Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
F
Fairseq-S2T
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
xuchen
Fairseq-S2T
Commits
444a1f46
Commit
444a1f46
authored
Aug 26, 2022
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Daily revision and add the consistency regularization for mixup
parent
cabfc4ea
显示空白字符变更
内嵌
并排
正在显示
9 个修改的文件
包含
119 行增加
和
41 行删除
+119
-41
egs/aishell/asr/conf/basis.yaml
+3
-3
egs/aishell/asr/conf/inter.yaml
+5
-3
egs/aishell/asr/conf/mixup.yaml
+7
-5
egs/aishell/asr/conf/purectc.yaml
+1
-0
egs/aishell/asr/run.sh
+13
-3
fairseq/criterions/ctc.py
+55
-12
fairseq/models/speech_to_text/s2t_ctc.py
+10
-6
fairseq/models/speech_to_text/s2t_sate.py
+1
-1
fairseq/models/speech_to_text/s2t_transformer.py
+24
-8
没有找到文件。
egs/aishell/asr/conf/basis.yaml
查看文件 @
444a1f46
...
@@ -8,9 +8,9 @@ best_checkpoint_metric: loss
...
@@ -8,9 +8,9 @@ best_checkpoint_metric: loss
maximize_best_checkpoint_metric
:
False
maximize_best_checkpoint_metric
:
False
post-process
:
sentencepiece
post-process
:
sentencepiece
no-epoch-checkpoints
:
True
keep-last-epochs
:
10
#
keep-last-epochs: 10
#
no-epoch-checkpoints: True
keep-best-checkpoints
:
10
#
keep-best-checkpoints: 10
num-workers
:
8
num-workers
:
8
no-progress-bar
:
True
no-progress-bar
:
True
...
...
egs/aishell/asr/conf/inter.yaml
查看文件 @
444a1f46
ctc-weight
:
0.3
ctc-weight
:
1.0
share-ctc-and-embed
:
True
share-ctc-and-embed
:
True
share-target-ctc-and-embed
:
True
interleaved-ctc-weight
:
0.2
interleaved-ctc-weight
:
0.2
interleaved-ctc-layers
:
6,9
interleaved-ctc-layers
:
6,9
...
@@ -9,7 +8,10 @@ interleaved-ctc-drop-prob: 0
...
@@ -9,7 +8,10 @@ interleaved-ctc-drop-prob: 0
sae-adapter
:
inter_league
sae-adapter
:
inter_league
sae-drop-prob
:
0.0
sae-drop-prob
:
0.0
sae-distribution-cutoff
:
0
#
sae-distribution-cutoff: 0
share-ctc-and-sae
:
False
share-ctc-and-sae
:
False
share-interleaved-ctc
:
True
ctc-self-distill-weight
:
0
ctc-self-distill-weight
:
0
ctc-self-distill-prob
:
0
ctc-self-distill-temperature
:
1
egs/aishell/asr/conf/mixup.yaml
查看文件 @
444a1f46
inter_mixup
:
True
inter-mixup
:
True
inter_mixup_layer
:
-1
inter-mixup-layer
:
-1
inter_mixup_prob
:
1.0
inter-mixup-prob
:
1.0
inter_mixup_ratio
:
0.2
inter-mixup-ratio
:
1.0
inter_mixup_beta
:
0.2
inter-mixup-beta
:
0.5
inter-mixup-keep-org
:
True
ctc-mixupr-consistent-weight
:
1
egs/aishell/asr/conf/purectc.yaml
查看文件 @
444a1f46
...
@@ -9,6 +9,7 @@ adam_betas: (0.9,0.98)
...
@@ -9,6 +9,7 @@ adam_betas: (0.9,0.98)
criterion
:
ctc
criterion
:
ctc
zero_infinity
:
True
zero_infinity
:
True
ctc-weight
:
1.0
encoder-embed-norm
:
True
encoder-embed-norm
:
True
encoder-no-scale-embedding
:
True
encoder-no-scale-embedding
:
True
...
...
egs/aishell/asr/run.sh
查看文件 @
444a1f46
...
@@ -300,7 +300,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
...
@@ -300,7 +300,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
if
[[
!
-f
${
model_dir
}
/
${
dec_model
}
]]
;
then
if
[[
!
