Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
F
Fairseq-S2T
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
xuchen
Fairseq-S2T
Commits
42321f76
Commit
42321f76
authored
Mar 23, 2021
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
modify the egs scripts to set the output dir
parent
0ab28954
显示空白字符变更
内嵌
并排
正在显示
9 个修改的文件
包含
56 行增加
和
28 行删除
+56
-28
egs/mustc/asr/conf/train.yaml
+0
-0
egs/mustc/asr/conf/train_ctc.yaml
+0
-0
egs/mustc/asr/run.sh
+15
-7
egs/mustc/st/conf/train.yaml
+0
-0
egs/mustc/st/conf/train_ctc.yaml
+0
-0
egs/mustc/st/local/utils.sh
+1
-1
egs/mustc/st/run.sh
+15
-6
egs/mustc/st/train.sh
+1
-1
examples/speech_to_text/prep_mustc_data.py
+24
-13
没有找到文件。
egs/mustc/asr/conf/
asr_
train.yaml
→
egs/mustc/asr/conf/train.yaml
查看文件 @
42321f76
File moved
egs/mustc/asr/conf/
asr_
train_ctc.yaml
→
egs/mustc/asr/conf/train_ctc.yaml
查看文件 @
42321f76
File moved
egs/mustc/asr/run.sh
查看文件 @
42321f76
...
...
@@ -37,7 +37,8 @@ task=speech_to_text
vocab_type
=
unigram
vocab_size
=
5000
data_dir
=
~/st/data/
${
dataset
}
org_data_dir
=
/media/data/
${
dataset
}
data_dir
=
~/st/data/
${
dataset
}
/asr
test_subset
=(
tst-COMMON
)
# exp
...
...
@@ -47,7 +48,7 @@ exp_tag=baseline
exp_name
=
# config
train_config
=
asr_
train_ctc.yaml
train_config
=
train_ctc.yaml
data_config
=
config_asr.yaml
# training setting
...
...
@@ -92,8 +93,13 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
### Task dependent. You have to make data the following preparation part by yourself.
### But you can utilize Kaldi recipes in most cases
echo
"stage 0: ASR Data Preparation"
if
[[
!
-e
${
data_dir
}
]]
;
then
mkdir
-p
${
data_dir
}
fi
cmd
=
"python
${
root_dir
}
/examples/speech_to_text/prep_mustc_data.py
--data-root
${
data_dir
}
--data-root
${
org_data_dir
}
--output-root
${
data_dir
}
--task asr
--vocab-type
${
vocab_type
}
--vocab-size
${
vocab_size
}
"
...
...
@@ -101,6 +107,8 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
[[
$eval
-eq
1
]]
&&
eval
$cmd
fi
data_dir
=
${
data_dir
}
/
${
lang
}
if
[
${
stage
}
-le
1
]
&&
[
${
stop_stage
}
-ge
1
]
;
then
echo
"stage 1: ASR Network Training"
[[
!
-d
$data_dir
]]
&&
echo
"The data dir
$data_dir
is not existing!"
&&
exit
1
;
...
...
@@ -114,7 +122,7 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
fi
fi
echo
-e
"dev=
${
device
}
data=
$
data_dir
model=
${
model_dir
}
"
echo
-e
"dev=
${
device
}
data=
$
{
data_dir
}
model=
${
model_dir
}
"
if
[[
!
-d
${
model_dir
}
]]
;
then
mkdir
-p
${
model_dir
}
...
...
@@ -127,7 +135,7 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
cp
${
train_config
}
${
model_dir
}
cmd
=
"python3 -u
${
root_dir
}
/fairseq_cli/train.py
$
data_dir
/
$lang
$
{
data_dir
}
--config-yaml
${
data_config
}
--train-config
${
train_config
}
--task speech_to_text
...
...
