Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
F
Fairseq-S2T
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
xuchen
Fairseq-S2T
Commits
31d0303e
Commit
31d0303e
authored
Sep 09, 2021
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
support the ppm for pyramid transformer
parent
c9d8dbc3
显示空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
124 行增加
和
59 行删除
+124
-59
fairseq/models/speech_to_text/pys2t_transformer.py
+123
-58
fairseq/modules/reduced_multihead_attention.py
+1
-1
没有找到文件。
fairseq/models/speech_to_text/pys2t_transformer.py
查看文件 @
31d0303e
...
...
@@ -54,19 +54,17 @@ class ReducedEmbed(nn.Module):
elif
self
.
reduced_way
==
"glu"
:
self
.
conv
=
nn
.
Conv1d
(
in_channels
,
out_channels
*
2
,
kernel_sizes
,
stride
=
stride
,
padding
=
padding
)
self
.
glu
=
nn
.
GLU
(
dim
=
1
)
elif
self
.
reduced_way
==
"proj"
:
self
.
proj
=
nn
.
Linear
(
2
*
in_channels
,
out_channels
,
bias
=
False
)
else
:
logger
.
error
(
"Unsupported reduced way!"
)
self
.
embed_norm
=
embed_norm
if
self
.
embed_norm
:
# self.norm = LayerNorm(out_channels)
self
.
norm
=
LayerNorm
(
in_channels
)
if
out_channels
%
in_channels
==
0
:
self
.
residual
=
True
if
self
.
reduced_way
==
"proj"
:
self
.
norm
=
LayerNorm
(
2
*
in_channels
)
else
:
self
.
residual
=
False
self
.
residual
=
False
self
.
norm
=
LayerNorm
(
out_channels
)
def
forward
(
self
,
x
,
lengths
):
seq_len
,
bsz
,
dim
=
x
.
size
()
...
...
@@ -80,16 +78,18 @@ class ReducedEmbed(nn.Module):
x
.
masked_fill_
(
mask_pad
,
0.0
)
x
=
x
.
transpose
(
0
,
1
)
if
self
.
re
sidual
:
origin_x
=
x
.
transpose
(
0
,
1
)
.
contiguous
()
.
view
(
bsz
,
int
(
seq_len
/
self
.
stride
),
-
1
)
.
transpose
(
0
,
1
)
if
self
.
embed_norm
:
x
=
self
.
norm
(
x
)
if
self
.
re
duced_way
==
"proj"
:
x
=
x
.
transpose
(
0
,
1
)
.
contiguous
()
.
view
(
bsz
,
int
(
seq_len
/
2
),
-
1
)
x
=
self
.
proj
(
self
.
norm
(
x
))
x
=
x
.
transpose
(
0
,
1
)
else
:
x
=
x
.
permute
(
1
,
2
,
0
)
# B * D * T
x
=
self
.
conv
(
x
)
if
self
.
reduced_way
==
"glu"
:
x
=
self
.
glu
(
x
)
x
=
x
.
permute
(
2
,
0
,
1
)
# T * B * D
if
self
.
embed_norm
:
x
=
self
.
norm
(
x
)
lengths
=
lengths
/
self
.
stride
...
...
@@ -101,15 +101,49 @@ class ReducedEmbed(nn.Module):
x
.
masked_fill_
(
mask_pad
,
0.0
)
x
=
x
.
transpose
(
0
,
1
)
if
self
.
residual
:
if
x
.
size
()
==
origin_x
.
size
():
x
+=
origin_x
else
:
logging
.
error
(
"The size is unmatched {} and {}"
.
format
(
x
.
size
(),
origin_x
.
size
()))
return
x
,
lengths
,
padding_mask
class
BlockFuse
(
nn
.
Module
):
def
__init__
(
self
,
embed_dim
,
prev_embed_dim
,
dropout
,
num_head
,
fuse_way
=
"add"
):
super
()
.
__init__
()
self
.
attn
=
MultiheadAttention
(
embed_dim
,
num_head
,
kdim
=
prev_embed_dim
,
vdim
=
prev_embed_dim
,
dropout
=
dropout
,
encoder_decoder_attention
=
True
,
)
self
.
q_layer_norm
=
LayerNorm
(
embed_dim
)
self
.
kv_layer_norm
=
LayerNorm
(
prev_embed_dim
)
self
.
fuse_way
=
fuse_way
if
self
.
fuse_way
==
"gated"
:
self
.
gate_linear
=
nn
.