-f
${
model_dir
}
/
${
dec_model
}
]]
;
then
cmd
=
"python
${
code_dir
}
/scripts/average_checkpoints.py
cmd
=
"python
${
code_dir
}
/scripts/average_checkpoints.py
--inputs
${
model_dir
}
--inputs
${
model_dir
}
--num-
best
-checkpoints
${
n_average
}
--num-
epoch
-checkpoints
${
n_average
}
--output
${
model_dir
}
/
${
dec_model
}
"
--output
${
model_dir
}
/
${
dec_model
}
"
echo
-e
"
\0
33[34mRun command:
\n
${
cmd
}
\0
33[0m"
echo
-e
"
\0
33[34mRun command:
\n
${
cmd
}
\0
33[0m"
[[
$eval
-eq
1
]]
&&
eval
$cmd
[[
$eval
-eq
1
]]
&&
eval
$cmd
...
@@ -328,6 +328,16 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
...
@@ -328,6 +328,16 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
if
[[
${
n_average
}
-ne
1
]]
;
then
if
[[
${
n_average
}
-ne
1
]]
;
then
suffix
=
${
suffix
}
_
${
n_average
}
suffix
=
${
suffix
}
_
${
n_average
}
fi
fi
if
[[
${
ctc_infer
}
-eq
1
]]
;
then
suffix
=
${
suffix
}
_ctc
fi
if
[[
${
ctc_self_ensemble
}
-eq
1
]]
;
then
suffix
=
${
suffix
}
_ensemble
fi
if
[[
${
ctc_inter_logit
}
-ne
0
]]
;
then
suffix
=
${
suffix
}
_logit
${
ctc_inter_logit
}
fi
result_file
=
${
model_dir
}
/decode_result_
${
suffix
}
result_file
=
${
model_dir
}
/decode_result_
${
suffix
}
[[
-f
${
result_file
}
]]
&&
rm
${
result_file
}
[[
-f
${
result_file
}
]]
&&
rm
${
result_file
}
...
@@ -359,9 +369,9 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
...
@@ -359,9 +369,9 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
cmd
=
"
${
cmd
}
cmd
=
"
${
cmd
}
--ctc-self-ensemble"
--ctc-self-ensemble"
fi
fi
if
[[
${
ctc_inter_logit
}
-
eq
1
]]
;
then
if
[[
${
ctc_inter_logit
}
-
ne
0
]]
;
then
cmd
=
"
${
cmd
}
cmd
=
"
${
cmd
}
--ctc-inter-logit"
--ctc-inter-logit
${
ctc_inter_logit
}
"
fi
fi
echo
-e
"
\0
33[34mRun command:
\n
${
cmd
}
\0
33[0m"
echo
-e
"
\0
33[34mRun command:
\n
${
cmd
}
\0
33[0m"
...
...
fairseq/criterions/ctc.py
查看文件 @
444a1f46
...
@@ -11,9 +11,6 @@ from omegaconf import II
...
@@ -11,9 +11,6 @@ from omegaconf import II
from
typing
import
Optional
from
typing
import
Optional
import
numpy
as
np
import
numpy
as
np
import
logging
import
logging
import
editdistance
import
os
import
sys
import
torch
import
torch
import
torch.nn.functional
as
F
import
torch.nn.functional
as
F
...
@@ -22,7 +19,6 @@ from torch.distributions import Categorical
...
@@ -22,7 +19,6 @@ from torch.distributions import Categorical
from
fairseq
import
metrics
,
utils
from
fairseq
import
metrics
,
utils
from
fairseq.criterions
import
FairseqCriterion
,
register_criterion
from
fairseq.criterions
import
FairseqCriterion
,
register_criterion
from
fairseq.dataclass
import
FairseqDataclass
from
fairseq.dataclass
import
FairseqDataclass
from
fairseq.data.data_utils
import
post_process
from
fairseq.tasks
import
FairseqTask
from
fairseq.tasks
import
FairseqTask
from
fairseq.logging.meters
import
safe_round
from
fairseq.logging.meters
import
safe_round
...
@@ -95,6 +91,10 @@ class CtcCriterionConfig(FairseqDataclass):
...
@@ -95,6 +91,10 @@ class CtcCriterionConfig(FairseqDataclass):
default
=
1
,
default
=
1
,
metadata
=
{
"help"
:
"temperature for ctc self distillation"
},
metadata
=
{
"help"
:
"temperature for ctc self distillation"
},
)
)
ctc_mixup_consistent_weight
:
float
=
field
(
default
=
0
,
metadata
=
{
"help"
:
"consistent regularization loss for mixup"
},
)
wer_kenlm_model
:
Optional
[
str
]
=
field
(
wer_kenlm_model
:
Optional
[
str
]
=
field
(
default
=
None
,
default
=
None
,
...
@@ -178,10 +178,12 @@ class CtcCriterion(FairseqCriterion):
...
