Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
F
Fairseq-S2T
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
xuchen
Fairseq-S2T
Commits
8f45faa2
Commit
8f45faa2
authored
Sep 15, 2022
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update the dual arch
parent
cbeb5521
隐藏空白字符变更
内嵌
并排
正在显示
4 个修改的文件
包含
183 行增加
和
86 行删除
+183
-86
egs/mustc/st/conf/dual.yaml
+16
-17
fairseq/criterions/join_speech_and_text_loss.py
+1
-8
fairseq/models/speech_to_text/s2t_dual.py
+145
-46
fairseq/modules/transformer_s2_layer.py
+21
-15
没有找到文件。
egs/mustc/st/conf/dual.yaml
查看文件 @
8f45faa2
arch
:
s2t_dual
arch
:
s2t_dual
asr-encoder
:
pds
asr-encoder
:
transformer
mt-encoder-layers
:
6
mt-encoder-layers
:
6
mt-encoder
:
transformer
mt-encoder
:
transformer
encoder-drop-net
:
True
encoder-drop-net-prob
:
0.5
encoder-
embed-dim
:
256
encoder-
collaboration-mode
:
parallel
pds-stages
:
4
decoder-collaboration-mode
:
parallel
#ctc-layer: 12
pds-layers
:
3_3_3_3
encoder-league-s1-ratio
:
0.5
pds-ratios
:
2_2_1_2
encoder-league-s2-ratio
:
0.5
pds-fusion
:
Tru
e
encoder-league-drop-net
:
Fals
e
pds-fusion-method
:
all_conv
encoder-league-drop-net-prob
:
0.2
pds-embed-dims
:
256_256_256_256
encoder-league-drop-net-mix
:
False
pds-ds-method
:
conv
pds-embed-norm
:
True
decoder-league-s1-ratio
:
0.5
pds-position-embed
:
1_1_1_1
decoder-league-s2-ratio
:
0.5
pds-kernel-sizes
:
5_5_5_5
decoder-league-drop-net
:
False
pds-ffn-ratios
:
8_8_8_8
decoder-league-drop-net-prob
:
0.0
pds-attn-heads
:
4_4_4_4
decoder-league-drop-net-mix
:
False
share-decoder-input-output-embed
:
True
share-decoder-input-output-embed
:
True
optimizer
:
adam
optimizer
:
adam
...
@@ -35,6 +33,7 @@ label_smoothing: 0.1
...
@@ -35,6 +33,7 @@ label_smoothing: 0.1
dropout
:
0.1
dropout
:
0.1
activation-fn
:
relu
activation-fn
:
relu
encoder-embed-dim
:
256
encoder-ffn-embed-dim
:
2048
encoder-ffn-embed-dim
:
2048
encoder-layers
:
12
encoder-layers
:
12
decoder-layers
:
6
decoder-layers
:
6
...
...
fairseq/criterions/join_speech_and_text_loss.py
查看文件 @
8f45faa2
...
@@ -35,13 +35,6 @@ class JoinSpeechTextLoss(
...
@@ -35,13 +35,6 @@ class JoinSpeechTextLoss(
"""Add criterion-specific arguments to the parser."""
"""Add criterion-specific arguments to the parser."""
LabelSmoothedCrossEntropyCriterion
.
add_args
(
parser
)
LabelSmoothedCrossEntropyCriterion
.
add_args
(
parser
)
CtcCriterion
.
add_args
(
parser
)
CtcCriterion
.
add_args
(
parser
)
parser
.
add_argument
(
"--ctc-weight"
,
default
=
0.0
,
type
=
float
,
metavar
=
"D"
,
help
=
"weight of CTC loss"
,
)
def
forward
(
self
,
model
,
sample
,
reduce
=
True
):
def
forward
(
self
,
model
,
sample
,
reduce
=
True
):
"""Compute the loss for the given sample.
"""Compute the loss for the given sample.
...
@@ -65,7 +58,7 @@ class JoinSpeechTextLoss(
...
@@ -65,7 +58,7 @@ class JoinSpeechTextLoss(
if
"mixup"
in
encoder_out
and
encoder_out
[
"mixup"
]
is
not
None
:
if
"mixup"
in
encoder_out
and
encoder_out
[
"mixup"
]
is
not
None
:
use_mixup
=
True
use_mixup
=
True
loss
,
nll_loss
=
self
.
compute_loss
(
model
,
net_output
,
sample
,
reduce
=
reduce
)
loss
,
nll_loss
,
other_loss
=
self
.
compute_loss
(
model
,
net_output
,
sample
,
reduce
=
reduce
)
sample_size
=
(
sample_size
=
(
sample
[
"target"
]
.
size
(
0
)
if
self
.
sentence_avg
else
sample
[
"ntokens"
]
sample
[
"target"
]
.
size
(
0
)
if
self
.
sentence_avg
else
sample
[
"ntokens"
]
)
)
...