Linear
(
2
*
embed_dim
,
embed_dim
)
def
forward
(
self
,
x
,
state
,
padding
):
residual
=
x
x
=
self
.
q_layer_norm
(
x
)
state
=
self
.
kv_layer_norm
(
state
)
x
,
attn
=
self
.
attn
(
query
=
x
,
key
=
state
,
value
=
state
,
key_padding_mask
=
padding
,
static_kv
=
True
,
)
if
self
.
fuse_way
==
"add"
:
x
=
residual
+
x
elif
self
.
fuse_way
==
"gated"
:
coef
=
(
self
.
gate_linear
(
torch
.
cat
([
x
,
residual
],
dim
=-
1
)))
.
sigmoid
()
x
=
coef
*
x
+
(
1
-
coef
)
*
residual
return
x
@register_model
(
"pys2t_transformer"
)
class
PYS2TTransformerModel
(
S2TTransformerModel
):
"""Adapted Transformer model (https://arxiv.org/abs/1706.03762) for
...
...
@@ -148,7 +182,7 @@ class PYS2TTransformerModel(S2TTransformerModel):
parser
.
add_argument
(
"--pyramid-reduced-embed"
,
type
=
str
,
choices
=
[
"glu"
,
"conv"
],
choices
=
[
"glu"
,
"conv"
,
"proj"
],
help
=
"the reduced way of the embedding"
,
)
parser
.
add_argument
(
...
...
@@ -157,6 +191,16 @@ class PYS2TTransformerModel(S2TTransformerModel):
help
=
"use layer norm in reduced embedding"
,
)
parser
.
add_argument
(
"--pyramid-block-attn"
,
action
=
"store_true"
,
help
=
"use block attention"
,
)
parser
.
add_argument
(
"--pyramid-fuse-way"
,
type
=
str
,
help
=
"fused way for block attention"
,
)
parser
.
add_argument
(
"--pyramid-position-embed"
,
type
=
str
,
help
=
"use the position embedding or not"
,
...
...
@@ -181,6 +225,11 @@ class PYS2TTransformerModel(S2TTransformerModel):
type
=
str
,
help
=
"the number of the attention heads"
,
)
parser
.
add_argument
(
"--pyramid-use-ppm"
,
action
=
"store_true"
,
help
=
"use ppm"
,
)
parser
.
add_argument
(
"--ctc-layer"
,
...
...
@@ -211,7 +260,11 @@ class PyS2TTransformerEncoder(FairseqEncoder):
self
.
padding_idx
=
1
self
.
attn_type
=
getattr
(
args
,
"encoder_attention_type"
,
"selfattn"
)
self
.
embed_dim
=
args
.
encoder_embed_dim
self
.
dropout
=
FairseqDropout
(
p
=
args
.
dropout
,
module_name
=
self
.
__class__
.
__name__
)
self
.
pyramid_stages
=
getattr
(
args
,
"pyramid_stages"
,
4
)
self
.
pyramid_layers
=
[
int
(
n
)
for
n
in
args
.
pyramid_layers
.
split
(
"_"
)]
...
...
@@ -225,6 +278,10 @@ class PyS2TTransformerEncoder(FairseqEncoder):
self
.
pyramid_reduced_embed
=
args
.
pyramid_reduced_embed
self
.
pyramid_embed_norm
=
args
.
pyramid_embed_norm
self
.
pyramid_block_attn
=
getattr
(
args
,
"pyramid_block_attn"
,
False
)
self
.
pyramid_fuse_way
=
getattr
(
args
,
"pyramid_fuse_way"
,
"add"
)
self
.
use_ppm
=
getattr
(
args
,
"pyramid_use_ppm"
,
False
)
for
i
in
range
(
self
.
pyramid_stages
):
num_layers
=
self
.
pyramid_layers
[
i
]
sr_ratio
=
self
.
pyramid_sr_ratios
[
i
]
...
...
