\parinterval 公式\ref{eq:5-7}定义的$g(\mathbf{s},\mathbf{t})$存在的问题是没有考虑词序信息。这里用一个简单的例子说明这个问题。如图\ref{fig:5-8}所示,源语言句子``我 对 你 感到 满意''有两个翻译结果,第一个翻译结果是``I am satisfied with you'',第二个是``I with you am satisfied''。虽然这两个译文包含的目标语单词是一样的,但词序存在很大差异。比如,它们都选择了``satisfied''作为源语单词``满意''的译文,但是在第一个翻译结果中``satisfied''处于第3个位置,而第二个结果中处于最后的位置。显然第一个翻译结果更符合英语的表达习惯,翻译的质量更高。遗憾的是,对于有明显差异的两个译文,公式\ref{eq:5-7}计算得到的函数$g(\cdot)$的值却是一样的。
\parinterval 公式\ref{eq:5-7}定义的$g(\vectorn{s},\vectorn{t})$存在的问题是没有考虑词序信息。这里用一个简单的例子说明这个问题。如图\ref{fig:5-8}所示,源语言句子``我 对 你 感到 满意''有两个翻译结果,第一个翻译结果是``I am satisfied with you'',第二个是``I with you am satisfied''。虽然这两个译文包含的目标语单词是一样的,但词序存在很大差异。比如,它们都选择了``satisfied''作为源语单词``满意''的译文,但是在第一个翻译结果中``satisfied''处于第3个位置,而第二个结果中处于最后的位置。显然第一个翻译结果更符合英语的表达习惯,翻译的质量更高。遗憾的是,对于有明显差异的两个译文,公式\ref{eq:5-7}计算得到的函数$g(\cdot)$的值却是一样的。
\item 对齐概率$\textrm{P}(a_j|a_1^{j-1},s_1^{j-1},m,\mathbf{t})$仅依赖于译文长度$l$,即每个词对齐连接的生成概率也服从均匀分布。换句话说,对于任何源语言位置$j$对齐到目标语言任何位置都是等概率的。比如译文为``on the table'',再加上$t_0$共4个位置,相应的,任意源语单词对齐到这4个位置的概率是一样的。具体描述如下:
\item 对齐概率$\funp{P}(a_j|a_1^{j-1},s_1^{j-1},m,\vectorn{t})$仅依赖于译文长度$l$,即每个词对齐连接的生成概率也服从均匀分布。换句话说,对于任何源语言位置$j$对齐到目标语言任何位置都是等概率的。比如译文为``on the table'',再加上$t_0$共4个位置,相应的,任意源语单词对齐到这4个位置的概率是一样的。具体描述如下: