Commit c8497f21 by 曹润柘

更新 chapter16.tex

parent 936d6973
...@@ -887,7 +887,7 @@ ...@@ -887,7 +887,7 @@
\item 预训练模型也是自然语言处理的重要突破之一,也给低资源机器翻译提供了新的思路。除了基于语言模型或掩码语言模型的方法,也有很多新的架构和模型被提出,如排列语言模型、降噪自编码器等\upcite{DBLP:conf/nips/YangDYCSL19,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/iclr/LanCGGSS20,DBLP:conf/acl/ZhangHLJSL19}。预训练技术也逐渐向多语言领域扩展\upcite{DBLP:conf/nips/ConneauL19,DBLP:conf/emnlp/HuangLDGSJZ19,song2019mass},甚至不再只局限于文本任务\upcite{DBLP:conf/iccv/SunMV0S19,DBLP:conf/nips/LuBPL19,DBLP:conf/interspeech/ChuangLLL20}。对于如何将预训练模型高效地应用到下游任务中,也进行了很多的经验性对比与分析\upcite{Peters2018DeepCW,DBLP:conf/rep4nlp/PetersRS19,DBLP:conf/cncl/SunQXH19} \item 预训练模型也是自然语言处理的重要突破之一,也给低资源机器翻译提供了新的思路。除了基于语言模型或掩码语言模型的方法,也有很多新的架构和模型被提出,如排列语言模型、降噪自编码器等\upcite{DBLP:conf/nips/YangDYCSL19,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/iclr/LanCGGSS20,DBLP:conf/acl/ZhangHLJSL19}。预训练技术也逐渐向多语言领域扩展\upcite{DBLP:conf/nips/ConneauL19,DBLP:conf/emnlp/HuangLDGSJZ19,song2019mass},甚至不再只局限于文本任务\upcite{DBLP:conf/iccv/SunMV0S19,DBLP:conf/nips/LuBPL19,DBLP:conf/interspeech/ChuangLLL20}。对于如何将预训练模型高效地应用到下游任务中,也进行了很多的经验性对比与分析\upcite{Peters2018DeepCW,DBLP:conf/rep4nlp/PetersRS19,DBLP:conf/cncl/SunQXH19}
\vspace{0.5em} \vspace{0.5em}
\item 多任务学习是多语言翻译的一种典型方法。通过共享编码器模块或是注意力模块来进行一对多\upcite{DBLP:conf/acl/DongWHYW15}或多对一\upcite{DBLP:journals/tacl/LeeCH17}或多对多\upcite{DBLP:conf/naacl/FiratCB16} 的学习,然而这些方法需要为每个翻译语言对设计单独的编码器和解码器,限制了其扩展性。为了解决以上问题,研究人员进一步探索了用于多语言翻译的单个机器翻译模型的方法,也就是本章提到的多语言单模型系统\upcite{DBLP:journals/corr/HaNW16,DBLP:journals/tacl/JohnsonSLKWCTVW17}。为了弥补多语言单模型系统中缺乏语言表示多样性的问题,可以重新组织多语言共享模块,设计特定任务相关模块\upcite{DBLP:conf/coling/BlackwoodBW18,DBLP:conf/wmt/SachanN18,DBLP:conf/wmt/LuKLBZS18,DBLP:conf/acl/WangZZZXZ19};也可以将多语言单词编码和语言聚类分离,用一种多语言词典编码框架共享词汇级别的信息,有助于语言间的泛化\upcite{DBLP:conf/iclr/WangPAN19};还可以将语言聚类为不同的组,并为每个聚类单独训练一个多语言模型\upcite{DBLP:conf/emnlp/TanCHXQL19} \item 多任务学习是多语言翻译的一种典型方法。通过共享编码器模块或是注意力模块来进行一对多\upcite{DBLP:conf/acl/DongWHYW15}或多对一\upcite{DBLP:journals/tacl/LeeCH17}或多对多\upcite{DBLP:conf/naacl/FiratCB16} 的学习,然而这些方法需要为每个翻译语言对设计单独的编码器和解码器,限制了其扩展性。为了解决以上问题,研究人员进一步探索了用于多语言翻译的单个机器翻译模型的方法,也就是本章提到的多语言单模型系统\upcite{DBLP:journals/corr/HaNW16,DBLP:journals/tacl/JohnsonSLKWCTVW17}。为了弥补多语言单模型系统中缺乏语言表示多样性的问题,可以重新组织多语言共享模块,设计特定任务相关模块\upcite{DBLP:conf/coling/BlackwoodBW18,DBLP:conf/wmt/SachanN18,DBLP:conf/wmt/LuKLBZS18,DBLP:conf/acl/WangZZZXZ19};也可以将多语言单词编码和语言聚类分离,用一种多语言词典编码框架共享单词级别的信息,有助于语言间的泛化\upcite{DBLP:conf/iclr/WangPAN19};还可以将语言聚类为不同的组,并为每个聚类单独训练一个多语言模型\upcite{DBLP:conf/emnlp/TanCHXQL19}
\vspace{0.5em} \vspace{0.5em}
\item 零资源翻译也是近几年受到广泛关注的研究方向\upcite{firat2016zero,DBLP:journals/corr/abs-1805-10338}。在零资源翻译中,仅使用少量并行语料库(覆盖$k$个语言),一个模型就能在任何$k(k-1)$ 个语言对之间进行翻译\upcite{DBLP:conf/naacl/Al-ShedivatP19}。 但是,零资源翻译的性能通常很不稳定并且明显落后于有监督的翻译方法。为了改善零资源翻译,可以开发新的跨语言正则化方法,例如对齐正则化方法\upcite{DBLP:journals/corr/abs-1903-07091},一致性正则化方法\upcite{DBLP:conf/naacl/Al-ShedivatP19};也可以通过反向翻译或基于枢轴语言的翻译生成伪数据\upcite{DBLP:conf/acl/GuWCL19,firat2016zero,DBLP:conf/emnlp/CurreyH19} \item 零资源翻译也是近几年受到广泛关注的研究方向\upcite{firat2016zero,DBLP:journals/corr/abs-1805-10338}。在零资源翻译中,仅使用少量并行语料库(覆盖$k$个语言),一个模型就能在任何$k(k-1)$ 个语言对之间进行翻译\upcite{DBLP:conf/naacl/Al-ShedivatP19}。 但是,零资源翻译的性能通常很不稳定并且明显落后于有监督的翻译方法。为了改善零资源翻译,可以开发新的跨语言正则化方法,例如对齐正则化方法\upcite{DBLP:journals/corr/abs-1903-07091},一致性正则化方法\upcite{DBLP:conf/naacl/Al-ShedivatP19};也可以通过反向翻译或基于枢轴语言的翻译生成伪数据\upcite{DBLP:conf/acl/GuWCL19,firat2016zero,DBLP:conf/emnlp/CurreyH19}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论