Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
F
Fairseq-S2T
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
xuchen
Fairseq-S2T
Commits
a201a883
Commit
a201a883
authored
Jul 12, 2022
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Try more settings of adapter
parent
5d84c743
显示空白字符变更
内嵌
并排
正在显示
8 个修改的文件
包含
159 行增加
和
69 行删除
+159
-69
fairseq/criterions/ctc.py
+14
-2
fairseq/models/speech_to_text/s2t_ctc.py
+2
-0
fairseq/models/speech_to_text/s2t_sate.py
+28
-11
fairseq/models/speech_to_text/s2t_transformer.py
+33
-12
fairseq/models/transformer_ctc.py
+42
-27
fairseq/modules/speech_to_text/adapter.py
+28
-13
fairseq/modules/speech_to_text/ctc.py
+11
-3
fairseq_cli/generate.py
+1
-1
没有找到文件。
fairseq/criterions/ctc.py
查看文件 @
a201a883
...
@@ -56,6 +56,11 @@ class CtcCriterionConfig(FairseqDataclass):
...
@@ -56,6 +56,11 @@ class CtcCriterionConfig(FairseqDataclass):
default
=
0.0
,
default
=
0.0
,
metadata
=
{
"help"
:
"weight of interleaved CTC loss"
},
metadata
=
{
"help"
:
"weight of interleaved CTC loss"
},
)
)
aligned_target_ctc
:
bool
=
field
(
default
=
False
,
metadata
=
{
"help"
:
"calculate target ctc by aligned text"
},
)
target_ctc_weight
:
float
=
field
(
target_ctc_weight
:
float
=
field
(
default
=
0.0
,
default
=
0.0
,
metadata
=
{
"help"
:
"weight of CTC loss for target sentence"
},
metadata
=
{
"help"
:
"weight of CTC loss for target sentence"
},
...
@@ -157,6 +162,7 @@ class CtcCriterion(FairseqCriterion):
...
@@ -157,6 +162,7 @@ class CtcCriterion(FairseqCriterion):
self
.
cal_all_ctc
=
cfg
.
cal_all_ctc
self
.
cal_all_ctc
=
cfg
.
cal_all_ctc
self
.
ctc_weight
=
ctc_weight
self
.
ctc_weight
=
ctc_weight
self
.
interleaved_ctc_weight
=
cfg
.
interleaved_ctc_weight
self
.
interleaved_ctc_weight
=
cfg
.
interleaved_ctc_weight
self
.
aligned_target_ctc
=
cfg
.
aligned_target_ctc
self
.
target_ctc_weight
=
cfg
.
target_ctc_weight
self
.
target_ctc_weight
=
cfg
.
target_ctc_weight
self
.
target_interleaved_ctc_weight
=
cfg
.
target_interleaved_ctc_weight
self
.
target_interleaved_ctc_weight
=
cfg
.
target_interleaved_ctc_weight
...
@@ -314,6 +320,12 @@ class CtcCriterion(FairseqCriterion):
...
@@ -314,6 +320,12 @@ class CtcCriterion(FairseqCriterion):
ctc_self_distill_num
+=
1
ctc_self_distill_num
+=
1
return
ctc_self_distill_num
,
ctc_self_distill_loss
return
ctc_self_distill_num
,
ctc_self_distill_loss
def
get_target_text
(
self
,
sample
):
if
self
.
aligned_target_ctc
and
"aligned_target"
in
sample
:
return
sample
[
"aligned_target"
][
"tokens"
]
else
:
return
sample
[
"target"
]
def
compute_ctc_loss
(
self
,
model
,
sample
,
net_output
,
logging_output
):
def
compute_ctc_loss
(
self
,
model
,
sample
,
net_output
,
logging_output
):
if
"transcript"
in
sample
:
if
"transcript"
in
sample
:
tokens
=
sample
[
"transcript"
][
"tokens"
]
tokens
=
sample
[
"transcript"
][
"tokens"
]
...
@@ -405,7 +417,7 @@ class CtcCriterion(FairseqCriterion):
...