@@ -178,10 +178,12 @@ class CtcCriterion(FairseqCriterion):
self
.
ctc_entropy
=
cfg
.
ctc_entropy
self
.
ctc_entropy
=
cfg
.
ctc_entropy
self
.
ctc_entropy_cutoff
=
cfg
.
ctc_entropy_cutoff
self
.
ctc_entropy_cutoff
=
cfg
.
ctc_entropy_cutoff
self
.
ctc_mixup_consistent_weight
=
cfg
.
ctc_mixup_consistent_weight
self
.
all_ctc_weight
=
self
.
ctc_weight
+
self
.
interleaved_ctc_weight
+
\
self
.
all_ctc_weight
=
self
.
ctc_weight
+
self
.
interleaved_ctc_weight
+
\
self
.
target_ctc_weight
+
self
.
target_interleaved_ctc_weight
+
\
self
.
target_ctc_weight
+
self
.
target_interleaved_ctc_weight
+
\
self
.
ctc_self_distill_weight
+
self
.
target_ctc_self_distill_weight
+
\
self
.
ctc_self_distill_weight
+
self
.
target_ctc_self_distill_weight
+
\
self
.
ctc_entropy
self
.
ctc_entropy
+
self
.
ctc_mixup_consistent_weight
if
self
.
all_ctc_weight
>
0
:
if
self
.
all_ctc_weight
>
0
:
self
.
ctc_loss
=
torch
.
nn
.
CTCLoss
(
blank
=
self
.
blank_idx
,
reduction
=
"sum"
,
zero_infinity
=
True
)
self
.
ctc_loss
=
torch
.
nn
.
CTCLoss
(
blank
=
self
.
blank_idx
,
reduction
=
"sum"
,
zero_infinity
=
True
)
...
@@ -342,6 +344,8 @@ class CtcCriterion(FairseqCriterion):
...
@@ -342,6 +344,8 @@ class CtcCriterion(FairseqCriterion):
non_padding_mask
=
~
net_output
[
"encoder_padding_mask"
][
0
]
non_padding_mask
=
~
net_output
[
"encoder_padding_mask"
][
0
]
input_lengths
=
non_padding_mask
.
long
()
.
sum
(
-
1
)
input_lengths
=
non_padding_mask
.
long
()
.
sum
(
-
1
)
nfeatures
=
input_lengths
.
sum
()
.
item
()
logging_output
[
"nfeatures"
]
=
nfeatures
pad_mask
=
(
tokens
!=
self
.
pad_idx
)
&
(
tokens
!=
self
.
eos_idx
)
pad_mask
=
(
tokens
!=
self
.
pad_idx
)
&
(
tokens
!=
self
.
eos_idx
)
...
@@ -551,13 +555,38 @@ class CtcCriterion(FairseqCriterion):
...
@@ -551,13 +555,38 @@ class CtcCriterion(FairseqCriterion):
logging_output
[
"target_ctc_self_distill_loss"
]
=
utils
.
item
(
target_ctc_self_distill_loss
.
data
)
logging_output
[
"target_ctc_self_distill_loss"
]
=
utils
.
item
(
target_ctc_self_distill_loss
.
data
)
ctc_self_distill_loss
+=
target_ctc_self_distill_loss
*
self
.
target_ctc_self_distill_weight
ctc_self_distill_loss
+=
target_ctc_self_distill_loss
*
self
.
target_ctc_self_distill_weight
ctc_mixup_consistent_loss
=
0
if
mixup
is
True
and
self
.
ctc_mixup_consistent_weight
>
0
:
mixup_pos
=
mixup_idx1
!=
mixup_idx2
ctc_logit
=
net_output
[
"ctc_logit"
][
0
]
mixup_real_logit
=
ctc_logit
[:,
mixup_pos
,
:]
mixup_real_idx1
=
mixup_idx1
[
mixup_pos
]
mixup_real_idx2
=
mixup_idx2
[
mixup_pos
]
no_mixup_logit
=
ctc_logit
[:,
~
mixup_pos
,
:]
mixup_target_logit
=
[
no_mixup_logit
[:,
mixup_real_idx1
,
:],
no_mixup_logit
[:,
mixup_real_idx2
,
:]]
mixup_target_pad_mask
=
[
non_padding_mask
[
mixup_real_idx1
],
non_padding_mask
[
mixup_real_idx2
]]
for
logit
,
pad
,
coef
in
zip
(
mixup_target_logit
,
mixup_target_pad_mask
,
loss_coef
):
loss
=
F
.
kl_div
(
F
.
log_softmax
(
mixup_real_logit
,
dim
=-
1
,
dtype
=
torch
.
float32
),
# F.log_softmax(teacher_logit / temperature, dim=-1, dtype=torch.float32),
F
.
