Commit c5a44019 by 单韦乔

13章3级标题

parent c7939781
......@@ -329,7 +329,7 @@ R(\mathbi{w}) & = & ({\Vert{\mathbi{w}}\Vert}_2)^2 \\
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\subsection{对抗样本对抗攻击}
\subsection{对抗样本对抗攻击}
\parinterval 在图像识别领域,研究人员就发现,对于输入图像的细小扰动,如像素变化等,会使模型以高置信度给出错误的预测\upcite{DBLP:conf/cvpr/NguyenYC15,DBLP:journals/corr/SzegedyZSBEGF13,DBLP:journals/corr/GoodfellowSS14},但是这种扰动并不会造成人类的错误判断。也就是说,样本中的微小变化“欺骗”了图像识别系统,但是“欺骗”不了人类。这种现象背后的原因有很多,一种可能的原因是:系统并没有理解图像,而是在拟合数据,因此拟合能力越强,反而对数据中的微小变化更加敏感。从统计学习的角度看,既然新的数据中可能会有扰动,那更好的学习方式就是在训练中显性地把这种扰动建模出来,让模型对输入样本中包含的细微变化表现得更加健壮。
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论