本识别任务中\upcite{DBLP:journals/pami/ShiBY17}。CTC可以将输入序列的每一位置都对应到标注文本中,学习语音和文字之间的软对齐关系。比如,对于下面的音频序列,CTC可以将每个位置分别对应到同一个词。需要注意的是,CTC会额外新增一个词$\epsilon$,类似于一个空白词,表示这个位置没有声音或者没有任何对应的预测结果。然后,将相同且连续的词合并,去除$\epsilon$,就可以得到预测结果,如图\ref{fig:17-8} 所示。
......@@ -224,7 +226,7 @@
\end{figure}
%----------------------------------------------------------------------------------------------------
\parinterval CTC具备的以下特性使其可以很好的完成输入输出之间的对齐。
\parinterval CTC的一些特性使其可以很好的完成输入输出之间的对齐,例如
%----------------------------------------------------------------------------------------------------
\begin{itemize}
......@@ -257,17 +259,23 @@
\end{figure}
%----------------------------------------------------------------------------------------------------
\noindent{\small\bfnew{2)迁移学习}}
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
\subsubsection{2. 迁移学习}
\parinterval 相比语音识别和文本翻译,端到端语音翻译的训练数据量要小很多,因此,如何利用其它数据来增加可用的数据量是语音翻译的一个重要方向。和文本翻译中的方法相似,一种思路是利用迁移学习或预训练,利用其他语言的双语数据预训练模型参数,然后迁移到生成目标语言的任务上\upcite{DBLP:conf/naacl/BansalKLLG19},或者是利用语音识别数据或文本翻译数据,分别预训练编码器和解码器的参数,用于初始化语音翻译模型的参数\upcite{DBLP:conf/icassp/BerardBKP18}。预训练的编码器对语音翻译模型的学习尤为重要\upcite{DBLP:conf/naacl/BansalKLLG19},相比文本数据,语音数据的复杂性更高,如果仅从小规模语音翻译数据上学习很难学习充分。此外,模型对声学特征的学习与语言并不是强相关的,在其他语种预训练的编码器对模型学习也是有帮助的。
\parinterval 相比语音识别和文本翻译,端到端语音翻译的训练数据量要小很多,因此,如何利用其它数据来增加可用的数据量是语音翻译的一个重要方向。和文本翻译中的方法相似,一种思路是利用迁移学习或预训练,利用其他语言的双语数据预训练模型参数,然后迁移到生成目标语言的任务上\upcite{DBLP:conf/naacl/BansalKLLG19},或者是利用语音识别数据或文本翻译数据,分别预训练编码器和解码器的参数,用于初始化语音翻译模型的参数\upcite{DBLP:conf/icassp/BerardBKP18}。预训练的编码器对语音翻译模型的学习尤为重要\upcite{DBLP:conf/naacl/BansalKLLG19},相比文本数据,语音数据的复杂性更高,仅使用小规模语音翻译数据很难学习充分。此外,模型对声学特征的学习与语言并不是强相关的,在其他语种预训练的编码器对模型学习也是有帮助的。
\noindent{\small\bfnew{3)数据增强}}
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
\subsubsection{3. 数据增强}
\parinterval 数据增强是增加训练数据最简单直观的一种方法。不同于文本翻译的回译等方法(见{\chaptersixteen}),语音翻译正向翻译模型通过源语言语音生成目标语言文本,如果直接利用回译的思想,需要通过一个模型,将目标语文本翻译为目标语语音,但实际上这种模型是不能简单得到。因此,一个简单的思路是通过一个反向翻译模型和语音合成模型级联来生成伪数据\upcite{DBLP:conf/icassp/JiaJMWCCALW19}。 另外,正向翻译模型生成的伪数据在文本翻译中也被验证了对模型训练有一定的帮助,因此同样可以利用语音识别和文本翻译模型,将源语言语音生成目标语言翻译,得到伪平行语料。
\parinterval 数据增强是增加训练数据最简单、直接的一种方法。不同于文本翻译的回译等方法(见{\chaptersixteen}),语音翻译并不具有简单的“可逆性”。如果要利用回译的思想,需要通过一个模型,将目标语文本翻译为目标语语音,但实际上这种模型是不能简单得到的。因此,一个简单的思路是通过一个反向翻译模型和语音合成模型级联来生成伪数据\upcite{DBLP:conf/icassp/JiaJMWCCALW19}。 另外,正向翻译模型生成的伪数据在文本翻译中也被验证了对模型训练有一定的帮助,因此同样可以利用语音识别和文本翻译模型,将源语言语音生成目标语言翻译,得到伪平行语料。
%----------------------------------------------------------------------------------------------------
\parinterval 此外,研究人员还探索了很多其他方法来提高语音翻译模型的性能。利用在海量的无标注语音数据上预训练的{\small\bfnew{自监督}}\index{自监督}(Self-supervised)\index{Self-supervised}模型作为一个特征提取器,将从语音中提取的特征作为语音翻译模型的输入,可以有效提高模型的性能\upcite{DBLP:conf/interspeech/WuWPG20}。相比语音翻译模型,文本翻译模型任务更加简单,因此一种思想是利用文本翻译模型来指导语音翻译模型,比如,使用知识蒸馏\upcite{DBLP:conf/interspeech/LiuXZHWWZ19}、正则化\upcite{DBLP:conf/emnlp/AlinejadS20}等方法。为了简化语音翻译模型的学习,可以通过课程学习的策略,使模型从语音识别任务,逐渐过渡到语音翻译任务,这种由易到难的训练策略可以使模型训练更加充分\upcite{DBLP:journals/corr/abs-1802-06003,DBLP:conf/acl/WangWLZY20}
\parinterval 此外,也可以利用在海量的无标注语音数据上预训练的{\small\bfnew{自监督}}\index{自监督}(Self-supervised)\index{Self-supervised}模型作为一个特征提取器,将从语音中提取的特征作为语音翻译模型的输入,可以有效提高模型的性能\upcite{DBLP:conf/interspeech/WuWPG20}。相比语音翻译模型,文本翻译模型任务更加简单,因此一种思想是利用文本翻译模型来指导语音翻译模型,比如,使用知识蒸馏\upcite{DBLP:conf/interspeech/LiuXZHWWZ19}、正则化\upcite{DBLP:conf/emnlp/AlinejadS20}等方法。为了简化语音翻译模型的学习,也可以使用课程学习方法(见{\chapterthirteen})。这样,使模型从语音识别任务,逐渐过渡到语音翻译任务,这种由易到难的训练策略可以使模型训练更加充分\upcite{DBLP:journals/corr/abs-1802-06003,DBLP:conf/acl/WangWLZY20}
%----------------------------------------------------------------------------------------
% NEW SECTION
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论