log_softmax
(
logit
.
detach
(),
dim
=-
1
,
dtype
=
torch
.
float32
),
log_target
=
True
,
reduction
=
"none"
,
)
ctc_mixup_consistent_loss
+=
loss
.
sum
(
-
1
)
.
transpose
(
0
,
1
)
.
masked_fill_
(
~
pad
,
0.0
)
.
sum
()
*
coef
logging_output
[
"ctc_mixup_consistent_loss"
]
=
utils
.
item
(
ctc_mixup_consistent_loss
.
data
)
loss
=
\
loss
=
\
self
.
ctc_weight
*
ctc_loss
+
\
self
.
ctc_weight
*
ctc_loss
+
\
self
.
interleaved_ctc_weight
*
interleaved_ctc_loss
+
\
self
.
interleaved_ctc_weight
*
interleaved_ctc_loss
+
\
self
.
target_ctc_weight
*
target_ctc_loss
+
\
self
.
target_ctc_weight
*
target_ctc_loss
+
\
self
.
target_interleaved_ctc_weight
*
target_interleaved_ctc_loss
+
\
self
.
target_interleaved_ctc_weight
*
target_interleaved_ctc_loss
+
\
ctc_self_distill_loss
+
\
ctc_self_distill_loss
+
\
self
.
ctc_entropy
*
ctc_entropy
self
.
ctc_entropy
*
ctc_entropy
+
\
self
.
ctc_mixup_consistent_weight
*
ctc_mixup_consistent_loss
logging_output
[
"all_ctc_loss"
]
=
utils
.
item
(
loss
.
data
)
logging_output
[
"all_ctc_loss"
]
=
utils
.
item
(
loss
.
data
)
...
@@ -577,7 +606,11 @@ class CtcCriterion(FairseqCriterion):
...
@@ -577,7 +606,11 @@ class CtcCriterion(FairseqCriterion):
if
lprobs
is
not
None
:
if
lprobs
is
not
None
:
lprobs_t
=
lprobs
.
transpose
(
0
,
1
)
.
float
()
.
contiguous
()
.
cpu
()
lprobs_t
=
lprobs
.
transpose
(
0
,
1
)
.
float
()
.
contiguous
()
.
cpu
()
if
mixup
:
if
mixup
:
idx
=
mixup_idx1
if
mixup_coef
>
0.5
else
mixup_idx2
# idx = mixup_idx1 if mixup_coef > 0.5 else mixup_idx2
# tokens = tokens[idx]
no_mixup_idx
=
mixup_idx1
==
mixup_idx2
idx
=
mixup_idx1
[
no_mixup_idx
]
lprobs_t
=
lprobs_t
[
idx
]
tokens
=
tokens
[
idx
]
tokens
=
tokens
[
idx
]
c_err
,
c_len
,
w_errs
,
w_len
,
wv_errs
=
encoder
.
ctc_valid
(
c_err
,
c_len
,
w_errs
,
w_len
,
wv_errs
=
encoder
.
ctc_valid
(
...
@@ -652,10 +685,15 @@ class CtcCriterion(FairseqCriterion):
...
@@ -652,10 +685,15 @@ class CtcCriterion(FairseqCriterion):
target_ctc_self_distill_loss_sum
=
utils
.
item
(
target_ctc_self_distill_loss_sum
=
utils
.
item
(
sum
(
log
.
get
(
"target_ctc_self_distill_loss"
,
0
)
for
log
in
logging_outputs
)
sum
(
log
.
get
(
"target_ctc_self_distill_loss"
,
0
)
for
log
in
logging_outputs
)
)
)
ctc_mixup_consistent_loss
=
utils
.
item
(
sum
(
log
.
get
(
"ctc_mixup_consistent_loss"
,
0
)
for
log
in
logging_outputs
)
)
all_ctc_loss_sum
=
utils
.
item
(
all_ctc_loss_sum
=
utils
.
item
(
sum
(
log
.
get
(
"all_ctc_loss"
,
0
)
for
log
in
logging_outputs
)
sum
(
log
.
get
(
"all_ctc_loss"
,
0
)
for
log
in
logging_outputs
)
)
)
# loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
# loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
nfeatures
=
utils
.
item
(
sum
(
log
.
get
(
"nfeatures"
,
0
)
for
log
in
logging_outputs
))
ntokens
=
utils
.
item
(
sum
(
log
.
get
(
"ntokens"
,
0
)
for
log
in
logging_outputs
))
ntokens
=
utils
.
item
(
sum
(
log
.
get
(
"ntokens"
,
0
)
for
log
in
logging_outputs
))
nsentences
=
utils
.
item
(
nsentences
=
utils
.
item
(
sum
(
log
.
get
(
"nsentences"
,
0
)
for
log
in
logging_outputs
)
sum
(
log
.
get
(
"nsentences"
,
0
)
for
log
in
logging_outputs
)
...