...
fairseq/models/speech_to_text/s2t_dual.py
查看文件 @
8f45faa2
...
@@ -73,31 +73,75 @@ class S2TDualModel(FairseqEncoderDecoderModel):
...
@@ -73,31 +73,75 @@ class S2TDualModel(FairseqEncoderDecoderModel):
type
=
int
,
type
=
int
,
help
=
"the layers of the MT encoder"
,
help
=
"the layers of the MT encoder"
,
)
)
# collaboration
parser
.
add_argument
(
parser
.
add_argument
(
"--encoder-asr-ratio"
,
"--encoder-collaboration-mode"
,
default
=
"none"
,
type
=
str
,
help
=
"how to calculate attention during league in encoder"
,
)
parser
.
add_argument
(
"--decoder-collaboration-mode"
,
default
=
"none"
,
type
=
str
,
help
=
"how to calculate attention during league in encoder"
,
)
# league
parser
.
add_argument
(
"--encoder-league-s1-ratio"
,
default
=
0.5
,
default
=
0.5
,
type
=
float
,
type
=
float
,
help
=
"
the ratio of the asr
representation"
,
help
=
"
league ratio of the s1
representation"
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"--encoder-
mt
-ratio"
,
"--encoder-
league-s2
-ratio"
,
default
=
0.5
,
default
=
0.5
,
type
=
float
,
type
=
float
,
help
=
"
the ratio of the mt
representation"
,
help
=
"
league ratio of the s2
representation"
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"--encoder-drop-net"
,
"--encoder-
league-
drop-net"
,
action
=
"store_true"
,
action
=
"store_true"
,
help
=
"drop
an input
"
,
help
=
"drop
one input during league
"
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"--encoder-drop-net-prob"
,
"--encoder-
league-
drop-net-prob"
,
default
=
0.
2
,
default
=
0.
0
,
type
=
float
,
type
=
float
,
help
=
"probability of dropping one
of the
representations"
,
help
=
"probability of dropping one representations"
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"--encoder-drop-net-mix"
,
"--encoder-league-drop-net-mix"
,
action
=
"store_true"
,
help
=
"mix the two input with any probability"
,
)
parser
.
add_argument
(
"--decoder-league-s1-ratio"
,
default
=
0.5
,
type
=
float
,
help
=
"league ratio of the s1 representation"
,
)
parser
.
add_argument
(
"--decoder-league-s2-ratio"
,
default
=
0.5
,
type
=
float
,
help
=
"league ratio of the s2 representation"
,
)
parser
.
add_argument
(
"--decoder-league-drop-net"
,
action
=
"store_true"
,
help
=
"drop one input during league"
,
)
parser
.
add_argument
(
"--decoder-league-drop-net-prob"
,
default
=
0.0
,
type
=
float
,
help
=
"probability of dropping one representations"
,
)
parser
.
add_argument
(
"--decoder-league-drop-net-mix"
,
action
=
"store_true"
,
action
=
"store_true"
,
help
=
"mix the two input with any probability"
,
help
=
"mix the two input with any probability"
,
)
)
...
@@ -241,6 +285,8 @@ class S2TDualEncoder(FairseqEncoder):
...
@@ -241,6 +285,8 @@ class S2TDualEncoder(FairseqEncoder):
super
()
.
__init__
(
None
)
super
()
.
__init__
(
None
)
asr_encoder_type
=
args
.
asr_encoder
asr_encoder_type
=
args
.
asr_encoder
args
.
encoder_layers
=
12
if
asr_encoder_type
==
"transformer"
:
if
asr_encoder_type
==
"transformer"
:
self
.
asr_encoder
=
S2TTransformerEncoder
(
args
,
task
)
self
.
asr_encoder
=
S2TTransformerEncoder
(
args
,
task
)
elif
asr_encoder_type
==
"pds"
:
elif
asr_encoder_type
==
"pds"
:
...
@@ -250,14 +296,15 @@ class S2TDualEncoder(FairseqEncoder):
...
@@ -250,14 +296,15 @@ class S2TDualEncoder(FairseqEncoder):
else
:
else
:
logger
.
error
(
"Unsupported ASR architecture:
%
s."
