Commit cb9e76ab by xiaotong

wording (sec 14)

parent af1fc97e
......@@ -98,7 +98,7 @@
\draw [-latex,blue] (lattice5) to [out=-60,in=-90] (lattice3);
\begin{pgfonlayer}{background}
\node [draw=blue,fill=white,drop shadow,thick,rounded corners=3pt,inner sep=5pt,fit=(lattice1) (lattice2) (lattice3) (lattice4) (lattice5),label={[font=\tiny,label distance=0pt]90:Lattice}] (lattice) {};
\node [draw=blue,fill=white,drop shadow,thick,rounded corners=3pt,inner sep=5pt,fit=(lattice1) (lattice2) (lattice3) (lattice4) (lattice5),label={[font=\tiny,label distance=0pt]90:词格}] (lattice) {};
\end{pgfonlayer}
\draw [->,very thick] (output) to (lattice);
......
......@@ -29,7 +29,7 @@
\node [anchor= west] (word3) at ([xshift=1.4em,yshift=-3em]pos4.east){She};
\node [anchor= west] (word4) at ([xshift=1.1em,yshift=2.8em]pos5.east){Have};
\node [anchor= west] (word5) at ([xshift=1.3em,yshift=-2.8em]pos5.east){Has};
\node [anchor= south] (labelb) at ([xshift=3em,yshift=-3em]word3.south){\small{(b)Lattice词串表示}};
\node [anchor= south] (labelb) at ([xshift=3em,yshift=-3em]word3.south){\small{(b) 基于词格的词串表示}};
\begin{pgfonlayer}{background}
{
% I
......@@ -56,7 +56,7 @@
\node [anchor= west] (pos3) at ([xshift=3.0em]pos2.east){$\circ$};
\node [anchor= west] (pos2-2) at ([xshift=0.1em,yshift=1.0em]pos2.east){has};
\draw[->,thick](pos2.east)--(pos3.west);
\node [anchor= south] (labela) at ([xshift=2em,yshift=-3em]pos1-2.south){\small{(a)$n$-best词串表示}};
\node [anchor= south] (labela) at ([xshift=2em,yshift=-3em]pos1-2.south){\small{(a) $n$-best词串表示}};
\end{scope}
\end{tikzpicture}
......
......@@ -587,9 +587,9 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\section{多模型集成}\label{sec:14-5}
\parinterval 在机器学习领域,把多个模型融合成一个模型是提升系统性能的一种有效方法。比如,在经典的AdaBoost 方法中\upcite{DBLP:journals/jcss/FreundS97},用多个“弱” 分类器构建的“强” 分类器可以使模型在训练集上的分类错误率无限接近0。类似的思想也被应用到机器翻译中\upcite{DBLP:conf/acl/XiaoZZW10,DBLP:conf/icassp/SimBGSW07,DBLP:conf/acl/RostiMS07,DBLP:conf/wmt/RostiZMS08},被称为{\small\sffamily\bfseries{系统融合}}\index{系统融合}(System Combination)\index{System Combination}。在各种机器翻译比赛中,系统融合已经成为经常使用的技术之一。