@@ -242,7 +299,8 @@ class PyS2TTransformerEncoder(FairseqEncoder):
reduced_embed
=
ReducedEmbed
(
self
.
pyramid_reduced_embed
,
self
.
pyramid_embed_norm
if
i
!=
0
else
False
,
self
.
pyramid_embed_norm
,
# self.pyramid_embed_norm if i != 0 else False,
args
.
input_feat_per_channel
*
args
.
input_channels
if
i
==
0
else
self
.
pyramid_embed_dims
[
i
-
1
],
embed_dim
,
kernel_sizes
=
kernel_size
,
...
...
@@ -257,34 +315,33 @@ class PyS2TTransformerEncoder(FairseqEncoder):
else
:
pos_embed
=
None
dropout
=
FairseqDropout
(
p
=
args
.
dropout
,
module_name
=
self
.
__class__
.
__name__
)
block
=
nn
.
ModuleList
([
PyramidTransformerEncoderLayer
(
args
,
embed_dim
,
embed_dim
*
ffn_ratio
,
num_head
,
attn_sample_ratio
)
for
_
in
range
(
num_layers
)])
block_attn
=
None
if
self
.
pyramid_block_attn
:
if
i
!=
0
:
attn
=
MultiheadAttention
(
embed_dim
,
num_head
,
kdim
=
self
.
pyramid_embed_dims
[
i
-
1
],
vdim
=
self
.
pyramid_embed_dims
[
i
-
1
],
dropout
=
args
.
attention_dropout
,
encoder_decoder_attention
=
True
,
block_attn
=
BlockFuse
(
embed_dim
,
self
.
pyramid_embed_dims
[
i
-
1
],
args
.
dropout
,
num_head
,
self
.
pyramid_fuse_way
)
if
self
.
use_ppm
:
ppm_layer_norm
=
LayerNorm
(
embed_dim
)
ppm
=
nn
.
Sequential
(
nn
.
Conv1d
(
embed_dim
,
self
.
embed_dim
,
kernel_size
=
1
,
bias
=
False
),
nn
.
BatchNorm1d
(
self
.
embed_dim
),
nn
.
ReLU
(),
)
attn_layer_norm
=
LayerNorm
(
embed_dim
)
else
:
attn
=
None
attn_layer_nor
m
=
None
ppm_layer_norm
=
None
pp
m
=
None
setattr
(
self
,
f
"reduced_embed{i + 1}"
,
reduced_embed
)
setattr
(
self
,
f
"pos_embed{i + 1}"
,
pos_embed
)
setattr
(
self
,
f
"dropout{i + 1}"
,
dropout
)
setattr
(
self
,
f
"block{i + 1}"
,
block
)
setattr
(
self
,
f
"attn{i + 1}"
,
attn
)
setattr
(
self
,
f
"attn_layer_norm{i + 1}"
,
attn_layer_norm
)
setattr
(
self
,
f
"block_attn{i + 1}"
,
block_attn
)
setattr
(
self
,
f
"ppm{i + 1}"
,
ppm
)
setattr
(
self
,
f
"ppm_layer_norm{i + 1}"
,
ppm_layer_norm
)
if
i
==
self
.
pyramid_stages
-
1
:
if
args
.
encoder_normalize_before
:
...
...
@@ -292,6 +349,10 @@ class PyS2TTransformerEncoder(FairseqEncoder):
else
:
self
.
layer_norm
=
None
if
self
.
use_ppm
:
self
.
ppm_weight
=
nn
.
Parameter
(
torch
.
Tensor
(
self
.
pyramid_stages
)
.
fill_
(
1.0
))
self
.
ppm_weight
.
data
=
self
.
ppm_weight
.
data
/
self
.
ppm_weight
.
data
.
sum
(
0
,
keepdim
=
True
)
self
.
use_ctc
=
"sate"
in
args
.
arch
or
\
((
"ctc"
in
getattr
(
args
,
"criterion"
,
False
))
and
(
getattr
(
args
,
"ctc_weight"
,
False
)
>
0
))
...
...