@@ -179,7 +187,7 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# save info
log
=
./history.log
echo
"
${
time
}
|
${
device
}
|
$
data_dir
|
${
model_dir
}
"
>>
$log
echo
"
${
time
}
|
${
device
}
|
$
{
data_dir
}
|
${
model_dir
}
"
>>
$log
cat
$log
| tail
-n
50
>
tmp.log
mv tmp.log
$log
export
CUDA_VISIBLE_DEVICES
=
${
device
}
...
...
@@ -227,7 +235,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
for
subset
in
${
test_subset
[@]
}
;
do
subset
=
${
subset
}
_asr
cmd
=
"python
${
root_dir
}
/fairseq_cli/generate.py
${
data_dir
}
/
$lang
${
data_dir
}
--config-yaml
${
data_config
}
--gen-subset
${
subset
}
--task speech_to_text
...
...
egs/mustc/st/conf/
st_
train.yaml
→
egs/mustc/st/conf/train.yaml
查看文件 @
42321f76
File moved
egs/mustc/st/conf/
st_
train_ctc.yaml
→
egs/mustc/st/conf/train_ctc.yaml
查看文件 @
42321f76
File moved
egs/mustc/st/local/utils.sh
查看文件 @
42321f76
...
...
@@ -13,7 +13,7 @@ get_devices(){
do
line
=
`
expr
$dev
+ 2
`
use
=
`
cat
$record
| head
-n
$line
| tail
-1
| cut
-d
'|'
-f3
| cut
-d
'/'
-f1
`
if
[[
$use
-
eq
0
]]
;
then
if
[[
$use
-
lt
1
0
]]
;
then
device[
$count
]=
$dev
count
=
`
expr
$count
+ 1
`
if
[[
$count
-eq
$gpu_num
]]
;
then
...
...
egs/mustc/st/run.sh
查看文件 @
42321f76
...
...
@@ -39,7 +39,8 @@ asr_vocab_size=5000
vocab_size
=
10000
share_dict
=
1
data_dir
=
~/st/data/
${
dataset
}
org_data_dir
=
/media/data/
${
dataset
}
data_dir
=
~/st/data/
${
dataset
}
/st
test_subset
=(
tst-COMMON
)
# exp
...
...
@@ -49,7 +50,7 @@ exp_tag=baseline
exp_name
=
# config
train_config
=
st_
train_ctc.yaml
train_config
=
train_ctc.yaml
# training setting
fp16
=
1
...
...
@@ -100,8 +101,13 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
### Task dependent. You have to make data the following preparation part by yourself.
### But you can utilize Kaldi recipes in most cases
echo
"stage 0: ASR Data Preparation"
if
[[
!
-e
${
data_dir
}
]]
;
then
mkdir
-p
${
data_dir
}
fi
cmd
=
"python
${
root_dir
}
/examples/speech_to_text/prep_mustc_data.py
--data-root
${
data_dir
}
--data-root
${
org_data_dir
}
--output-root
${
data_dir
}
--task asr
--vocab-type
${
vocab_type
}
--vocab-size
${
asr_vocab_size
}
"
...
...
@@ -110,7 +116,8 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo
"stage 0: ST Data Preparation"
cmd
=
"python
${
root_dir
}
/examples/speech_to_text/prep_mustc_data.py
--data-root
${
data_dir
}
--data-root
${
org_data_dir
}
--output-root
${
data_dir
}
--task st
--add-src
--cmvn-type utterance
...
...
@@ -128,6 +135,8 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
[[
$eval
-eq
1
]]
&&
eval
${
cmd
}
fi
data_dir
=
${
data_dir
}
/
${
lang
}
if
[
${
stage
}
-le
1
]
&&
[
${
stop_stage
}
-ge
1
]
;
then
echo
"stage 1: ST Network Training"
[[
!
-d
${
data_dir
}
]]
&&
echo
"The data dir
${
data_dir
}
is not existing!"
&&
exit
1
;
...
...