\parinterval 在机器学习领域,把多个模型融合成一个模型是提升系统性能的一种有效方法。比如,在经典的AdaBoost 方法中\upcite{DBLP:journals/jcss/FreundS97},用多个“弱” 分类器构建的“强” 分类器可以使模型在训练集上的分类错误率无限接近0。类似的思想也被应用到机器翻译中\upcite{DBLP:conf/acl/XiaoZZW10,DBLP:conf/icassp/SimBGSW07,DBLP:conf/acl/RostiMS07,DBLP:conf/wmt/RostiZMS08},被称为{\small\sffamily\bfseries{系统融合}}\index{系统融合}(System Combination)\index{System Combination}。在各种机器翻译比赛中,系统融合已经成为经常使用的技术之一。因为许多模型融合方法都是在推断阶段完成,因此此类方法开发的代价较低。
\parinterval 广义上来讲,使用多个特征组合的方式都可以被看作是一种模型的融合。融合多个神经机器翻译系统的方法有很多,可以分为假设选择、局部预测融合、译文重组三类,下面将对其进行详细介绍。
\parinterval 广义上来讲,使用多个特征组合的方式都可以被看作是一种模型的融合。融合多个神经机器翻译系统的方法有很多,可以分为假设选择、局部预测融合、译文重组三类,下面进行介绍。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -597,11 +597,9 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{假设选择}
\parinterval {\small\sffamily\bfseries{假设选择}}\index{假设选择}(Hypothesis Selection)\index{Hypothesis Selection}是最简单的系统融合方法\upcite{DBLP:conf/emnlp/DuanLXZ09}。其思想是:给定一个翻译假设集合,综合多个模型对每一个翻译假设进行打分,之后选择得分最高的假设作为结果输出。其中包含两方面问题:
\parinterval {\small\sffamily\bfseries{假设选择}}\index{假设选择}(Hypothesis Selection)\index{Hypothesis Selection}是最简单的系统融合方法\upcite{DBLP:conf/emnlp/DuanLXZ09}。其思想是:给定一个翻译假设集合,综合多个模型对每一个翻译假设进行打分,之后选择得分最高的假设作为结果输出。
\begin{itemize}
\vspace{0.5em}
\item 假设生成。构建翻译假设集合是假设选择的第一步,也是最重要的一步。理想的情况下,这个集合应该尽可能包含更多高质量的翻译假设,这样后面有更大的几率选出更好的结果。不过,由于单个模型的性能是有上限的,因此无法期望这些翻译假设的品质超越单个模型的上限。研究人员更加关心的是翻译假设的多样性,因为已经证明多样的翻译假设非常有助于提升系统融合的性能\upcite{DBLP:journals/corr/LiMJ16,xiao2013bagging}。为了生成多样的翻译假设,通常有两种思路:1)使用不同的模型生成翻译假设;2)使用同一个模型的不同参数和设置生成翻译假设。图\ref{fig:14-8}展示了二者的区别。比如,可以使用基于循环神经网络和基于注意力机制的Transformer模型生成不同的翻译假设,之后都放入集合中;也可以只用Transformer 模型,但是用不同的模型参数构建多个系统,之后分别生成翻译假设。在神经机器翻译中,经常采用的是第二种方式,因为系统开发的成本更低。比如,很多研究工作都是基于一个基础模型,用不同的初始参数、不同层数、不同推断方式生成多个模型,进行翻译假设生成。
\parinterval 假设选择里首先需要考虑的问题是假设生成。构建翻译假设集合是假设选择的第一步,也是最重要的一步。理想的情况下,这个集合应该尽可能包含更多高质量的翻译假设,这样后面有更大的几率选出更好的结果。不过,由于单个模型的性能是有上限的,因此无法期望这些翻译假设的品质超越单个模型的上限。研究人员更加关心的是翻译假设的多样性,因为已经证明多样的翻译假设非常有助于提升系统融合的性能\upcite{DBLP:journals/corr/LiMJ16,xiao2013bagging}。为了生成多样的翻译假设,通常有两种思路:1)使用不同的模型生成翻译假设;2)使用同一个模型的不同参数和设置生成翻译假设。图\ref{fig:14-8} 展示了二者的区别。比如,可以使用基于循环神经网络的模型和Transformer模型生成不同的翻译假设,之后都放入集合中;也可以只用Transformer 模型,但是用不同的模型参数构建多个系统,之后分别生成翻译假设。在神经机器翻译中,经常采用的是第二种方式,因为系统开发的成本更低。