@@ -664,8 +702,6 @@ class CtcCriterion(FairseqCriterion):
...
@@ -664,8 +702,6 @@ class CtcCriterion(FairseqCriterion):
sum
(
log
.
get
(
"sample_size"
,
0
)
for
log
in
logging_outputs
)
sum
(
log
.
get
(
"sample_size"
,
0
)
for
log
in
logging_outputs
)
)
)
if
np
.
isnan
(
all_ctc_loss_sum
)
or
np
.
isinf
(
all_ctc_loss_sum
)
or
all_ctc_loss_sum
<
0
:
logger
.
warning
(
"Illegal loss
%
f!"
%
all_ctc_loss_sum
)
if
all_ctc_loss_sum
>
0
:
if
all_ctc_loss_sum
>
0
:
if
"loss"
not
in
logging_outputs
[
0
]:
if
"loss"
not
in
logging_outputs
[
0
]:
metrics
.
log_scalar
(
metrics
.
log_scalar
(
...
@@ -692,7 +728,7 @@ class CtcCriterion(FairseqCriterion):
...
@@ -692,7 +728,7 @@ class CtcCriterion(FairseqCriterion):
if
ctc_entropy_sum
>
0
:
if
ctc_entropy_sum
>
0
:
metrics
.
log_scalar
(
metrics
.
log_scalar
(
"ctc_entropy"
,
"ctc_entropy"
,
ctc_entropy_sum
/
sample_size
/
math
.
log
(
2
),
ctc_entropy_sum
/
nfeatures
/
math
.
log
(
2
),
sample_size
,
sample_size
,
round
=
3
,
round
=
3
,
)
)
...
@@ -721,14 +757,21 @@ class CtcCriterion(FairseqCriterion):
...
@@ -721,14 +757,21 @@ class CtcCriterion(FairseqCriterion):
if
ctc_self_distill_loss_sum
>
0
:
if
ctc_self_distill_loss_sum
>
0
:
metrics
.
log_scalar
(
metrics
.
log_scalar
(
"ctc_self_distill_loss"
,
"ctc_self_distill_loss"
,
ctc_self_distill_loss_sum
/
sample_size
/
math
.
log
(
2
),
ctc_self_distill_loss_sum
/
nfeatures
/
math
.
log
(
2
),
sample_size
,
sample_size
,
round
=
3
,
round
=
3
,
)
)
if
target_ctc_self_distill_loss_sum
>
0
:
if
target_ctc_self_distill_loss_sum
>
0
:
metrics
.
log_scalar
(
metrics
.
log_scalar
(
"target_ctc_self_distill_loss_sum"
,
"target_ctc_self_distill_loss_sum"
,
target_ctc_self_distill_loss_sum
/
sample_size
/
math
.
log
(
2
),
target_ctc_self_distill_loss_sum
/
nfeatures
/
math
.
log
(
2
),
sample_size
,
round
=
3
,
)
if
ctc_mixup_consistent_loss
>
0
:
metrics
.
log_scalar
(
"ctc_mixup_consistent_loss"
,
ctc_mixup_consistent_loss
/
nfeatures
/
math
.
log
(
2
),
sample_size
,
sample_size
,
round
=
3
,
round
=
3
,
)
)
...
...
fairseq/models/speech_to_text/s2t_ctc.py
查看文件 @
444a1f46
...
@@ -11,9 +11,6 @@ from fairseq.models import (
...
@@ -11,9 +11,6 @@ from fairseq.models import (
register_model_architecture
,
register_model_architecture
,
)
)
# from .s2t_sate import S2TSATEModel, S2TSATEEncoder
# from .s2t_transformer import S2TTransformerModel, S2TTransformerEncoder
# from .pdss2t_transformer import PDSS2TTransformerModel, PDSS2TTransformerEncoder
from
fairseq.models.speech_to_text
import
(
from
fairseq.models.speech_to_text
import
(
S2TTransformerModel
,
S2TTransformerModel
,
S2TTransformerEncoder
,
S2TTransformerEncoder
,
...
@@ -128,6 +125,9 @@ class S2TCTCEncoder(FairseqEncoder):
...