@@ -154,7 +163,7 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
cp
${
train_config
}
${
model_dir
}
cmd
=
"python3 -u
${
root_dir
}
/fairseq_cli/train.py
${
data_dir
}
/
$lang
${
data_dir
}
--config-yaml
${
data_config
}
--train-config
${
train_config
}
--task speech_to_text
...
...
@@ -263,7 +272,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
for
subset
in
${
test_subset
[@]
}
;
do
subset
=
${
subset
}
_st
cmd
=
"python
${
root_dir
}
/fairseq_cli/generate.py
${
data_dir
}
/
$lang
${
data_dir
}
--config-yaml
${
data_config
}
--gen-subset
${
subset
}
--task speech_to_text
...
...
egs/mustc/st/train.sh
查看文件 @
42321f76
...
...
@@ -13,7 +13,7 @@ extra_parameter=
#extra_parameter="${extra_parameter} "
exp_tag
=
train_config
=
st_
train_ctc.yaml
train_config
=
train_ctc.yaml
cmd
=
"./run.sh
--stage 1
...
...
examples/speech_to_text/prep_mustc_data.py
查看文件 @
42321f76
...
...
@@ -107,10 +107,15 @@ def process(args):
if
not
cur_root
.
is_dir
():
print
(
f
"{cur_root.as_posix()} does not exist. Skipped."
)
continue
if
args
.
output_root
is
None
:
output_root
=
cur_root
else
:
output_root
=
Path
(
args
.
output_root
)
.
absolute
()
/
f
"en-{lang}"
# Extract features
feature_root
=
cur
_root
/
"fbank80"
feature_root
=
output
_root
/
"fbank80"
feature_root
.
mkdir
(
exist_ok
=
True
)
zip_path
=
cur
_root
/
"fbank80.zip"
zip_path
=
output
_root
/
"fbank80.zip"
if
args
.
overwrite
or
not
Path
.
exists
(
zip_path
):
for
split
in
MUSTC
.
SPLITS
:
print
(
f
"Fetching split {split}..."
)
...
...
@@ -135,7 +140,7 @@ def process(args):
if
split
==
'train'
and
args
.
cmvn_type
==
"global"
:
# Estimate and save cmv
stats
=
cal_gcmvn_stats
(
gcmvn_feature_list
)
with
open
(
cur
_root
/
"gcmvn.npz"
,
"wb"
)
as
f
:
with
open
(
output
_root
/
"gcmvn.npz"
,
"wb"
)
as
f
:
np
.
savez
(
f
,
mean
=
stats
[
"mean"
],
std
=
stats
[
"std"
])
# Pack features into ZIP
...
...
@@ -144,7 +149,7 @@ def process(args):
gen_manifest_flag
=
False
for
split
in
MUSTC
.
SPLITS
:
if
not
Path
.
exists
(
cur
_root
/
f
"{split}_{args.task}.tsv"
):
if
not
Path
.
exists
(
output
_root
/
f
"{split}_{args.task}.tsv"
):
gen_manifest_flag
=
True
break
...
...
@@ -183,7 +188,7 @@ def process(args):
train_text
.
extend
(
manifest
[
"tgt_text"
])
df
=
pd
.
DataFrame
.
from_dict
(
manifest
)
df
=
filter_manifest_df
(
df
,
is_train_split
=
is_train_split
)
save_df_to_tsv
(
df
,
cur
_root
/
f
"{split}_{args.task}.tsv"
)
save_df_to_tsv
(
df
,
output
_root
/
f
"{split}_{args.task}.tsv"
)
# Generate vocab
v_size_str
=
""
if
args
.
vocab_type
==
"char"
else
str
(
args
.
vocab_size
)
...
...
@@ -215,7 +220,7 @@ def process(args):
f
.
write
(
t
+
"
\n
"
)
gen_vocab
(
Path
(
f
.
name
),
cur
_root
/
spm_filename_prefix
,
output
_root
/
spm_filename_prefix
,
args
.
vocab_type
,
args
.
vocab_size
,
)
...