%----------------------------------------------
\begin{figure}[htp]
......@@ -612,10 +610,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\end{figure}
%----------------------------------------------
\vspace{0.5em}
\item 选择模型。所谓假设选择实际上就是要用一个更强的模型在候选中进行选择。这个“强” 模型一般是由更多、更复杂的子模型组合而成。常用的方法是直接使用翻译假设生成时的模型构建“强” 模型。比如,使用两个模型生成了翻译假设集合,之后对所有翻译假设都分别用这两个模型进行打分。最后,综合两个模型的打分(如线性插值)得到翻译假设的最终得分,并进行选择。当然,也可以使用更强大的统计模型对多个子模型进行组合(如使用多层神经网络)。
\vspace{0.5em}
\end{itemize}
\parinterval 此外,模型的选择也十分重要。所谓假设选择实际上就是要用一个更强的模型在候选中进行选择。这个“强” 模型一般是由更多、更复杂的子模型组合而成。常用的方法是直接使用翻译假设生成时的模型构建“强” 模型。比如,使用两个模型生成了翻译假设集合,之后对所有翻译假设都分别用这两个模型进行打分。最后,综合两个模型的打分(如线性插值)得到翻译假设的最终得分,并进行选择。当然,也可以使用更强大的统计模型对多个子模型进行组合,如使用更深、更宽的神经网络。
\parinterval 假设选择也可以被看作是一种简单的投票模型。对所有的候选用多个模型投票,选出最好的结果输出。包括重排序在内的很多方法也是假设选择的一种特例。比如,在重排序中,可以把生成$n$-best列表的过程看作是翻译假设生成过程,而重排序的过程可以被看作是融合多个子模型进行最终结果选择的过程。
......@@ -669,19 +664,19 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{译文重组}
\parinterval 假设选择是直接从已经生成的译文中进行选择,因此无法产生“新” 的译文,也就是它的输出只能是某个单模型的输出。此外,预测融合需要同时使用多个模型进行推断,对计算和内存消耗较大。而且这两种方法有一个共性问题:搜索都是基于一个个字符串,相比指数级的译文空间,所看到的结果还是非常小的一部分。对于这个问题,一种方法是利用更加紧凑的数据结构对指数级的译文串进行表示。比如,可以使用{\small\sffamily\bfseries{}}\index{}(Lattice\index{Lattice})对多个译文串进行表示\upcite{DBLP:conf/emnlp/TrombleKOM08}。图\ref{fig:14-10}展示了基于$n$-best词串和基于Lattice 的表示方法的区别。可以看到,Lattice 中从起始状态到结束状态的每一条路径都表示一个译文,不同译文的不同部分可以通过Lattice 中的节点得到共享\footnote{本例中的Lattice 也是一个{\footnotesize\sffamily\bfseries{混淆网络}}\index{混淆网络}(Confusion Network\index{Confusion Network})。}。理论上,Lattice 可以把指数级数量的词串用线性复杂度的结构表示出来。
\parinterval 假设选择是直接从已经生成的译文中进行选择,因此无法产生“新” 的译文,也就是它的输出只能是某个单模型的输出。此外,预测融合需要同时使用多个模型进行推断,对计算和内存消耗较大。而且这两种方法有一个共性问题:搜索都是基于一个个字符串,相比指数级的译文空间,所看到的结果还是非常小的一部分。对于这个问题,一种方法是利用更加紧凑的数据结构对指数级的译文串进行表示。比如,可以使用{\small\sffamily\bfseries{词格}}\index{词格}(Word Lattice\index{Word Lattice})对多个译文串进行表示\upcite{DBLP:conf/emnlp/TrombleKOM08}。图\ref{fig:14-10}展示了基于$n$-best词串和基于词格的表示方法的区别。可以看到,词格中从起始状态到结束状态的每一条路径都表示一个译文,不同译文的不同部分可以通过词格中的节点得到共享\footnote{本例中的词格也是一个{\footnotesize\sffamily\bfseries{混淆网络}}\index{混淆网络}(Confusion Network\index{Confusion Network})。}。理论上,词格可以把指数级数量的词串用线性复杂度的结构表示出来。
%----------------------------------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter14/Figures/figure-word-string-representation}
\caption{$n$-best词串表示 vs Lattice词串表示}
\caption{$n$-best词串表示 vs 基于词格的词串表示}
\label{fig:14-10}
\end{figure}
%----------------------------------------------------------------------
\parinterval 有了Lattice 这样的结构,多模型集成又有了新的思路。首先,可以将多个模型的译文融合为Lattice。注意,这个Lattice 会包含这些模型无法生成的完整译文句子。之后,用一个更强的模型在Lattice 上搜索最优的结果。这个过程有可能找到一些“新”的译文,即结果可能是从多个模型的结果中重组而来的。Lattice 上的搜索模型可以基于多模型的融合,也可以使用一个简单的模型,这里需要考虑的是将神经机器翻译模型适应到Lattice 上进行推断\upcite{DBLP:conf/aaai/SuTXJSL17}。其过程基本与原始的模型推断没有区别,只是需要把模型预测的结果附着到Lattice 中的每条边上,再进行推断。
\parinterval 有了词格这样的结构,多模型集成又有了新的思路。首先,可以将多个模型的译文融合为词格。注意,这个词格会包含这些模型无法生成的完整译文句子。之后,用一个更强的模型在词格上搜索最优的结果。这个过程有可能找到一些“新”的译文,即结果可能是从多个模型的结果中重组而来的。词格上的搜索模型可以基于多模型的融合,也可以使用一个简单的模型,这里需要考虑的是将神经机器翻译模型适应到词格上进行推断\upcite{DBLP:conf/aaai/SuTXJSL17}。其过程基本与原始的模型推断没有区别,只是需要把模型预测的结果附着到词格中的每条边上,再进行推断。
\parinterval\ref{fig:14-11}对比了不同模型集成方法的区别。从系统开发的角度看,假设选择和模型预测融合的复杂度较低,适合快速开发原型系统,而且性能稳定。译文重组需要更多的模块,系统调试的复杂度较高,但是由于看到了更大的搜索空间,因此系统性能提升的潜力较大\footnote{一般来说Lattice 上的Oracle 要比$n$-best译文上的Oracle 的质量高。}
\parinterval\ref{fig:14-11}对比了不同模型集成方法的区别。从系统开发的角度看,假设选择和模型预测融合的复杂度较低,适合快速开发原型系统,而且性能稳定。译文重组需要更多的模块,系统调试的复杂度较高,但是由于看到了更大的搜索空间,因此系统性能提升的潜力较大\footnote{一般来说词格上的Oracle 要比$n$-best译文上的Oracle 的质量高。}
%----------------------------------------------------------------------
\begin{figure}[htp]
......@@ -704,13 +699,13 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\vspace{0.5em}
\item 机器翻译系统中的推断也借用了{\small\sffamily\bfseries{统计推断}}\index{统计推断}(Statistical Inference)\index{Statistical Inference}的概念。传统意义上讲,这类方法都是在利用样本数据去推测总体的趋势和特征。因此,从统计学的角度也有很多不同的思路。例如,贝叶斯学习等方法就在自然语言处理中得到广泛应用\upcite{Held2013AppliedSI,Silvey2018StatisticalI}。其中比较有代表性的是{\small\sffamily\bfseries{变分方法}}\index{变分方法}(Variational Methods)\index{Variational Methods}。这类方法通过引入新的隐含变量来对样本的分布进行建模,从某种意义上说它是在描述“分布的分布”,因此这种方法对事物的统计规律描述得更加细致\upcite{Beal2003VariationalAF}。这类方法也被成功地用于统计机器翻译\upcite{Li2009VariationalDF,xiao2011language,}和神经机器翻译\upcite{Bastings2019ModelingLS,Shah2018GenerativeNM,Su2018VariationalRN,Zhang2016VariationalNM}