@@ -128,6 +125,9 @@ class S2TCTCEncoder(FairseqEncoder):
def
set_ctc_infer
(
self
,
ctc_infer
,
post_process
,
src_dict
=
None
,
tgt_dict
=
None
,
path
=
None
):
def
set_ctc_infer
(
self
,
ctc_infer
,
post_process
,
src_dict
=
None
,
tgt_dict
=
None
,
path
=
None
):
self
.
encoder
.
set_ctc_infer
(
ctc_infer
,
post_process
,
src_dict
=
src_dict
,
tgt_dict
=
tgt_dict
,
path
=
path
)
self
.
encoder
.
set_ctc_infer
(
ctc_infer
,
post_process
,
src_dict
=
src_dict
,
tgt_dict
=
tgt_dict
,
path
=
path
)
def
ctc_valid
(
self
,
lprobs
,
targets
,
input_lengths
,
dictionary
,
lang
=
"source"
):
return
self
.
encoder
.
ctc_valid
(
lprobs
,
targets
,
input_lengths
,
dictionary
,
lang
)
def
forward
(
self
,
src_tokens
,
src_lengths
,
**
kwargs
):
def
forward
(
self
,
src_tokens
,
src_lengths
,
**
kwargs
):
return
self
.
encoder
(
src_tokens
,
src_lengths
,
**
kwargs
)
return
self
.
encoder
(
src_tokens
,
src_lengths
,
**
kwargs
)
...
@@ -208,6 +208,9 @@ class CTCDecoder(object):
...
@@ -208,6 +208,9 @@ class CTCDecoder(object):
encoder_outs
=
self
.
model
(
src_tokens
=
src_tokens
,
encoder_outs
=
self
.
model
(
src_tokens
=
src_tokens
,
src_lengths
=
src_lengths
)
src_lengths
=
src_lengths
)
if
"target_ctc_logit"
in
encoder_outs
:
ctc_logit
=
encoder_outs
[
"target_ctc_logit"
][
0
]
.
transpose
(
0
,
1
)
else
:
ctc_logit
=
encoder_outs
[
"ctc_logit"
][
0
]
.
transpose
(
0
,
1
)
ctc_logit
=
encoder_outs
[
"ctc_logit"
][
0
]
.
transpose
(
0
,
1
)
inter_logits
=
encoder_outs
.
get
(
"interleaved_ctc_logits"
,
[])
inter_logits
=
encoder_outs
.
get
(
"interleaved_ctc_logits"
,
[])
inter_logits_num
=
len
(
inter_logits
)
inter_logits_num
=
len
(
inter_logits
)
...
@@ -357,9 +360,9 @@ def base_architecture(args):
...
@@ -357,9 +360,9 @@ def base_architecture(args):
# Semantics-augmented Encoding (sae)
# Semantics-augmented Encoding (sae)
args
.
sae_adapter
=
getattr
(
args
,
"sae_adapter"
,
"none"
)
args
.
sae_adapter
=
getattr
(
args
,
"sae_adapter"
,
"none"
)
args
.
target_sae_adapter
=
getattr
(
args
,
"target_sae_adapter"
,
args
.
sae_adapter
)
args
.
share_sae_and_ctc
=
getattr
(
args
,
"share_sae_and_ctc"
,
False
)
args
.
share_sae_and_ctc
=
getattr
(
args
,
"share_sae_and_ctc"
,
False
)
args
.
sae_embed_norm
=
getattr
(
args
,
"sae_embed_norm"
,
False
)
args
.
share_target_sae_and_ctc
=
getattr
(
args
,
"share_target_sae_and_ctc"
,
False
)
args
.
sae_out_norm
=
getattr
(
args
,
"sae_out_norm"
,
False
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_hard
=
getattr
(
args
,
"sae_distribution_hard"
,
False
)
args
.
sae_distribution_hard
=
getattr
(
args
,
"sae_distribution_hard"
,
False
)
...
@@ -370,7 +373,8 @@ def base_architecture(args):
...
@@ -370,7 +373,8 @@ def base_architecture(args):
args
.
inter_mixup_layer
=
getattr
(
args
,
"inter_mixup_layer"
,
None
)
args
.
inter_mixup_layer
=
getattr
(
args
,
"inter_mixup_layer"
,
None
)
args
.
inter_mixup_beta
=
getattr
(
args
,
"inter_mixup_beta"
,
0.5
)
args
.
inter_mixup_beta
=
getattr
(
args
,
"inter_mixup_beta"
,
0.5
)
args
.
inter_mixup_prob
=
getattr
(
args
,
"inter_mixup_prob"
,
1
)
args
.
inter_mixup_prob
=
getattr
(
args
,
"inter_mixup_prob"
,
1
)
args
.
inter_mixup_ratio
=
getattr
(
args
,
"inter_mixup_ratio"
,
1
)
args
.
inter_mixup_ratio
=
getattr
(
args
,
"inter_mixup_ratio"
,
0.3
)
args
.
inter_mixup_keep_org
=
getattr
(
args
,
"inter_mixup_keep_org"
,
False
)
# PDS
# PDS
args
.
pds_stages
=
getattr
(
args
,
"pds_stages"
,
None
)
args
.
pds_stages
=
getattr
(
args
,
"pds_stages"
,
None
)
...
