Commit c569b9aa by 单韦乔

合并分支 'shanweiqiao' 到 'caorunzhe'

源语言、目标语言

查看合并请求 !1074
parents 5ece0446 1af4d23d
......@@ -576,7 +576,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
\label{eq:13-16}
\end{eqnarray}
\noindent 其中,$\funp{r}_j(a;\hat{{y}}_{1 \ldots j-1},\seq{y})$$j$时刻做出行动$a$获得的奖励,$\funp{r}_i(\hat{{y}}_i;\hat{{y}}_{1 \ldots j-1}a\hat{{y}}_{j+1 \ldots i},\seq{y})$是在$j$时刻的行动为$a$的前提下,$i$时刻的做出行动$\hat{{y}}_i$获得的奖励,$\hat{y}_{j+1 \ldots J} \sim \funp{p}(\cdot|\hat{y}_{1 \ldots j-1} a,\seq{x})$表示序列$\hat{y}_{j+1 \ldots J}$是根据$\funp{p}(\cdot|\hat{y}_{1 \ldots j-1} a,\seq{x})$得到的采样结果,概率函数$\funp{p}$中的$\cdot$表示序列$\hat{y}_{j+1 \ldots J}$服从的随机变量,$\seq{x}$是源语言句子,$\seq{y}$是正确译文,$\hat{{y}}_{1 \ldots j-1}$是策略$\funp{p}$产生的译文的前$j-1$个词,$J$是生成译文的长度。特别的,对于公式\ref{eq:13-16}$\hat{{y}}_{j+1 \ldots i}$来说,如果$i<j+1$,则$\hat{{y}}_{j+1 \ldots i}$不存在,对于源语句子$x$,最优策略$\hat{p}$可以被定义为:
\noindent 其中,$\funp{r}_j(a;\hat{{y}}_{1 \ldots j-1},\seq{y})$$j$时刻做出行动$a$获得的奖励,$\funp{r}_i(\hat{{y}}_i;\hat{{y}}_{1 \ldots j-1}a\hat{{y}}_{j+1 \ldots i},\seq{y})$是在$j$时刻的行动为$a$的前提下,$i$时刻的做出行动$\hat{{y}}_i$获得的奖励,$\hat{y}_{j+1 \ldots J} \sim \funp{p}(\cdot|\hat{y}_{1 \ldots j-1} a,\seq{x})$表示序列$\hat{y}_{j+1 \ldots J}$是根据$\funp{p}(\cdot|\hat{y}_{1 \ldots j-1} a,\seq{x})$得到的采样结果,概率函数$\funp{p}$中的$\cdot$表示序列$\hat{y}_{j+1 \ldots J}$服从的随机变量,$\seq{x}$是源语言句子,$\seq{y}$是正确译文,$\hat{{y}}_{1 \ldots j-1}$是策略$\funp{p}$产生的译文的前$j-1$个词,$J$是生成译文的长度。特别的,对于公式\ref{eq:13-16}$\hat{{y}}_{j+1 \ldots i}$来说,如果$i<j+1$,则$\hat{{y}}_{j+1 \ldots i}$不存在,对于源语句子$x$,最优策略$\hat{p}$可以被定义为:
\begin{eqnarray}
\hat{p} & = & \argmax_{\funp{p}}\mathbb{E}_{\hat{\seq{y}} \sim \funp{p}(\hat{\seq{y}} | \seq{x})}\sum_{j=1}^J\sum_{a \in A}\funp{p}(a|\hat{{y}}_{1 \ldots j},\seq{x})\funp{Q}(a;\hat{{y}}_{1 \ldots j},\seq{y})
\label{eq:13-17}
......
......@@ -819,7 +819,7 @@ c(\cdot) & \textrm{当计算最高阶模型时} \\
\noindent 这里$\arg$即argument(参数),$\argmax_x f(x)$表示返回使$f(x)$达到最大的$x$$\argmax_{w \in \chi}$\\$\funp{P}(w)$表示找到使语言模型得分$\funp{P}(w)$达到最大的单词序列$w$$\chi$ 是搜索问题的解空间,它是所有可能的单词序列$w$的集合。$\hat{w}$可以被看做该搜索问题中的“最优解”,即概率最大的单词序列。
\parinterval 在序列生成任务中,最简单的策略就是对词表中的单词进行任意组合,通过这种枚举的方式得到全部可能的序列。但是,很多时候待生成序列的长度是无法预先知道的。比如,机器翻译中目标语序列的长度是任意的。那么怎样判断一个序列何时完成了生成过程呢?这里借用现代人类书写中文和英文的过程:句子的生成首先从一片空白开始,然后从左到右逐词生成,除了第一个单词,所有单词的生成都依赖于前面已经生成的单词。为了方便计算机实现,通常定义单词序列从一个特殊的符号<sos>后开始生成。同样地,一个单词序列的结束也用一个特殊的符号<eos>来表示。
\parinterval 在序列生成任务中,最简单的策略就是对词表中的单词进行任意组合,通过这种枚举的方式得到全部可能的序列。但是,很多时候待生成序列的长度是无法预先知道的。比如,机器翻译中目标语序列的长度是任意的。那么怎样判断一个序列何时完成了生成过程呢?这里借用现代人类书写中文和英文的过程:句子的生成首先从一片空白开始,然后从左到右逐词生成,除了第一个单词,所有单词的生成都依赖于前面已经生成的单词。为了方便计算机实现,通常定义单词序列从一个特殊的符号<sos>后开始生成。同样地,一个单词序列的结束也用一个特殊的符号<eos>来表示。
\parinterval 对于一个序列$<$sos$>$\ I\ agree\ $<$eos$>$,图\ref{fig:2-12}展示语言模型视角下该序列的生成过程。该过程通过在序列的末尾不断附加词表中的单词来逐渐扩展序列,直到这段序列结束。这种生成单词序列的过程被称作{\small\bfnew{自左向右生成}}\index{自左向右生成}(Left-to-Right Generation)\index{Left-to-Right Generation}。注意,这种序列生成策略与$n$-gram的思想天然契合,因为$n$-gram语言模型中,每个词的生成概率依赖前面(左侧)若干词,因此$n$-gram语言模型也是一种自左向右的计算模型。
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论