@@ -405,7 +417,7 @@ class CtcCriterion(FairseqCriterion):
target_interleaved_ctc_loss
=
0
target_interleaved_ctc_loss
=
0
target_interleaved_ctc_num
=
0
target_interleaved_ctc_num
=
0
if
self
.
use_target_ctc
:
if
self
.
use_target_ctc
:
target_tokens
=
s
ample
[
"target"
]
target_tokens
=
s
elf
.
get_target_text
(
sample
)
target_pad_mask
=
(
target_tokens
!=
self
.
pad_idx
)
&
(
target_tokens
!=
self
.
eos_idx
)
target_pad_mask
=
(
target_tokens
!=
self
.
pad_idx
)
&
(
target_tokens
!=
self
.
eos_idx
)
target_no_padding_mask
=
~
target_pad_mask
target_no_padding_mask
=
~
target_pad_mask
...
@@ -557,7 +569,7 @@ class CtcCriterion(FairseqCriterion):
...
@@ -557,7 +569,7 @@ class CtcCriterion(FairseqCriterion):
if
target_lprobs
is
not
None
:
if
target_lprobs
is
not
None
:
target_lprobs_t
=
target_lprobs
.
transpose
(
0
,
1
)
.
float
()
.
contiguous
()
.
cpu
()
target_lprobs_t
=
target_lprobs
.
transpose
(
0
,
1
)
.
float
()
.
contiguous
()
.
cpu
()
target_tokens
=
s
ample
[
"target"
]
target_tokens
=
s
elf
.
get_target_text
(
sample
)
if
mixup
:
if
mixup
:
idx
=
mixup_idx1
if
mixup_coef
>
0.5
else
mixup_idx2
idx
=
mixup_idx1
if
mixup_coef
>
0.5
else
mixup_idx2
target_tokens
=
target_tokens
[
idx
]
target_tokens
=
target_tokens
[
idx
]
...
...
fairseq/models/speech_to_text/s2t_ctc.py
查看文件 @
a201a883
...
@@ -283,6 +283,8 @@ def base_architecture(args):
...
@@ -283,6 +283,8 @@ def base_architecture(args):
args
.
sae_out_norm
=
getattr
(
args
,
"sae_out_norm"
,
False
)
args
.
sae_out_norm
=
getattr
(
args
,
"sae_out_norm"
,
False
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_hard
=
getattr
(
args
,
"sae_distribution_hard"
,
False
)
args
.
sae_gumbel
=
getattr
(
args
,
"sae_gumbel"
,
False
)
# mixup
# mixup
args
.
inter_mixup
=
getattr
(
args
,
"inter_mixup"
,
False
)
args
.
inter_mixup
=
getattr
(
args
,
"inter_mixup"
,
False
)
...
...
fairseq/models/speech_to_text/s2t_sate.py
查看文件 @
a201a883
import
logging
import
logging
import
math
import
math
import
os
import
torch
import
torch
import
torch.nn
as
nn
import
torch.nn
as
nn
...
@@ -124,6 +125,11 @@ class S2TSATEModel(S2TTransformerModel):
...
@@ -124,6 +125,11 @@ class S2TSATEModel(S2TTransformerModel):
)
)
# target CTC
# target CTC
parser
.
add_argument
(
parser
.
add_argument
(
"--target-sae-adapter"
,
type
=
str
,
help
=
"adapter type of target sae "
,
)
parser
.
add_argument
(
"--target-ctc-layer"
,
"--target-ctc-layer"
,
default
=
0
,
default
=
0
,
type
=
int
,
type
=
int
,
...
@@ -300,7 +306,6 @@ class TextualEncoder(FairseqEncoder):
...