...
fairseq/models/speech_to_text/s2t_sate.py
查看文件 @
444a1f46
...
@@ -296,7 +296,7 @@ class TextualEncoder(FairseqEncoder):
...
@@ -296,7 +296,7 @@ class TextualEncoder(FairseqEncoder):
if
self
.
inter_ctc
:
if
self
.
inter_ctc
:
logger
.
info
(
"Target CTC loss in layer
%
d"
%
self
.
ctc_layer
)
logger
.
info
(
"Target CTC loss in layer
%
d"
%
self
.
ctc_layer
)
self
.
ctc
=
CTC
(
embed_dim
,
self
.
ctc
=
CTC
(
embed_dim
,
dictionary_size
=
embed_tokens
.
num_embeddings
,
dictionary_size
=
embed_tokens
.
num_embeddings
if
embed_tokens
is
not
None
else
len
(
dictionary
)
,
dropout
=
args
.
dropout
,
dropout
=
args
.
dropout
,
need_layernorm
=
True
if
self
.
inter_ctc
else
False
)
need_layernorm
=
True
if
self
.
inter_ctc
else
False
)
...
...
fairseq/models/speech_to_text/s2t_transformer.py
查看文件 @
444a1f46
...
@@ -515,6 +515,11 @@ class S2TTransformerModel(FairseqEncoderDecoderModel):
...
@@ -515,6 +515,11 @@ class S2TTransformerModel(FairseqEncoderDecoderModel):
type
=
float
,
type
=
float
,
help
=
"the ratio of mixup"
,
help
=
"the ratio of mixup"
,
)
)
parser
.
add_argument
(
"--inter-mixup-keep-org"
,
action
=
"store_true"
,
help
=
"keep original batch"
,
)
pass
pass
@classmethod
@classmethod
...
@@ -745,15 +750,16 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -745,15 +750,16 @@ class S2TTransformerEncoder(FairseqEncoder):
# mixup
# mixup
self
.
mixup
=
getattr
(
args
,
"inter_mixup"
,
False
)
self
.
mixup
=
getattr
(
args
,
"inter_mixup"
,
False
)
if
self
.
mixup
:
if
self
.
mixup
:
self
.
mixup_layer
=
int
(
args
.
inter_mixup_layer
)
self
.
mixup_layer
=
args
.
inter_mixup_layer
self
.
mixup_prob
=
float
(
args
.
inter_mixup_prob
)
self
.
mixup_prob
=
args
.
inter_mixup_prob
self
.
mixup_ratio
=
float
(
args
.
inter_mixup_ratio
)
self
.
mixup_ratio
=
args
.
inter_mixup_ratio
self
.
mixup_keep_org
=
args
.
inter_mixup_keep_org
beta
=
float
(
args
.
inter_mixup_beta
)
beta
=
args
.
inter_mixup_beta
from
torch.distributions
import
Beta
from
torch.distributions
import
Beta
self
.
beta
=
Beta
(
torch
.
Tensor
([
beta
]),
torch
.
Tensor
([
beta
]))
self
.
beta
=
Beta
(
torch
.
Tensor
([
beta
]),
torch
.
Tensor
([
beta
]))
logger
.
info
(
"Use mixup in layer
%
d with beta
%.2
f, prob
%.2
f, ratio
%.2
f."
%
(
logger
.
info
(
"Use mixup in layer
%
d with beta
%.2
f, prob
%.2
f, ratio
%.2
f
, keep original data
%
r
."
%
(
self
.
mixup_layer
,
beta
,
self
.
mixup_prob
,
self
.
mixup_ratio
))
self
.
mixup_layer
,
beta
,
self
.
mixup_prob
,
self
.
mixup_ratio
,
self
.
mixup_keep_org
))
# gather cosine similarity
# gather cosine similarity
self
.
gather_cos_sim
=
getattr
(
args
,
"gather_cos_sim"
,
False
)
self
.
gather_cos_sim
=
getattr
(
args
,
"gather_cos_sim"
,
False
)
...