%
asr_encoder_type
)
logger
.
error
(
"Unsupported ASR architecture:
%
s."
%
asr_encoder_type
)
setattr
(
args
,
"encoder_s1_ratio"
,
args
.
encoder_asr_ratio
)
self
.
encoder_collaboration_mode
=
args
.
encoder_collaboration_mode
setattr
(
args
,
"encoder_s2_ratio"
,
args
.
encoder_mt_ratio
)
setattr
(
args
,
"use_s2_attn_norm"
,
False
)
asr_encoder_layers
=
args
.
encoder_layers
setattr
(
args
,
"encoder_layers"
,
args
.
mt_encoder_layers
)
setattr
(
args
,
"encoder_layers"
,
args
.
mt_encoder_layers
)
attn_type
=
args
.
encoder_attention_type
attn_type
=
args
.
encoder_attention_type
setattr
(
args
,
"encoder_attention_type"
,
"selfattn"
)
setattr
(
args
,
"encoder_attention_type"
,
"selfattn"
)
self
.
mt_encoder
=
TransformerS2Encoder
(
args
,
task
.
source_dictionary
,
embed_tokens
)
self
.
mt_encoder
=
TransformerS2Encoder
(
args
,
task
.
source_dictionary
,
embed_tokens
)
setattr
(
args
,
"encoder_attention_type"
,
attn_type
)
setattr
(
args
,
"encoder_attention_type"
,
attn_type
)
setattr
(
args
,
"encoder_layers"
,
asr_encoder_layers
)
def
forward
(
self
,
speech_src_tokens
,
speech_src_lengths
,
text_src_tokens
,
text_src_lengths
,
**
kwargs
):
def
forward
(
self
,
speech_src_tokens
,
speech_src_lengths
,
text_src_tokens
,
text_src_lengths
,
**
kwargs
):
asr_encoder_out
=
self
.
asr_encoder
(
speech_src_tokens
,
speech_src_lengths
)
asr_encoder_out
=
self
.
asr_encoder
(
speech_src_tokens
,
speech_src_lengths
)
...
@@ -269,6 +316,13 @@ class S2TDualEncoder(FairseqEncoder):
...
@@ -269,6 +316,13 @@ class S2TDualEncoder(FairseqEncoder):
encoder_out
[
"ctc_logit"
]
=
asr_encoder_out
[
"ctc_logit"
]
encoder_out
[
"ctc_logit"
]
=
asr_encoder_out
[
"ctc_logit"
]
encoder_out
[
"ctc_padding_mask"
]
=
asr_encoder_out
[
"encoder_padding_mask"
]
encoder_out
[
"ctc_padding_mask"
]
=
asr_encoder_out
[
"encoder_padding_mask"
]
# encoder_out["encoder_out"] = encoder_out["s2_encoder_out"]
# encoder_out["encoder_padding_mask"] = encoder_out["s2_encoder_padding_mask"]
#
# encoder_out["s2_encoder_out"] = []
# encoder_out["s2_encoder_padding_mask"] = []
return
encoder_out
return
encoder_out
def
forward_torchscript
(
self
,
net_input
:
Dict
[
str
,
Tensor
]):
def
forward_torchscript
(
self
,
net_input
:
Dict
[
str
,
Tensor
]):
...
@@ -301,15 +355,15 @@ class S2TDualEncoder(FairseqEncoder):
...
@@ -301,15 +355,15 @@ class S2TDualEncoder(FairseqEncoder):
new_encoder_padding_mask
=
[
new_encoder_padding_mask
=
[
encoder_out
[
"encoder_padding_mask"
][
0
]
.
index_select
(
0
,
new_order
)
encoder_out
[
"encoder_padding_mask"
][
0
]
.
index_select
(
0
,
new_order
)
]
]
if
len
(
encoder_out
[
"
encoder_out_s2
"
])
==
0
:
if
len
(
encoder_out
[
"
s2_encoder_out
"
])
==
0
:
new_
encoder_out_s2
=
[]
new_
s2_encoder_out
=
[]
else
:
else
:
new_
encoder_out_s2
=
[
encoder_out
[
"encoder_out_s2
"
][
0
]
.
index_select
(
1
,
new_order
)]
new_
s2_encoder_out
=
[
encoder_out
[
"s2_encoder_out
"
][
0
]
.
index_select
(
1
,
new_order
)]
if
len
(
encoder_out
[
"
encoder_padding_mask_s2
"
])
==
0
:
if
len
(
encoder_out
[
"
s2_encoder_padding_mask
"
])
==
0
:
new_encoder_padding_mask_s2
=
[]
new_encoder_padding_mask_s2
=
[]
else
:
else
:
new_
encoder_padding_mask_s2
=
[
new_
s2_encoder_padding_mask
=
[
encoder_out
[
"
encoder_padding_mask_s2
"
][
0
]
.
index_select
(
0
,
new_order
)
encoder_out
[
"
s2_encoder_padding_mask
"
][
0
]
.
index_select
(
0
,
new_order
)
]
]
if
len
(
encoder_out
[
"encoder_embedding"
])
==
0
:
if
len
(
encoder_out
[
"encoder_embedding"
])
==
0
:
new_encoder_embedding
=
[]
new_encoder_embedding
=
[]
...
@@ -336,8 +390,8 @@ class S2TDualEncoder(FairseqEncoder):
...
@@ -336,8 +390,8 @@ class S2TDualEncoder(FairseqEncoder):
return
{
return
{
"encoder_out"
:
new_encoder_out
,
# T x B x C
"encoder_out"
:
new_encoder_out
,
# T x B x C
"encoder_padding_mask"
:
new_encoder_padding_mask
,
# B x T
"encoder_padding_mask"
:
new_encoder_padding_mask
,
# B x T
"
encoder_out_s2"
:
new_encoder_out_s2
,
# T x B x C
"
s2_encoder_out"
:
new_s2_encoder_out
,
# T x B x C
"
encoder_padding_mask_s2"
:
new_encoder_padding_mask_s2
,
# B x T
"
s2_encoder_padding_mask"
:
new_encoder_padding_mask
,
# B x T
"encoder_embedding"
:
new_encoder_embedding
,
# B x T x C
"encoder_embedding"
:
new_encoder_embedding
,
# B x T x C
"encoder_states"
:
encoder_states
,
# List[T x B x C]
"encoder_states"
:
encoder_states
,
# List[T x B x C]
"src_tokens"
:
src_tokens
,
# B x T
"src_tokens"
:
src_tokens
,
# B x T
...
@@ -356,8 +410,7 @@ def base_architecture(args):
...
@@ -356,8 +410,7 @@ def base_architecture(args):
args
.
subsampling_norm
=
getattr
(
args
,
"subsampling_norm"
,
"none"
)
args
.
subsampling_norm
=
getattr
(
args
,
"subsampling_norm"
,
"none"
)
args
.
subsampling_activation
=
getattr
(
args
,
"subsampling_activation"
,
"glu"
)
args
.
subsampling_activation
=
getattr
(
args
,
"subsampling_activation"
,
"glu"
)
args
.
encoder_learned_pos
=
getattr
(
args
,
"encoder_learned_pos"
,
False
)
# Transformer
args
.
encoder_embed_dim
=
getattr
(
args
,
"encoder_embed_dim"
,
512
)
args
.
encoder_embed_dim
=
getattr
(
args
,
"encoder_embed_dim"
,
512
)
args
.
encoder_ffn_embed_dim
=
getattr
(
args
,
"encoder_ffn_embed_dim"
,
2048
)
args
.
encoder_ffn_embed_dim
=
getattr
(
args
,
"encoder_ffn_embed_dim"
,
2048
)
args
.
encoder_layers
=
getattr
(
args
,
"encoder_layers"
,
12
)
args
.
encoder_layers
=
getattr
(
args
,
"encoder_layers"
,
12
)
...
@@ -372,6 +425,7 @@ def base_architecture(args):
...
@@ -372,6 +425,7 @@ def base_architecture(args):
args
.
decoder_attention_type
=
getattr
(
args
,
"decoder_attention_type"
,
"selfattn"
)
args
.
decoder_attention_type
=
getattr
(
args
,
"decoder_attention_type"
,
"selfattn"
)
args
.
decoder_attention_heads
=
getattr
(
args
,
"decoder_attention_heads"
,
8
)
args
.
decoder_attention_heads
=
getattr
(
args
,
"decoder_attention_heads"
,
8
)
args
.
decoder_normalize_before
=
getattr
(
args
,
"decoder_normalize_before"
,
True
)
args
.
decoder_normalize_before
=
getattr
(
args
,
"decoder_normalize_before"
,
True
)
args
.
encoder_learned_pos
=
getattr
(
args
,
"encoder_learned_pos"
,
False
)
args
.
decoder_learned_pos
=
getattr
(
args
,
"decoder_learned_pos"
,
False
)
args
.
decoder_learned_pos
=
getattr
(
args
,
"decoder_learned_pos"
,
False
)
args
.
dropout
=
getattr
(
args
,
"dropout"
,
0.1
)
args
.
dropout
=
getattr
(
args
,
"dropout"
,
0.1
)
args
.
attention_dropout
=
getattr
(
args
,
"attention_dropout"
,
args
.
dropout
)
args
.
attention_dropout
=
getattr
(
args
,
"attention_dropout"
,
args
.
dropout
)
...
@@ -379,6 +433,10 @@ def base_architecture(args):
...
@@ -379,6 +433,10 @@ def base_architecture(args):
args
.
activation_fn
=
getattr
(
args
,
"activation_fn"
,
"relu"
)
args
.
activation_fn
=
getattr
(
args
,
"activation_fn"
,
"relu"
)
args
.
adaptive_softmax_cutoff
=
getattr
(
args
,
"adaptive_softmax_cutoff"
,
None
)
args
.
adaptive_softmax_cutoff
=
getattr
(
args
,
"adaptive_softmax_cutoff"
,
None
)
args
.
adaptive_softmax_dropout
=
getattr
(
args
,
"adaptive_softmax_dropout"
,
0
)
args
.
adaptive_softmax_dropout
=
getattr
(
args
,
"adaptive_softmax_dropout"
,
0
)
args
.
tie_adaptive_weights
=
getattr
(
args
,
"tie_adaptive_weights"
,
False
)
args
.
tie_adaptive_proj
=
getattr
(
args
,
"tie_adaptive_proj"
,
False
)
args
.
adaptive_softmax_factor
=
getattr
(
args
,
"adaptive_softmax_factor"
,
4
)
args
.
share_decoder_input_output_embed
=
getattr
(
args
.
share_decoder_input_output_embed
=
getattr
(
args
,
"share_decoder_input_output_embed"
,
False
args
,
"share_decoder_input_output_embed"
,
False
)
)
...
@@ -394,25 +452,64 @@ def base_architecture(args):
...
@@ -394,25 +452,64 @@ def base_architecture(args):
)
)
args
.
decoder_input_dim
=
getattr
(
args
,
"decoder_input_dim"
,
args
.
decoder_embed_dim
)
args
.
decoder_input_dim
=
getattr
(
args
,
"decoder_input_dim"
,
args
.
decoder_embed_dim
)
args
.
no_scale_embedding
=
getattr
(
args
,
"no_scale_embedding"
,
False
)
args
.
no_scale_embedding
=
getattr
(
args
,
"no_scale_embedding"
,
False
)
args
.
encoder_no_scale_embedding
=
getattr
(
args
,
"encoder_no_scale_embedding"
,
False
)
args
.
quant_noise_pq
=
getattr
(
args
,
"quant_noise_pq"
,
0
)
args
.
quant_noise_pq
=
getattr
(
args
,
"quant_noise_pq"
,
0
)
args
.
max_encoder_relative_length
=
getattr
(
args
,
'max_encoder_relative_length'
,
-
1
)
args
.
encoder_embed_linear
=
getattr
(
args
,
"encoder_embed_linear"
,
False
)
args
.
max_decoder_relative_length
=
getattr
(
args
,
'max_decoder_relative_length'
,
-
1
)
args
.
encoder_embed_norm
=
getattr
(
args
,
"encoder_embed_norm"
,
False
)
args
.
k_only
=
getattr
(
args
,
'k_only'
,
True
)
# CTC
args
.
ctc_layer
=
getattr
(
args
,
"ctc_layer"
,
0
)
args
.
share_ctc_and_embed
=
getattr
(
args
,
"share_ctc_and_embed"
,
False
)
# Conformer
# Conformer
args
.
encoder_activation_fn
=
getattr
(
args
,
"encoder_activation_fn"
,
"relu"
)
args
.
macaron_style
=
getattr
(
args
,
"macaron_style"
,
False
)
args
.
macaron_style
=
getattr
(
args
,
"macaron_style"
,
False
)
args
.
use_cnn_module
=
getattr
(
args
,
"use_cnn_module"
,
False
)
args
.
use_cnn_module
=
getattr
(
args
,
"use_cnn_module"
,
False
)
args
.
cnn_module_kernel
=
getattr
(
args
,
"cnn_module_kernel"
,
31
)
args
.
cnn_module_kernel
=
getattr
(
args
,
"cnn_module_kernel"
,
31
)
args
.
cnn_module_norm
=
getattr
(
args
,
"cnn_module_norm"
,
"batch_norm"
)
# settings for DLCL
args
.
use_enc_dlcl
=
getattr
(
args
,
"use_enc_dlcl"
,
False
)
args
.
use_dec_dlcl
=
getattr
(
args
,
"use_dec_dlcl"
,
False
)
args
.
init_value
=
getattr
(
args
,
'init_value'
,
'avg'
)
args
.
weight_type
=
getattr
(
args
,
'weight_type'
,
'scalar'
)
args
.
encoder_learnable
=
getattr
(
args
,
'encoder_learnable'
,
True
)
args
.
normalize_embed
=
getattr
(
args
,
'normalize_embed'
,
False
)
args
.
history_dropout
=
getattr
(
args
,
'history_dropout'
,
0.0
)
args
.
history_window_size
=
getattr
(
args
,
'history_window_size'
,
-
1
)
# Relative position encoding
args
.
max_encoder_relative_length
=
getattr
(
args
,
'max_encoder_relative_length'
,
-
1
)
args
.
k_only
=
getattr
(
args
,
'k_only'
,
True
)
# SATE
# local modeling
args
.
acoustic_encoder
=
getattr
(
args
,
"acoustic_encoder"
,
"transformer"
)
args
.
hard_mask_window
=
getattr
(
args
,
'hard_mask_window'
,
0
)
args
.
adapter
=
getattr
(
args
,
"adapter"
,
"league"
)
args
.
gauss_mask_sigma
=
getattr
(
args
,
'gauss_mask_sigma'
,
0
)
args
.
ctc_compress_strategy
=
getattr
(
args
,
"ctc_compress_strategy"
,
"avg"
)
args
.
init_mask_weight
=
getattr
(
args
,
'init_mask_weight'
,
0
)
args
.
temperature
=
getattr
(
args
,
"temperature"
,
1.0
)
args
.
text_encoder_layers
=
getattr
(
args
,
"text_encoder_layers"
,
6
)
# interleaved CTC
args
.
text_attention_type
=
getattr
(
args
,
"text_attention_type"
,
"selfattn"
)
args
.
interleaved_ctc_layers
=
getattr
(
args
,
"interleaved_ctc_layers"
,
None
)
args
.
share_ctc_and_adapter
=
getattr
(
args
,
"share_ctc_and_adapter"
,
False
)
args
.
interleaved_ctc_temperature
=
getattr
(
args
,
"interleaved_ctc_temperature"
,
1
)
args
.
interleaved_ctc_drop_prob
=
getattr
(
args
,
"interleaved_ctc_drop_prob"
,
0
)
# Semantics-augmented Encoding (sae)
args
.
sae_adapter
=
getattr
(
args
,
"sae_adapter"
,
"none"
)
args
.
target_sae_adapter
=
getattr
(
args
,
"target_sae_adapter"
,
args
.
sae_adapter
)
args
.
share_sae_and_ctc
=
getattr
(
args
,
"share_sae_and_ctc"
,
False
)
args
.
share_target_sae_and_ctc
=
getattr
(
args
,
"share_target_sae_and_ctc"
,
False
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_hard
=
getattr
(
args
,
"sae_distribution_hard"
,
False
)
args
.
sae_gumbel
=
getattr
(
args
,
"sae_gumbel"
,
False
)
# mixup
args
.
inter_mixup
=
getattr
(
args
,
"inter_mixup"
,
False
)
args
.
inter_mixup_layer
=
getattr
(
args
,
"inter_mixup_layer"
,
None
)
args
.
inter_mixup_beta
=
getattr
(
args
,
"inter_mixup_beta"
,
0.5
)
args
.
inter_mixup_prob
=
getattr
(
args
,
"inter_mixup_prob"
,
1
)
args
.
inter_mixup_ratio
=
getattr
(
args
,
"inter_mixup_ratio"
,
0.3
)
args
.
inter_mixup_keep_org
=
getattr
(
args
,
"inter_mixup_keep_org"
,
False
)
# PDS
# PDS
args
.
pds_stages
=
getattr
(
args
,
"pds_stages"
,
None
)
args
.
pds_stages
=
getattr
(
args
,
"pds_stages"
,
None
)
...
@@ -432,23 +529,25 @@ def base_architecture(args):
...