\vspace{0.5em}
\item 推断系统也可以受益于更加高效的网络结构。这方面工作集中在结构化剪枝、减少模型的冗余计算、低秩分解等方向。结构化剪枝中的代表性工作是LayerDrop\upcite{DBLP:conf/iclr/FanGJ20,DBLP:conf/emnlp/WangXZ20,DBLP:journals/corr/abs-2002-02925},这类方法在训练时随机选择部分子结构,在推断时根据输入来选择模型中的部分层进行计算,而跳过其余层,达到加速的目的。有关减少冗余计算的研究主要集中在改进注意力机制上,本章已经有所介绍。低秩分解则针对词向量或者注意力的映射矩阵进行改进,例如词频自适应表示\upcite{DBLP:conf/iclr/BaevskiA19},词频越高则对应的向量维度越大,反之则越小,或者层数越高注意力映射矩阵维度越小\upcite{DBLP:journals/corr/abs-2006-04768,DBLP:journals/corr/abs-1911-12385,DBLP:journals/corr/abs-1906-09777,DBLP:conf/nips/YangLSL19}。在实践中比较有效的是较深的编码器与较浅的解码器结合的方式,极端情况下解码器仅使用1层神经网络即可取得与多层神经网络相媲美的翻译品质,从而极大地提升翻译效率\upcite{DBLP:journals/corr/abs-2006-10369,DBLP:conf/aclnmt/HuLLLLWXZ20,DBLP:journals/corr/abs-2010-02416}。在{\chapterfifteen}还会进一步对高效神经机器翻译的模型结构进行讨论。
\item 推断系统也可以受益于更加高效的神经网络结构。这方面工作集中在结构化剪枝、减少模型的冗余计算、低秩分解等方向。结构化剪枝中的代表性工作是LayerDrop\upcite{DBLP:conf/iclr/FanGJ20,DBLP:conf/emnlp/WangXZ20,DBLP:journals/corr/abs-2002-02925},这类方法在训练时随机选择部分子结构,在推断时根据输入来选择模型中的部分层进行计算,而跳过其余层,达到加速的目的。有关减少冗余计算的研究主要集中在改进注意力机制上,本章已经有所介绍。低秩分解则针对词向量或者注意力的映射矩阵进行改进,例如词频自适应表示\upcite{DBLP:conf/iclr/BaevskiA19},词频越高则对应的向量维度越大,反之则越小,或者层数越高注意力映射矩阵维度越小\upcite{DBLP:journals/corr/abs-2006-04768,DBLP:journals/corr/abs-1911-12385,DBLP:journals/corr/abs-1906-09777,DBLP:conf/nips/YangLSL19}。在实践中比较有效的是较深的编码器与较浅的解码器结合的方式,极端情况下解码器仅使用1层神经网络即可取得与多层神经网络相媲美的翻译品质,从而极大地提升翻译效率\upcite{DBLP:journals/corr/abs-2006-10369,DBLP:conf/aclnmt/HuLLLLWXZ20,DBLP:journals/corr/abs-2010-02416}。在{\chapterfifteen}还会进一步对高效神经机器翻译的模型结构进行讨论。
\vspace{0.5em}
\item 在对机器翻译推断系统进行实际部署时,对存储的消耗也是需要考虑的因素。因此如何让模型变得更小也是研发人员所关注的方向。当前的模型压缩方法主要可以分为几类:剪枝、量化、知识蒸馏和轻量方法,其中轻量方法主要是基于更轻量模型结构的设计,这类方法已经在上文进行了介绍。剪枝主要包括权重大小剪枝\upcite{Han2015LearningBW,Lee2019SNIPSN,Frankle2019TheLT,Brix2020SuccessfullyAT}、面向多头注意力的剪枝\upcite{Michel2019AreSH,DBLP:journals/corr/abs-1905-09418}、网络层以及其他部分的剪枝等\upcite{Liu2017LearningEC,Liu2019RethinkingTV},还有一些方法也通过在训练期间采用正则化的方式来提升剪枝能力\upcite{DBLP:conf/iclr/FanGJ20}。量化方法主要通过截断浮点数来减少模型的存储大小,使其仅使用几个比特位的数字表示方法便能存储整个模型,虽然会导致舍入误差,但压缩效果显著\upcite{DBLP:journals/corr/abs-1906-00532,Cheong2019transformersZ,Banner2018ScalableMF,Hubara2017QuantizedNN}。一些方法利用知识蒸馏手段还将Transformer模型蒸馏成如LSTMs 等其他各种推断速度更快的结构\upcite{Hinton2015Distilling,Munim2019SequencelevelKD,Tang2019DistillingTK}。另外还有一些方法不仅在输出上,还在权重矩阵和隐藏的激活层上对“教师模型”知识进行更深入的挖掘\upcite{Jiao2020TinyBERTDB}