@@ -300,7 +306,6 @@ class TextualEncoder(FairseqEncoder):
self
.
ctc
.
ctc_projection
.
weight
.
size
()
==
embed_tokens
.
weight
.
size
():
self
.
ctc
.
ctc_projection
.
weight
.
size
()
==
embed_tokens
.
weight
.
size
():
self
.
ctc
.
ctc_projection
.
weight
=
embed_tokens
.
weight
self
.
ctc
.
ctc_projection
.
weight
=
embed_tokens
.
weight
self
.
interleaved_ctc_temperature
=
args
.
interleaved_ctc_temperature
self
.
interleaved_ctc_drop_prob
=
args
.
interleaved_ctc_drop_prob
self
.
interleaved_ctc_drop_prob
=
args
.
interleaved_ctc_drop_prob
self
.
interleaved_ctc_layers
=
[]
self
.
interleaved_ctc_layers
=
[]
self
.
target_interleaved_ctc_layers
=
getattr
(
args
,
"target_interleaved_ctc_layers"
,
None
)
self
.
target_interleaved_ctc_layers
=
getattr
(
args
,
"target_interleaved_ctc_layers"
,
None
)
...
@@ -330,11 +335,14 @@ class TextualEncoder(FairseqEncoder):
...
@@ -330,11 +335,14 @@ class TextualEncoder(FairseqEncoder):
"embed_norm"
:
getattr
(
args
,
"sae_embed_norm"
,
False
),
"embed_norm"
:
getattr
(
args
,
"sae_embed_norm"
,
False
),
"out_norm"
:
getattr
(
args
,
"sae_out_norm"
,
False
),
"out_norm"
:
getattr
(
args
,
"sae_out_norm"
,
False
),
"ctc_compress_strategy"
:
getattr
(
args
,
"ctc_compress_strategy"
,
None
),
"ctc_compress_strategy"
:
getattr
(
args
,
"ctc_compress_strategy"
,
None
),
"ctc_temperature"
:
getattr
(
args
,
"sae_ctc_temperature"
,
1.0
),
"distribution_cutoff"
:
getattr
(
args
,
"sae_distribution_cutoff"
,
None
),
"distribution_cutoff"
:
getattr
(
args
,
"sae_distribution_cutoff"
,
None
),
"gumbel"
:
getattr
(
args
,
"sae_gumbel"
,
False
),
"distribution_hard"
:
getattr
(
args
,
"sae_distribution_hard"
,
None
),
"drop_prob"
:
getattr
(
args
,
"sae_drop_prob"
,
0
),
"drop_prob"
:
getattr
(
args
,
"sae_drop_prob"
,
0
),
}
}
self
.
sae
=
Adapter
(
embed_dim
,
args
.
sae_adapter
,
self
.
sae
=
Adapter
(
embed_dim
,
args
.
target_
sae_adapter
,
len
(
dictionary
),
len
(
dictionary
),
strategy
=
strategy
)
strategy
=
strategy
)
if
args
.
share_target_sae_and_ctc
and
hasattr
(
self
.
sae
,
"embed_adapter"
):
if
args
.
share_target_sae_and_ctc
and
hasattr
(
self
.
sae
,
"embed_adapter"
):
...
@@ -372,7 +380,6 @@ class TextualEncoder(FairseqEncoder):
...
@@ -372,7 +380,6 @@ class TextualEncoder(FairseqEncoder):
norm_x
=
self
.
layer_norm
(
x
)
norm_x
=
self
.
layer_norm
(
x
)
logit
=
self
.
ctc
(
norm_x
,
encoder_padding_mask
,
"Target Layer
%
d"
%
layer_idx
)
logit
=
self
.
ctc
(
norm_x
,
encoder_padding_mask
,
"Target Layer
%
d"
%
layer_idx
)
target_interleaved_ctc_logits
.
append
(
logit
)
target_interleaved_ctc_logits
.
append
(
logit
)
prob
=
utils
.
softmax
(
logit
/
self
.
interleaved_ctc_temperature
,
dim
=-
1
)
# CTC alignment
# CTC alignment
oracle
=
None
oracle
=
None
...
@@ -386,7 +393,8 @@ class TextualEncoder(FairseqEncoder):
...