@@ -432,23 +529,25 @@ def base_architecture(args):
args
.
pds_conv_strides
=
getattr
(
args
,
"pds_conv_strides"
,
None
)
args
.
pds_conv_strides
=
getattr
(
args
,
"pds_conv_strides"
,
None
)
args
.
pds_attn_strides
=
getattr
(
args
,
"pds_attn_strides"
,
None
)
args
.
pds_attn_strides
=
getattr
(
args
,
"pds_attn_strides"
,
None
)
args
.
ctc_layer
=
getattr
(
args
,
"ctc_layer"
,
0
)
args
.
pds_dropout
=
getattr
(
args
,
"pds_dropout"
,
args
.
dropout
)
args
.
pds_dropout
=
getattr
(
args
,
"pds_dropout"
,
args
.
dropout
)
args
.
pds_fusion
=
getattr
(
args
,
"pds_fusion"
,
False
)
args
.
pds_fusion
=
getattr
(
args
,
"pds_fusion"
,
False
)
args
.
pds_fusion_method
=
getattr
(
args
,
"pds_fusion_method"
,
"all_conv"
)
args
.
pds_fusion_method
=
getattr
(
args
,
"pds_fusion_method"
,
"all_conv"
)
# intermedia CTC
args
.
pds_ctc
=
getattr
(
args
,
"pds_ctc"
,
"0_0_0_0"
)
args
.
intermedia_adapter
=
getattr
(
args
,
"intermedia_adapter"
,
"none"
)
args
.
intermedia_drop_prob
=
getattr
(
args
,
"intermedia_drop_prob"
,
0
)
# dual
# dual
args
.
encoder_asr_ratio
=
getattr
(
args
,
"encoder_asr_ratio"
,
1.0
)
args
.
encoder_collaboration_mode
=
getattr
(
args
,
"encoder_collaboration_mode"
,
"none"
)
args
.
encoder_mt_ratio
=
getattr
(
args
,
"encoder_mt_ratio"
,
1.0
)
args
.
decoder_collaboration_mode
=
getattr
(
args
,
"decoder_collaboration_mode"
,
"none"
)
args
.
encoder_drop_net
=
getattr
(
args
,
"encoder_drop_net"
,
False
)
args
.
encoder_drop_net_prob
=
getattr
(
args
,
"encoder_drop_net_prob"
,
1.0
)
args
.
encoder_league_s1_ratio
=
getattr
(
args
,
"encoder_league_s1_ratio"
,
0.5
)
args
.
encoder_drop_net_mix
=
getattr
(
args
,
"encoder_drop_net_mix"
,
False
)
args
.
encoder_league_s2_ratio
=
getattr
(
args
,
"encoder_league_s2_ratio"
,
0.5
)
args
.
encoder_league_drop_net
=
getattr
(
args
,
"encoder_league_drop_net"
,
False
)
args
.
encoder_league_drop_net_prob
=
getattr
(
args
,
"encoder_league_drop_net_prob"
,
0.0
)
args
.
encoder_league_drop_net_mix
=
getattr
(
args
,
"encoder_league_drop_net_mix"
,
False
)
args
.
decoder_league_s1_ratio
=
getattr
(
args
,
"decoder_league_s1_ratio"
,
0.5
)
args
.
decoder_league_s2_ratio
=
getattr
(
args
,
"decoder_league_s2_ratio"
,
0.5
)
args
.
decoder_league_drop_net
=
getattr
(
args
,
"decoder_league_drop_net"
,
False
)
args
.
decoder_league_drop_net_prob
=
getattr
(
args
,
"decoder_league_drop_net_prob"
,
0.0
)
args
.
decoder_league_drop_net_mix
=
getattr
(
args
,
"decoder_league_drop_net_mix"
,
False
)
@register_model_architecture
(
"s2t_dual"
,
"s2t_dual_s"
)
@register_model_architecture
(
"s2t_dual"
,
"s2t_dual_s"
)
...
...
fairseq/modules/transformer_s2_layer.py
查看文件 @
8f45faa2
...
@@ -79,18 +79,23 @@ class TransformerS2EncoderLayer(nn.Module):
...