@@ -347,30 +408,25 @@ class PyS2TTransformerEncoder(FairseqEncoder):
for
i
in
range
(
self
.
pyramid_stages
):
reduced_embed
=
getattr
(
self
,
f
"reduced_embed{i + 1}"
)
pos_embed
=
getattr
(
self
,
f
"pos_embed{i + 1}"
)
dropout
=
getattr
(
self
,
f
"dropout{i + 1}"
)
block
=
getattr
(
self
,
f
"block{i + 1}"
)
block_attn
=
getattr
(
self
,
f
"attn{i + 1}"
)
attn_layer_norm
=
getattr
(
self
,
f
"attn_layer_norm{i + 1}"
)
block_attn
=
getattr
(
self
,
f
"block_attn{i + 1}"
)
if
i
==
0
:
x
=
self
.
embed_scale
*
x
#
if i == 0:
#
x = self.embed_scale * x
# reduced embed
x
,
input_lengths
,
encoder_padding_mask
=
reduced_embed
(
x
,
input_lengths
)
# max_lens = int(x.size(0))
# encoder_padding_mask = lengths_to_padding_mask_with_maxlen(input_lengths, max_lens)
# add the position encoding and dropout
if
pos_embed
:
positions
=
pos_embed
(
encoder_padding_mask
)
.
transpose
(
0
,
1
)
if
self
.
attn_type
!=
"rel_selfattn"
:
x
+=
positions
if
i
==
0
:
x
=
dropout
(
x
)
positions
=
dropout
(
positions
)
positions
=
self
.
dropout
(
positions
)
else
:
positions
=
None
if
i
==
0
:
x
=
self
.
dropout
(
x
)
for
layer
in
block
:
x
=
layer
(
x
,
encoder_padding_mask
,
pos_emb
=
positions
)
layer_idx
+=
1
...
...
@@ -379,19 +435,28 @@ class PyS2TTransformerEncoder(FairseqEncoder):
prev_padding
.
append
(
encoder_padding_mask
)
if
block_attn
is
not
None
:
residual
=
x
x
=
attn_layer_norm
(
x
)
x
,
attn
=
block_attn
(
query
=
x
,
key
=
prev_state
[
i
-
1
],
value
=
prev_state
[
i
-
1
],
key_padding_mask
=
prev_padding
[
i
-
1
],
)
x
=
residual
+
x
x
=
block_attn
(
x
,
prev_state
[
-
1
],
prev_padding
[
-
1
])
if
self
.
use_ctc
and
self
.
inter_ctc
and
self
.
ctc_layer
==
layer_idx
:
ctc_logit
=
self
.
ctc_layer_norm
(
x
)
if
self
.
use_ppm
:
pool_state
=
[
x
]
seq_len
,
bsz
,
dim
=
x
.
size
()
i
=
-
1
for
state
in
prev_state
[:
-
1
]:
i
+=
1
ppm
=
getattr
(
self
,
f
"ppm{i + 1}"
)
ppm_layer_norm
=
getattr
(
self
,
f
"ppm_layer_norm{i + 1}"
)
state
=
ppm_layer_norm
(
state
)
state
=
state
.
permute
(
1
,
2
,
0
)
state
=
nn
.
functional
.
adaptive_avg_pool1d
(
state
,
seq_len
)
state
=
ppm
(
state
)
state
=
state
.
permute
(
2
,
0
,
1
)
pool_state
.
append
(
state
)
x
=
(
torch
.
stack
(
pool_state
,
dim
=
0
)
*
self
.
ppm_weight
.
view
(
-
1
,
1
,
1
,
1
))
.
sum
(
0
)
if
self
.
layer_norm
is
not
None
:
x
=
self
.
layer_norm
(
x
)
...
...
fairseq/modules/reduced_multihead_attention.py
查看文件 @
31d0303e
...
...
@@ -204,7 +204,7 @@ class ReducedMultiheadAttention(nn.Module):
q
=
self
.
q_proj
(
query
)
if
self
.
self_attention
:
if
self
.
sample_ratio
>
1
:
query_
=
query
.
permute
(
1
,
2
,
0
)
# bsz, dim, seq_len
query_
=
query
.
permute
(
1
,
2
,
0
)
# bsz, dim, seq_len
:
query_
=
self
.
sr
(
query_
)
.
permute
(
2
,
0
,
1
)
# seq_len, bsz, dim
query
=
self
.
norm
(
query_
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论