Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
c8497f21
Commit
c8497f21
authored
Mar 24, 2021
by
曹润柘
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
更新 chapter16.tex
parent
936d6973
显示空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
1 行增加
和
1 行删除
+1
-1
Chapter16/chapter16.tex
+1
-1
没有找到文件。
Chapter16/chapter16.tex
查看文件 @
c8497f21
...
@@ -887,7 +887,7 @@
...
@@ -887,7 +887,7 @@
\item
预训练模型也是自然语言处理的重要突破之一,也给低资源机器翻译提供了新的思路。除了基于语言模型或掩码语言模型的方法,也有很多新的架构和模型被提出,如排列语言模型、降噪自编码器等
\upcite
{
DBLP:conf/nips/YangDYCSL19,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/iclr/LanCGGSS20,DBLP:conf/acl/ZhangHLJSL19
}
。预训练技术也逐渐向多语言领域扩展
\upcite
{
DBLP:conf/nips/ConneauL19,DBLP:conf/emnlp/HuangLDGSJZ19,song2019mass
}
,甚至不再只局限于文本任务
\upcite
{
DBLP:conf/iccv/SunMV0S19,DBLP:conf/nips/LuBPL19,DBLP:conf/interspeech/ChuangLLL20
}
。对于如何将预训练模型高效地应用到下游任务中,也进行了很多的经验性对比与分析
\upcite
{
Peters2018DeepCW,DBLP:conf/rep4nlp/PetersRS19,DBLP:conf/cncl/SunQXH19
}
。
\item
预训练模型也是自然语言处理的重要突破之一,也给低资源机器翻译提供了新的思路。除了基于语言模型或掩码语言模型的方法,也有很多新的架构和模型被提出,如排列语言模型、降噪自编码器等
\upcite
{
DBLP:conf/nips/YangDYCSL19,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/iclr/LanCGGSS20,DBLP:conf/acl/ZhangHLJSL19
}
。预训练技术也逐渐向多语言领域扩展
\upcite
{
DBLP:conf/nips/ConneauL19,DBLP:conf/emnlp/HuangLDGSJZ19,song2019mass
}
,甚至不再只局限于文本任务
\upcite
{
DBLP:conf/iccv/SunMV0S19,DBLP:conf/nips/LuBPL19,DBLP:conf/interspeech/ChuangLLL20
}
。对于如何将预训练模型高效地应用到下游任务中,也进行了很多的经验性对比与分析
\upcite
{
Peters2018DeepCW,DBLP:conf/rep4nlp/PetersRS19,DBLP:conf/cncl/SunQXH19
}
。
\vspace
{
0.5em
}
\vspace
{
0.5em
}
\item
多任务学习是多语言翻译的一种典型方法。通过共享编码器模块或是注意力模块来进行一对多
\upcite
{
DBLP:conf/acl/DongWHYW15
}
或多对一
\upcite
{
DBLP:journals/tacl/LeeCH17
}
或多对多
\upcite
{
DBLP:conf/naacl/FiratCB16
}
的学习,然而这些方法需要为每个翻译语言对设计单独的编码器和解码器,限制了其扩展性。为了解决以上问题,研究人员进一步探索了用于多语言翻译的单个机器翻译模型的方法,也就是本章提到的多语言单模型系统
\upcite
{
DBLP:journals/corr/HaNW16,DBLP:journals/tacl/JohnsonSLKWCTVW17
}
。为了弥补多语言单模型系统中缺乏语言表示多样性的问题,可以重新组织多语言共享模块,设计特定任务相关模块
\upcite
{
DBLP:conf/coling/BlackwoodBW18,DBLP:conf/wmt/SachanN18,DBLP:conf/wmt/LuKLBZS18,DBLP:conf/acl/WangZZZXZ19
}
;也可以将多语言单词编码和语言聚类分离,用一种多语言词典编码框架共享
词汇
级别的信息,有助于语言间的泛化
\upcite
{
DBLP:conf/iclr/WangPAN19
}
;还可以将语言聚类为不同的组,并为每个聚类单独训练一个多语言模型
\upcite
{
DBLP:conf/emnlp/TanCHXQL19
}
。
\item
多任务学习是多语言翻译的一种典型方法。通过共享编码器模块或是注意力模块来进行一对多
\upcite
{
DBLP:conf/acl/DongWHYW15
}
或多对一
\upcite
{
DBLP:journals/tacl/LeeCH17
}
或多对多
\upcite
{
DBLP:conf/naacl/FiratCB16
}
的学习,然而这些方法需要为每个翻译语言对设计单独的编码器和解码器,限制了其扩展性。为了解决以上问题,研究人员进一步探索了用于多语言翻译的单个机器翻译模型的方法,也就是本章提到的多语言单模型系统
\upcite
{
DBLP:journals/corr/HaNW16,DBLP:journals/tacl/JohnsonSLKWCTVW17
}
。为了弥补多语言单模型系统中缺乏语言表示多样性的问题,可以重新组织多语言共享模块,设计特定任务相关模块
\upcite
{
DBLP:conf/coling/BlackwoodBW18,DBLP:conf/wmt/SachanN18,DBLP:conf/wmt/LuKLBZS18,DBLP:conf/acl/WangZZZXZ19
}
;也可以将多语言单词编码和语言聚类分离,用一种多语言词典编码框架共享
单词
级别的信息,有助于语言间的泛化
\upcite
{
DBLP:conf/iclr/WangPAN19
}
;还可以将语言聚类为不同的组,并为每个聚类单独训练一个多语言模型
\upcite
{
DBLP:conf/emnlp/TanCHXQL19
}
。
\vspace
{
0.5em
}
\vspace
{
0.5em
}
\item
零资源翻译也是近几年受到广泛关注的研究方向
\upcite
{
firat2016zero,DBLP:journals/corr/abs-1805-10338
}
。在零资源翻译中,仅使用少量并行语料库(覆盖
$
k
$
个语言),一个模型就能在任何
$
k
(
k
-
1
)
$
个语言对之间进行翻译
\upcite
{
DBLP:conf/naacl/Al-ShedivatP19
}
。 但是,零资源翻译的性能通常很不稳定并且明显落后于有监督的翻译方法。为了改善零资源翻译,可以开发新的跨语言正则化方法,例如对齐正则化方法
\upcite
{
DBLP:journals/corr/abs-1903-07091
}
,一致性正则化方法
\upcite
{
DBLP:conf/naacl/Al-ShedivatP19
}
;也可以通过反向翻译或基于枢轴语言的翻译生成伪数据
\upcite
{
DBLP:conf/acl/GuWCL19,firat2016zero,DBLP:conf/emnlp/CurreyH19
}
。
\item
零资源翻译也是近几年受到广泛关注的研究方向
\upcite
{
firat2016zero,DBLP:journals/corr/abs-1805-10338
}
。在零资源翻译中,仅使用少量并行语料库(覆盖
$
k
$
个语言),一个模型就能在任何
$
k
(
k
-
1
)
$
个语言对之间进行翻译
\upcite
{
DBLP:conf/naacl/Al-ShedivatP19
}
。 但是,零资源翻译的性能通常很不稳定并且明显落后于有监督的翻译方法。为了改善零资源翻译,可以开发新的跨语言正则化方法,例如对齐正则化方法
\upcite
{
DBLP:journals/corr/abs-1903-07091
}
,一致性正则化方法
\upcite
{
DBLP:conf/naacl/Al-ShedivatP19
}
;也可以通过反向翻译或基于枢轴语言的翻译生成伪数据
\upcite
{
DBLP:conf/acl/GuWCL19,firat2016zero,DBLP:conf/emnlp/CurreyH19
}
。
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论