@@ -386,7 +393,8 @@ class TextualEncoder(FairseqEncoder):
device
=
oracle
.
device
)
<
self
.
sae_ground_truth_ratio
)
.
bool
()
device
=
oracle
.
device
)
<
self
.
sae_ground_truth_ratio
)
.
bool
()
force_emit
=
best_aligns_pad
.
masked_fill
(
~
oracle_mask
,
-
1
)
force_emit
=
best_aligns_pad
.
masked_fill
(
~
oracle_mask
,
-
1
)
x
,
encoder_padding_mask
=
self
.
sae
([
norm_x
,
prob
],
encoder_padding_mask
,
oracle
,
oracle_mask
)
if
self
.
sae
.
adapter_type
!=
"none"
:
x
,
encoder_padding_mask
=
self
.
sae
([
norm_x
,
logit
],
encoder_padding_mask
,
oracle
,
oracle_mask
)
if
history
is
not
None
:
if
history
is
not
None
:
history
.
push
(
x
)
history
.
push
(
x
)
...
@@ -398,7 +406,7 @@ class TextualEncoder(FairseqEncoder):
...
@@ -398,7 +406,7 @@ class TextualEncoder(FairseqEncoder):
x
=
self
.
layer_norm
(
x
)
x
=
self
.
layer_norm
(
x
)
if
self
.
use_ctc
and
target_ctc_logit
is
None
:
if
self
.
use_ctc
and
target_ctc_logit
is
None
:
target_ctc_logit
=
self
.
ctc
(
x
,
encoder_padding_mask
,
"Target output"
)
target_ctc_logit
=
self
.
ctc
(
x
,
encoder_padding_mask
,
"Target output"
,
is_top
=
True
)
return
x
,
target_ctc_logit
,
target_interleaved_ctc_logits
return
x
,
target_ctc_logit
,
target_interleaved_ctc_logits
...
@@ -460,13 +468,19 @@ class S2TSATEEncoder(FairseqEncoder):
...
@@ -460,13 +468,19 @@ class S2TSATEEncoder(FairseqEncoder):
else
:
else
:
self
.
history
=
None
self
.
history
=
None
def
set_ctc_infer
(
self
,
ctc_infer
,
post_process
,
src_dict
=
None
,
tgt_dict
=
None
):
def
set_ctc_infer
(
self
,
ctc_infer
,
post_process
,
src_dict
=
None
,
tgt_dict
=
None
,
path
=
None
):
if
hasattr
(
self
.
acoustic_encoder
,
"ctc"
):
if
hasattr
(
self
.
acoustic_encoder
,
"ctc"
):
assert
src_dict
is
not
None
assert
src_dict
is
not
None
self
.
acoustic_encoder
.
ctc
.
set_infer
(
ctc_infer
,
post_process
,
src_dict
)
logger
.
info
(
"Acoustic Encoder CTC Inference"
)
self
.
acoustic_encoder
.
ctc
.
set_infer
(
ctc_infer
,
post_process
,
src_dict
,
path
=
path
+
".src_ctc"
if
path
is
not
None
else
None
)
# path=os.path.join(path, "src_ctc") if path is not None else None)
if
hasattr
(
self
.
textual_encoder
,
"ctc"
):
if
hasattr
(
self
.
textual_encoder
,
"ctc"
):
assert
tgt_dict
is
not
None
assert
tgt_dict
is
not
None
self
.
textual_encoder
.
ctc
.
set_infer
(
ctc_infer
,
post_process
,
tgt_dict
)
logger
.
info
(
"Textual Encoder CTC Inference"
)
self
.
textual_encoder
.
ctc
.
set_infer
(
ctc_infer
,
post_process
,
tgt_dict
,
path
=
path
+
".tgt_ctc"
if
path
is
not
None
else
None
)
# path=os.path.join(path, "tgt_ctc") if path is not None else None)
def
ctc_valid
(
self
,
lprobs
,
targets
,
input_lengths
,
dictionary
,
lang
=
"source"
):
def
ctc_valid
(
self
,
lprobs
,
targets
,
input_lengths
,
dictionary
,
lang
=
"source"
):
if
lang
==
"source"
:
if
lang
==
"source"
:
...
@@ -500,11 +514,11 @@ class S2TSATEEncoder(FairseqEncoder):
...