\item 在对机器翻译推断系统进行实际部署时,对存储的消耗也是需要考虑的因素。因此如何让模型变得更小也是研发人员所关注的方向。当前的模型压缩方法主要可以分为几类:剪枝、量化、知识蒸馏和轻量方法,其中轻量方法主要是基于更轻量模型结构的设计,这类方法已经在本章进行了介绍。剪枝主要包括权重大小剪枝\upcite{Han2015LearningBW,Lee2019SNIPSN,Frankle2019TheLT,Brix2020SuccessfullyAT}、 面向多头注意力的剪枝\upcite{Michel2019AreSH,DBLP:journals/corr/abs-1905-09418}、网络层以及其他结构剪枝等\upcite{Liu2017LearningEC,Liu2019RethinkingTV},还有一些方法也通过在训练期间采用正则化的方式来提升剪枝能力\upcite{DBLP:conf/iclr/FanGJ20}。量化方法主要通过截断浮点数来减少模型的存储大小,使其仅使用几个比特位的数字表示方法便能存储整个模型,虽然会导致舍入误差,但压缩效果显著\upcite{DBLP:journals/corr/abs-1906-00532,Cheong2019transformersZ,Banner2018ScalableMF,Hubara2017QuantizedNN}。一些方法利用知识蒸馏手段还将Transformer模型蒸馏成如LSTMs 等其他各种推断速度更快的结构\upcite{Hinton2015Distilling,Munim2019SequencelevelKD,Tang2019DistillingTK}
\vspace{0.5em}
\item 目前的翻译模型使用交叉熵损失作为优化函数,这在自回归模型上取得了非常优秀的性能。交叉熵是一个严格的损失函数,每个预测错误的单词所对应的位置都会受到惩罚,即使是编辑距离很小的输出序列。自回归模型会很大程度上避免这种惩罚,因为当前位置的单词是根据先前生成的词得到的,然而非自回归模型无法获得这种信息。如果在预测时漏掉一个单词,就可能会将正确的单词放在错误的位置上。为此,一些研究工作通过改进损失函数来提高非自回归模型的性能。一种做法使用一种新的交叉熵函数\upcite{Ghazvininejad2020AlignedCE},它通过忽略绝对位置、关注相对顺序和词汇匹配来为非自回归模型提供更精确的训练信号。另外,也可以使用基于$n$-gram的训练目标\upcite{Shao2020MinimizingTB}来最小化模型与参考译文之间的$n$-gram差异。该训练目标在$n$-gram 的层面上评估预测结果,因此能够建模目标序列单词之间的依赖关系。
\vspace{0.5em}
\item 自回归模型解码时,当前位置单词的生成依赖于先前生成的单词,已生成的单词提供了较强的目标端上下文信息。然而,非自回归模型并行地生成所有词,因此缺乏这样的信息。与自回归模型相比,非自回归模型的解码器需要在信息更少的情况下执行翻译任务。因此可以为非自回归模型的解码器端引入更多的信息,来缩小模型的搜索空间。一些研究工作通过将条件随机场引入非自回归模型中来对结构依赖进行建模\upcite{Ma2019FlowSeqNC}。也有工作引入了词嵌入转换矩阵来将源语言端的词嵌入转换为目标语言端的词嵌入来为解码器提供更好的输入\upcite{Guo2019NonAutoregressiveNM}。此外,研究人员也提出了轻量级的调序模块来显式地建模调序信息,以指导非自回归模型的推断\upcite{Ran2019GuidingNN}
\item 自回归模型解码时,当前位置单词的生成依赖于先前生成的单词,已生成的单词提供了较强的目标端上下文信息。与自回归模型相比,非自回归模型的解码器需要在信息更少的情况下执行翻译任务。一些研究工作通过将条件随机场引入非自回归模型中来对结构依赖进行建模\upcite{Ma2019FlowSeqNC}。也有工作引入了词嵌入转换矩阵来将源语言端的词嵌入转换为目标语言端的词嵌入来为解码器提供更好的输入\upcite{Guo2019NonAutoregressiveNM}。此外,研究人员也提出了轻量级的调序模块来显式地建模调序信息,以指导非自回归模型的推断\upcite{Ran2019GuidingNN}
\vspace{0.5em}
\end{itemize}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论