\item 子词规范化方法\upcite{DBLP:conf/acl/Kudo18}。其思想是在训练过程中扰乱确定的子词边界,根据1-gram Language Model(ULM)采样出多种子词切分候选。通过最大化整个句子的概率为目标构建词表。在实现上,与上述基于Word Piece的方法略有不同,这里不做详细介绍。
\parinterval 在基于语义的方法中,除了通过不同的算法修改输入以外,也可以通过神经网络模型增加扰动。例如,在机器翻译中常用的回译技术,也是生成对抗样本的一种有效方式。回译就是,通过反向模型将目标语言翻译成源语言,并将翻译得到的双语数据用于模型训练。除了翻译模型,语言模型也可以用于生成对抗样本。{\chapterfive}已经介绍过,语言模型可以用于检测句子的流畅度,它根据上文预测当前位置可能出现的单词。因此,此时可以使用语言模型预测出当前位置最可能出现的多个单词,并用这些词替换序列中原本的单词。在机器翻译任务中,可以通过与神经机器翻译系统联合训练,共享词向量矩阵的方式得到语言模型。{\red (Soft contextual data augmentation for neural machine translation)}
\parinterval 在机器翻译,中常用的回译技术也是生成对抗样本的一种有效方式。回译就是,通过反向模型将目标语言翻译成源语言,并将翻译得到的双语数据用于模型训练。除了翻译模型,语言模型也可以用于生成对抗样本。{\chaptertwo}已经介绍过,语言模型可以用于检测句子的流畅度,它根据上文预测当前位置可能出现的单词。因此,此时可以使用语言模型预测出当前位置最可能出现的多个单词,并用这些词替换序列中原本的单词。在机器翻译任务中,可以通过与神经机器翻译系统联合训练,共享词向量矩阵的方式得到语言模型。{\red (Soft contextual data augmentation for neural machine translation)}
\parinterval 训练目标函数与任务评价指标不一致问题:在训练数据上使用极大似然估计,而在新数据上进行推断的时候,通常使用BLEU等外部评价指标来评价模型的性能。在机器翻译任务中,这个问题的一种体现是,训练数据上更低的困惑度不一定能带来BLEU的提升。更加理想的情况是,模型应该直接最大化性能评价指标,而不是训练集数据上的似然函数({\color{red} Minimum Risk Training for Neural Machine Translation})。但是很多模型性能评价指标不可微分,这使得我们无法直接利用基于梯度的方法来优化模型。
\parinterval 所谓Teacher-forcing,即要求模型预测的结果和标准答案完全对应。Teacher-forcing是一种深度学习训练策略,在序列处理任务上被广泛使用({\color{red} deep learning})。以序列生成任务为例,Teacher-forcing要求模型在训练时不是使用上一个时刻的输出作为下一个时刻的输入,而是使用训练数据中的标准答案作为下一个时刻的输入。显然这会导致曝光偏置问题。为了解决这个问题,可以使用非Teacher-forcing方法,主要包括调度采样和生成对抗网络。
\parinterval 所谓Teacher-forcing,即要求模型预测的结果和标准答案完全对应。Teacher-forcing是一种深度学习训练策略,在序列处理任务上被广泛使用({\color{red} deep learning})。以序列生成任务为例,Teacher-forcing要求模型在训练时不是使用上一个时刻的模型输出作为下一个时刻的输入,而是使用训练数据中上一时刻的标准答案作为下一个时刻的输入。显然这会导致曝光偏置问题。为了解决这个问题,可以使用非Teacher-forcing方法,主要包括调度采样和生成对抗网络。
\parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{MLM}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词掩码,之后让模型预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词[Mask],这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。实验表明,相比在下游任务中仅利用上下文词嵌入,在大规模单语数据上预训练的模型具有更强的表示能力。而使用掩码的方式进行训练也给神经机器翻译提供了新的思路,在本章中也会使用到类似方法。
\parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{MLM}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词掩码,之后让模型预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词[Mask],这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。实验表明,相比在下游任务中仅利用上下文词嵌入,在大规模单语数据上预训练的模型具有更强的表示能力。而使用掩码的方式进行训练也给神经机器翻译提供了新的思路,在本章中也会使用到类似方法。
\parinterval多语言单模型方法也可以被看做是一种迁移学习。多语言单模型方法能够有效地改善低资源神经机器翻译性能\upcite{DBLP:journals/tacl/JohnsonSLKWCTVW17,DBLP:conf/lrec/RiktersPK18,dabre2020survey},尤其适用于翻译方向较多的情况,因为为每一个翻译方向单独训练一个模型是不实际的,不仅因为设备资源和时间上的限制,还因为很多翻译方向都没有双语平行数据。比如,要翻译100个语言之间互译的系统,理论上就需要训练$100\times99$个翻译模型,代价是十分巨大的。这时就需要用到{\small\bfnew{多语言单模型方法}}\index{多语言单模型方法}(Multi-lingual Single Model-based Method\index{Multi-lingual Single Model-based Method})。
\parinterval{\small\bfnew{多语言单模型方法}}\index{多语言单模型方法}(Multi-lingual Single Model-based Method\index{Multi-lingual Single Model-based Method})也可以被看做是一种迁移学习。多语言单模型方法能够有效地改善低资源神经机器翻译性能\upcite{DBLP:journals/tacl/JohnsonSLKWCTVW17,DBLP:conf/lrec/RiktersPK18,dabre2020survey},尤其适用于翻译方向较多的情况,因为为每一个翻译方向单独训练一个模型是不实际的,不仅因为设备资源和时间上的限制,还因为很多翻译方向都没有双语平行数据。比如,要翻译100个语言之间互译的系统,理论上就需要训练$100\times99$个翻译模型,代价是十分巨大的。这时就需要用到多语言单模型方法。
\parinterval 在文本翻译中引入图像信息是最典型的多模态机器翻译任务。虽然多模态机器翻译还是一种从源语言文本到目标语言文本的转换,但是在转换的过程中,融入了其他模态的信息减少了歧义的产生。例如前文提到的通过与源语言相关的图像信息,将“A medium sized child jumps off of a dusty bank”中“bank”翻译为“河岸”而不是“银行”,因为图像中出现了河床,因此“bank”的歧义大大降低。换句话说,对于同一图像或者视觉场景的描述,源语言和目标语言描述的信息是一致的,只不过,体现在不同语言上会有表达方法上的差异。那么,图像就会存在一些源语言和目标语言的隐含对齐“约束”,而这种“约束”可以捕捉语言中不易表达的隐含信息。
\parinterval 在文本翻译中引入图像信息是最典型的多模态机器翻译任务。虽然多模态机器翻译还是一种从源语言文本到目标语言文本的转换,但是在转换的过程中,融入了其他模态的信息减少了歧义的产生。例如前文提到的通过与源语言相关的图像信息,将“A medium sized child jumps off of a dusty bank”中“bank”翻译为“河岸”而不是“银行”,因为图像中出现了河床,因此“bank”的歧义大大降低。换句话说,对于同一图像或者视觉场景的描述,源语言和目标语言描述的信息是一致的,只不过,体现在不同语言上会有表达方法上的差异。那么,图像就会存在一些源语言和目标语言的隐含对齐“约束”,而这种“约束”可以捕捉语言中不易表达的隐含信息。
\parinterval 图像到文本的转换也可以看作是广义上的翻译,简单来说,就是把图像作为了源语言的唯一输入,而输出是文本。其中,图像描述生成是最典型的图像到文本的翻译任务({\color{red} 引用:Automatic Description Generation from Images: A Survey of Models, Datasets, and Evaluation Measures})。虽然,这部分内容并不是本书的重点,不过为了保证多模态翻译内容的完整性,这里对相关技术进行简要介绍。图像描述有时也被称作图说话、图像字幕生成,它在图像检索、智能导盲、人机交互等领域有着广泛的应用场景。