@@ -500,11 +514,11 @@ class S2TSATEEncoder(FairseqEncoder):
if
"ctc_logit"
in
acoustic_encoder_out
and
len
(
acoustic_encoder_out
[
"ctc_logit"
])
>
0
:
if
"ctc_logit"
in
acoustic_encoder_out
and
len
(
acoustic_encoder_out
[
"ctc_logit"
])
>
0
:
ctc_logit
=
acoustic_encoder_out
[
"ctc_logit"
][
0
]
ctc_logit
=
acoustic_encoder_out
[
"ctc_logit"
][
0
]
ctc_prob
=
F
.
softmax
(
ctc_logit
/
self
.
adapter_temperature
,
dim
=-
1
,
dtype
=
torch
.
float32
)
#
ctc_prob = F.softmax(ctc_logit / self.adapter_temperature, dim=-1, dtype=torch.float32)
else
:
else
:
ctc_logit
=
None
ctc_logit
=
None
ctc_prob
=
None
#
ctc_prob = None
x
=
(
encoder_out
,
ctc_
prob
)
x
=
(
encoder_out
,
ctc_
logit
)
x
,
encoder_padding_mask
=
self
.
adapter
(
x
,
encoder_padding_mask
)
x
,
encoder_padding_mask
=
self
.
adapter
(
x
,
encoder_padding_mask
)
...
@@ -677,10 +691,13 @@ def base_architecture(args):
...
@@ -677,10 +691,13 @@ def base_architecture(args):
# Semantics-augmented Encoding (sae)
# Semantics-augmented Encoding (sae)
args
.
sae_adapter
=
getattr
(
args
,
"sae_adapter"
,
"none"
)
args
.
sae_adapter
=
getattr
(
args
,
"sae_adapter"
,
"none"
)
args
.
target_sae_adapter
=
getattr
(
args
,
"target_sae_adapter"
,
args
.
sae_adapter
)
args
.
share_sae_and_ctc
=
getattr
(
args
,
"share_sae_and_ctc"
,
False
)
args
.
share_sae_and_ctc
=
getattr
(
args
,
"share_sae_and_ctc"
,
False
)
args
.
share_target_sae_and_ctc
=
getattr
(
args
,
"share_target_sae_and_ctc"
,
False
)
args
.
share_target_sae_and_ctc
=
getattr
(
args
,
"share_target_sae_and_ctc"
,
False
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_hard
=
getattr
(
args
,
"sae_distribution_hard"
,
False
)
args
.
sae_gumbel
=
getattr
(
args
,
"sae_gumbel"
,
False
)
# mixup
# mixup
args
.
inter_mixup
=
getattr
(
args
,
"inter_mixup"
,
False
)
args
.
inter_mixup
=
getattr
(
args
,
"inter_mixup"
,
False
)
...
...
fairseq/models/speech_to_text/s2t_transformer.py
查看文件 @
a201a883
...
@@ -415,7 +415,7 @@ class S2TTransformerModel(FairseqEncoderDecoderModel):
...
@@ -415,7 +415,7 @@ class S2TTransformerModel(FairseqEncoderDecoderModel):
help
=
"the position of interleaved ctc layers, separated by comma "
,
help
=
"the position of interleaved ctc layers, separated by comma "
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"--
interleaved
-ctc-temperature"
,
"--
sae
-ctc-temperature"
,
default
=
1
,
default
=
1
,
type
=
float
,
type
=
float
,
help
=
"temperature of the CTC probability in sae"
,
help
=
"temperature of the CTC probability in sae"
,
...
@@ -447,6 +447,16 @@ class S2TTransformerModel(FairseqEncoderDecoderModel):
...
@@ -447,6 +447,16 @@ class S2TTransformerModel(FairseqEncoderDecoderModel):
help
=
"cutoff of the distribution in sae"
,
help
=
"cutoff of the distribution in sae"
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"--sae-gumbel"
,
action
=
"store_true"
,
help
=
"use gumbel softmax in sae"
,
)
parser
.
add_argument
(
"--sae-distribution-hard"
,
action
=
"store_true"
,
help
=
"use hard distribution in sae"
,
)
parser
.
add_argument
(
"--sae-ground-truth-ratio"
,
"--sae-ground-truth-ratio"
,
default
=
0
,
default
=
0
,
type
=
float
,
type
=
float
,
...