@@ -79,18 +79,23 @@ class TransformerS2EncoderLayer(nn.Module):
if
self
.
use_se
:
if
self
.
use_se
:
self
.
se_attn
=
SEAttention
(
self
.
embed_dim
,
16
)
self
.
se_attn
=
SEAttention
(
self
.
embed_dim
,
16
)
self
.
s2_norm
=
LayerNorm
(
self
.
embed_dim
)
self
.
use_s2_attn_norm
=
args
.
use_s2_attn_norm
self
.
s2_attn_norm
=
LayerNorm
(
self
.
embed_dim
)
if
self
.
use_s2_attn_norm
:
self
.
s2_attn
=
MultiheadAttention
(
self
.
s2_norm
=
LayerNorm
(
self
.
embed_dim
)
self
.
embed_dim
,
args
.
encoder_attention_heads
,
kdim
=
getattr
(
args
,
"encoder_x2_dim"
,
self
.
embed_dim
),
vdim
=
getattr
(
args
,
"encoder_x2_dim"
,
self
.
embed_dim
),
dropout
=
args
.
attention_dropout
,
self_attention
=
False
,
)
self
.
encoder_collaboration_mode
=
args
.
encoder_collaboration_mode
self
.
encoder_collaboration_mode
=
args
.
encoder_collaboration_mode
if
self
.
encoder_collaboration_mode
!=
"none"
:
if
self
.
encoder_collaboration_mode
==
"serial"
:
self
.
s2_attn_norm
=
LayerNorm
(
self
.
embed_dim
)
self
.
s2_attn
=
MultiheadAttention
(
self
.
embed_dim
,
args
.
encoder_attention_heads
,
kdim
=
getattr
(
args
,
"encoder_s2_dim"
,
self
.
embed_dim
),
vdim
=
getattr
(
args
,
"encoder_s2_dim"
,
self
.
embed_dim
),
dropout
=
args
.
attention_dropout
,
self_attention
=
False
,
)
self
.
league_s1_ratio
=
args
.
encoder_league_s1_ratio
self
.
league_s1_ratio
=
args
.
encoder_league_s1_ratio
self
.
league_s2_ratio
=
args
.
encoder_league_s2_ratio
self
.
league_s2_ratio
=
args
.
encoder_league_s2_ratio
...
@@ -251,7 +256,9 @@ class TransformerS2EncoderLayer(nn.Module):
...
@@ -251,7 +256,9 @@ class TransformerS2EncoderLayer(nn.Module):
x
=
self
.
self_attn_layer_norm
(
x
)
x
=
self
.
self_attn_layer_norm
(
x
)
if
s2
is
not
None
:
if
s2
is
not
None
:
s2
=
self
.
s2_norm
(
s2
)
if
self
.
use_s2_attn_norm
:
s2
=
self
.
s2_norm
(
s2
)
if
self
.
encoder_collaboration_mode
==
"serial"
:
if
self
.
encoder_collaboration_mode
==
"serial"
:
residual
=
x
residual
=
x
x
=
self
.
s2_attn_norm
(
x
)
x
=
self
.
s2_attn_norm
(
x
)
...
@@ -399,9 +406,9 @@ class TransformerS2DecoderLayer(nn.Module):
...
@@ -399,9 +406,9 @@ class TransformerS2DecoderLayer(nn.Module):
if
self
.
league_drop_net_mix
and
self
.
training
:
if
self
.
league_drop_net_mix
and
self
.
training
:
return
[
frand
,
1
-
frand
]
return
[
frand
,
1
-
frand
]
if
frand
<
self
.
league_drop_net_prob
and
self
.
training
:
if
frand
<
self
.
league_drop_net_prob
and
self
.
training
:
return
[
1
,
0
]
elif
frand
>
1
-
self
.
league_drop_net_prob
and
self
.
training
:
return
[
0
,
1
]
return
[
0
,
1
]
# elif frand > 1 - self.league_drop_net_prob and self.training:
# return [1, 0]
else
:
else
:
return
[
0.5
,
0.5
]
return
[
0.5
,
0.5
]
else
:
else
:
...
@@ -633,7 +640,6 @@ class TransformerS2DecoderLayer(nn.Module):
...
@@ -633,7 +640,6 @@ class TransformerS2DecoderLayer(nn.Module):
x2
=
self
.
dropout_module
(
x2
)
x2
=
self
.
dropout_module
(
x2
)
ratios
=
self
.
get_ratio
()
ratios
=
self
.
get_ratio
()
x
=
ratios
[
0
]
*
x
+
ratios
[
1
]
*
x2
x
=
ratios
[
0
]
*
x
+
ratios
[
1
]
*
x2
x
=
x
+
x2
x
=
self
.
residual_connection
(
x
,
residual
)
x
=
self
.
residual_connection
(
x
,
residual
)
if
not
self
.
normalize_before
:
if
not
self
.
normalize_before
:
x
=
self
.
encoder_attn_layer_norm
(
x
)
x
=
self
.
encoder_attn_layer_norm
(
x
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论