@@ -812,15 +818,24 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -812,15 +818,24 @@ class S2TTransformerEncoder(FairseqEncoder):
def
apply_mixup
(
self
,
x
,
encoder_padding_mask
):
def
apply_mixup
(
self
,
x
,
encoder_padding_mask
):
batch
=
x
.
size
(
1
)
batch
=
x
.
size
(
1
)
indices
=
np
.
random
.
permutation
(
batch
)
indices
=
np
.
random
.
permutation
(
batch
)
org_indices
=
np
.
arange
(
batch
)
if
self
.
mixup_ratio
==
1
:
if
self
.
mixup_ratio
==
1
:
if
len
(
indices
)
%
2
!=
0
:
if
len
(
indices
)
%
2
!=
0
:
indices
=
np
.
append
(
indices
,
(
indices
[
-
1
]))
indices
=
np
.
append
(
indices
,
(
indices
[
-
1
]))
idx1
=
indices
[
0
::
2
]
idx1
=
indices
[
0
::
2
]
idx2
=
indices
[
1
::
2
]
idx2
=
indices
[
1
::
2
]
if
self
.
mixup_keep_org
:
idx1
=
np
.
append
(
org_indices
,
idx1
)
idx2
=
np
.
append
(
org_indices
,
idx2
)
else
:
else
:
mix_size
=
int
(
max
(
2
,
batch
*
self
.
mixup_ratio
//
2
*
2
))
mix_size
=
int
(
max
(
2
,
batch
*
self
.
mixup_ratio
//
2
*
2
))
mix_indices
=
indices
[:
mix_size
]
mix_indices
=
indices
[:
mix_size
]
if
self
.
mixup_keep_org
:
idx1
=
np
.
append
(
org_indices
,
mix_indices
[
0
::
2
])
idx2
=
np
.
append
(
org_indices
,
mix_indices
[
1
::
2
])
else
:
idx1
=
np
.
append
(
mix_indices
[
0
::
2
],
(
indices
[
mix_size
:]))
idx1
=
np
.
append
(
mix_indices
[
0
::
2
],
(
indices
[
mix_size
:]))
idx2
=
np
.
append
(
mix_indices
[
1
::
2
],
(
indices
[
mix_size
:]))
idx2
=
np
.
append
(
mix_indices
[
1
::
2
],
(
indices
[
mix_size
:]))
...
@@ -928,7 +943,7 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -928,7 +943,7 @@ class S2TTransformerEncoder(FairseqEncoder):
interleaved_ctc_logits
=
[]
interleaved_ctc_logits
=
[]
if
self
.
training
and
self
.
mixup
and
layer_idx
==
self
.
mixup_layer
:
if
self
.
training
and
self
.
mixup
and
layer_idx
==
self
.
mixup_layer
:
if
torch
.
rand
(
1
)
<
self
.
mixup_prob
:
if
torch
.
rand
(
1
)
<
=
self
.
mixup_prob
:
x
,
encoder_padding_mask
,
input_lengths
,
mixup
=
self
.
apply_mixup
(
x
,
encoder_padding_mask
)
x
,
encoder_padding_mask
,
input_lengths
,
mixup
=
self
.
apply_mixup
(
x
,
encoder_padding_mask
)
self
.
show_debug
(
x
,
"x before encoding"
)
self
.
show_debug
(
x
,
"x before encoding"
)
...
@@ -1209,7 +1224,8 @@ def base_architecture(args):
...
@@ -1209,7 +1224,8 @@ def base_architecture(args):
args
.
inter_mixup_layer
=
getattr
(
args
,
"inter_mixup_layer"
,
None
)
args
.
inter_mixup_layer
=
getattr
(
args
,
"inter_mixup_layer"
,
None
)
args
.
inter_mixup_beta
=
getattr
(
args
,
"inter_mixup_beta"
,
0.5
)
args
.
inter_mixup_beta
=
getattr
(
args
,
"inter_mixup_beta"
,
0.5
)
args
.
inter_mixup_prob
=
getattr
(
args
,
"inter_mixup_prob"
,
1
)
args
.
inter_mixup_prob
=
getattr
(
args
,
"inter_mixup_prob"
,
1
)
args
.
inter_mixup_ratio
=
getattr
(
args
,
"inter_mixup_ratio"
,
1
)
args
.
inter_mixup_ratio
=
getattr
(
args
,
"inter_mixup_ratio"
,
0.3
)
args
.
inter_mixup_keep_org
=
getattr
(
args
,
"inter_mixup_keep_org"
,
False
)
@register_model_architecture
(
"s2t_transformer"
,
"s2t_transformer_s"
)
@register_model_architecture
(
"s2t_transformer"
,
"s2t_transformer_s"
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论