...
@@ -225,13 +230,13 @@ def process(args):
yaml_filename
=
f
"config_{args.task}_share.yaml"
gen_config_yaml
(
cur
_root
,
output
_root
,
spm_filename_prefix
+
".model"
,
yaml_filename
=
yaml_filename
,
specaugment_policy
=
"lb"
,
cmvn_type
=
args
.
cmvn_type
,
gcmvn_path
=
(
cur
_root
/
"gcmvn.npz"
if
args
.
cmvn_type
==
"global"
output
_root
/
"gcmvn.npz"
if
args
.
cmvn_type
==
"global"
else
None
),
asr_spm_filename
=
asr_spm_filename
,
...
...
@@ -245,12 +250,17 @@ def process_joint(args):
cur_root
=
Path
(
args
.
data_root
)
assert
all
((
cur_root
/
f
"en-{lang}"
)
.
is_dir
()
for
lang
in
MUSTC
.
LANGUAGES
),
\
"do not have downloaded data available for all 8 languages"
if
args
.
output_root
is
None
:
output_root
=
cur_root
else
:
output_root
=
Path
(
args
.
output_root
)
.
absolute
()
# Generate vocab
vocab_size_str
=
""
if
args
.
vocab_type
==
"char"
else
str
(
args
.
vocab_size
)
spm_filename_prefix
=
f
"spm_{args.vocab_type}{vocab_size_str}_{args.task}"
with
NamedTemporaryFile
(
mode
=
"w"
)
as
f
:
for
lang
in
MUSTC
.
LANGUAGES
:
tsv_path
=
cur
_root
/
f
"en-{lang}"
/
f
"train_{args.task}.tsv"
tsv_path
=
output
_root
/
f
"en-{lang}"
/
f
"train_{args.task}.tsv"
df
=
load_df_from_tsv
(
tsv_path
)
for
t
in
df
[
"tgt_text"
]:
f
.
write
(
t
+
"
\n
"
)
...
...
@@ -259,14 +269,14 @@ def process_joint(args):
special_symbols
=
[
f
'<lang:{lang}>'
for
lang
in
MUSTC
.
LANGUAGES
]
gen_vocab
(
Path
(
f
.
name
),
cur
_root
/
spm_filename_prefix
,
output
_root
/
spm_filename_prefix
,
args
.
vocab_type
,
args
.
vocab_size
,
special_symbols
=
special_symbols
)
# Generate config YAML
gen_config_yaml
(
cur
_root
,
output
_root
,
spm_filename_prefix
+
".model"
,
yaml_filename
=
f
"config_{args.task}.yaml"
,
specaugment_policy
=
"ld"
,
...
...
@@ -275,8 +285,8 @@ def process_joint(args):
# Make symbolic links to manifests
for
lang
in
MUSTC
.
LANGUAGES
:
for
split
in
MUSTC
.
SPLITS
:
src_path
=
cur
_root
/
f
"en-{lang}"
/
f
"{split}_{args.task}.tsv"
desc_path
=
cur
_root
/
f
"{split}_{lang}_{args.task}.tsv"
src_path
=
output
_root
/
f
"en-{lang}"
/
f
"{split}_{args.task}.tsv"
desc_path
=
output
_root
/
f
"{split}_{lang}_{args.task}.tsv"
if
not
desc_path
.
is_symlink
():
os
.
symlink
(
src_path
,
desc_path
)
...
...
@@ -284,6 +294,7 @@ def process_joint(args):
def
main
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--data-root"
,
"-d"
,
required
=
True
,
type
=
str
)
parser
.
add_argument
(
"--output-root"
,
"-o"
,
default
=
None
,
type
=
str
)
parser
.
add_argument
(
"--vocab-type"
,
default
=
"unigram"
,
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论