@@ -643,7 +653,8 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -643,7 +653,8 @@ class S2TTransformerEncoder(FairseqEncoder):
else
:
else
:
self
.
history
=
None
self
.
history
=
None
self
.
use_ctc
=
"sate"
in
args
.
arch
or
getattr
(
args
,
"ctc_weight"
,
0
)
>
0
# self.use_ctc = "sate" in args.arch or getattr(args, "ctc_weight", 0) > 0
self
.
use_ctc
=
getattr
(
args
,
"ctc_weight"
,
0
)
>
0
if
self
.
use_ctc
:
if
self
.
use_ctc
:
self
.
ctc_layer
=
args
.
ctc_layer
self
.
ctc_layer
=
args
.
ctc_layer
self
.
inter_ctc
=
True
if
self
.
ctc_layer
!=
0
and
self
.
ctc_layer
!=
args
.
encoder_layers
else
False
self
.
inter_ctc
=
True
if
self
.
ctc_layer
!=
0
and
self
.
ctc_layer
!=
args
.
encoder_layers
else
False
...
@@ -659,11 +670,12 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -659,11 +670,12 @@ class S2TTransformerEncoder(FairseqEncoder):
embed_tokens
is
not
None
and
dim
==
embed_tokens
.
embedding_dim
:
embed_tokens
is
not
None
and
dim
==
embed_tokens
.
embedding_dim
:
self
.
ctc
.
ctc_projection
.
weight
=
embed_tokens
.
weight
self
.
ctc
.
ctc_projection
.
weight
=
embed_tokens
.
weight
self
.
interleaved_ctc_temperature
=
args
.
interleaved_ctc_temperature
self
.
interleaved_ctc_drop_prob
=
args
.
interleaved_ctc_drop_prob
self
.
interleaved_ctc_drop_prob
=
args
.
interleaved_ctc_drop_prob
self
.
sae_ground_truth_ratio
=
getattr
(
args
,
"sae_ground_truth_ratio"
,
0
)
self
.
sae_ground_truth_ratio
=
getattr
(
args
,
"sae_ground_truth_ratio"
,
0
)
self
.
interleaved_ctc_layers
=
[]
self
.
interleaved_ctc_layers
=
[]
self
.
use_inter_ctc
=
False
if
args
.
interleaved_ctc_layers
is
not
None
:
if
args
.
interleaved_ctc_layers
is
not
None
:
self
.
use_inter_ctc
=
True
interleaved_ctc_layers
=
args
.
interleaved_ctc_layers
.
split
(
","
)
interleaved_ctc_layers
=
args
.
interleaved_ctc_layers
.
split
(
","
)
for
layer_idx
in
interleaved_ctc_layers
:
for
layer_idx
in
interleaved_ctc_layers
:
layer_idx
=
int
(
layer_idx
)
layer_idx
=
int
(
layer_idx
)
...
@@ -687,7 +699,10 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -687,7 +699,10 @@ class S2TTransformerEncoder(FairseqEncoder):
"embed_norm"
:
getattr
(
args
,
"sae_embed_norm"
,
False
),
"embed_norm"
:
getattr
(
args
,
"sae_embed_norm"
,
False
),
"out_norm"
:
getattr
(
args
,
"sae_out_norm"
,
False
),
"out_norm"
:
getattr
(
args
,
"sae_out_norm"
,
False
),
"ctc_compress_strategy"
:
getattr
(
args
,
"ctc_compress_strategy"
,
None
),
"ctc_compress_strategy"
:
getattr
(
args
,
"ctc_compress_strategy"
,
None
),
"ctc_temperature"
:
getattr
(
args
,
"sae_ctc_temperature"
,
1.0
),
"distribution_cutoff"
:
getattr
(
args
,
"sae_distribution_cutoff"
,
None
),
"distribution_cutoff"
:
getattr
(
args
,
"sae_distribution_cutoff"
,
None
),
"gumbel"
:
getattr
(
args
,
"sae_gumbel"
,
False
),
"distribution_hard"
:
getattr
(
args
,
"sae_distribution_hard"
,
None
),
"gt_ratio"
:
self
.
sae_ground_truth_ratio
,
"gt_ratio"
:
self
.
sae_ground_truth_ratio
,
"drop_prob"
:
getattr
(
args
,
"sae_drop_prob"
,
0
),
"drop_prob"
:
getattr
(
args
,
"sae_drop_prob"
,
0
),
}
}
...
