Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
e4dff1e8
Commit
e4dff1e8
authored
Aug 05, 2020
by
单韦乔
Browse files
Options
Browse Files
Download
Plain Diff
合并分支 'shanweiqiao' 到 'caorunzhe'
第一章和第二章修改 查看合并请求
!44
parents
4ea42ace
9eb8c2ea
全部展开
显示空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
1 行增加
和
1 行删除
+1
-1
Chapter1/chapter1.tex
+1
-1
Chapter2/chapter2.tex
+0
-0
没有找到文件。
Chapter1/chapter1.tex
查看文件 @
e4dff1e8
...
...
@@ -179,7 +179,7 @@
\vspace
{
0.5em
}
\item
第二,神经网络的连续空间模型有更强的表示能力。机器翻译中的一个基本问题是:如何表示一个句子?统计机器翻译把句子的生成过程看作是短语或者规则的推导,这本质上是一个离散空间上的符号系统。深度学习把传统的基于离散化的表示变成了连续空间的表示。比如,用实数空间的分布式表示代替了离散化的词语表示,而整个句子可以被描述为一个实数向量。这使得翻译问题可以在连续空间上描述,进而大大缓解了传统离散空间模型维度灾难等问题。更重要的是,连续空间模型可以用梯度下降等方法进行优化,具有很好的数学性质并且易于实现。
\vspace
{
0.5em
}
\item
第三,深度网络学习算法的发展和
GPU(Graphics Processing Unit)
等并行计算设备为训练神经网络提供了可能。早期的基于神经网络的方法一直没有在机器翻译甚至自然语言处理领域得到大规模应用,其中一个重要的原因是这类方法需要大量的浮点运算,而且以前计算机的计算能力无法达到这个要求。随着GPU等并行计算设备的进步,训练大规模神经网络也变为了可能。现在已经可以在几亿、几十亿,甚至上百亿句对上训练机器翻译系统,系统研发的周期越来越短,进展日新月异。
\item
第三,深度网络学习算法的发展和
{
\small\bfnew
{
GPU
}}
\index
{
GPU
}
(Graphics Processing Unit)
\index
{
Graphics Processing Unit
}
等并行计算设备为训练神经网络提供了可能。早期的基于神经网络的方法一直没有在机器翻译甚至自然语言处理领域得到大规模应用,其中一个重要的原因是这类方法需要大量的浮点运算,而且以前计算机的计算能力无法达到这个要求。随着GPU等并行计算设备的进步,训练大规模神经网络也变为了可能。现在已经可以在几亿、几十亿,甚至上百亿句对上训练机器翻译系统,系统研发的周期越来越短,进展日新月异。
\vspace
{
0.5em
}
\end{itemize}
...
...
Chapter2/chapter2.tex
查看文件 @
e4dff1e8
差异被折叠。
点击展开。
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论