@@ -720,10 +735,18 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -720,10 +735,18 @@ class S2TTransformerEncoder(FairseqEncoder):
# debug the variance
# debug the variance
self
.
debug_var
=
False
self
.
debug_var
=
False
def
set_ctc_infer
(
self
,
ctc_infer
,
post_process
,
src_dict
=
None
,
tgt_dict
=
None
):
self
.
update_num
=
0
self
.
curr_temp
=
0
def
set_num_updates
(
self
,
num_updates
):
super
()
.
set_num_updates
(
num_updates
)
self
.
update_num
=
num_updates
def
set_ctc_infer
(
self
,
ctc_infer
,
post_process
,
src_dict
=
None
,
tgt_dict
=
None
,
path
=
None
):
if
hasattr
(
self
,
"ctc"
):
if
hasattr
(
self
,
"ctc"
):
assert
src_dict
is
not
None
assert
src_dict
is
not
None
self
.
ctc
.
set_infer
(
ctc_infer
,
post_process
,
src_dict
)
self
.
ctc
.
set_infer
(
ctc_infer
,
post_process
,
src_dict
,
path
=
path
+
".ctc"
if
path
is
not
None
else
None
)
def
ctc_valid
(
self
,
lprobs
,
targets
,
input_lengths
,
def
ctc_valid
(
self
,
lprobs
,
targets
,
input_lengths
,
dictionary
,
lang
=
"source"
):
dictionary
,
lang
=
"source"
):
...
@@ -906,13 +929,8 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -906,13 +929,8 @@ class S2TTransformerEncoder(FairseqEncoder):
norm_x
=
self
.
layer_norm
(
x
)
norm_x
=
self
.
layer_norm
(
x
)
logit
=
self
.
ctc
(
norm_x
,
encoder_padding_mask
,
"Source Layer
%
d"
%
layer_idx
)
logit
=
self
.
ctc
(
norm_x
,
encoder_padding_mask
,
"Source Layer
%
d"
%
layer_idx
)
interleaved_ctc_logits
.
append
(
logit
)
interleaved_ctc_logits
.
append
(
logit
)
logit
=
logit
.
clamp
(
min
=-
1e8
if
logit
.
dtype
==
torch
.
float32
else
-
1e4
,
max
=
1e8
if
logit
.
dtype
==
torch
.
float32
else
1e4
)
prob
=
utils
.
softmax
(
logit
/
self
.
interleaved_ctc_temperature
,
dim
=-
1
)
# CTC alignment
# CTC alignment
oracle
=
None
oracle
=
None
oracle_mask
=
None
oracle_mask
=
None
...
@@ -925,7 +943,8 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -925,7 +943,8 @@ class S2TTransformerEncoder(FairseqEncoder):
device
=
oracle
.
device
)
<
self
.
sae_ground_truth_ratio
)
.
bool
()
device
=
oracle
.
device
)
<
self
.
sae_ground_truth_ratio
)
.
bool
()
force_emit
=
best_aligns_pad
.
masked_fill
(
~
oracle_mask
,
-
1
)
force_emit
=
best_aligns_pad
.
masked_fill
(
~
oracle_mask
,
-
1
)
x
,
encoder_padding_mask
=
self
.
sae
([
norm_x
,
prob
],
encoder_padding_mask
,
oracle
,
oracle_mask
)
if
self
.
sae
.
adapter_type
!=
"none"
:
x
,
encoder_padding_mask
=
self
.
sae
([
norm_x
,
logit
],
encoder_padding_mask
,
oracle
,
oracle_mask
)
self
.
show_debug
(
x
,
"x after sae"
)
self
.
show_debug
(
x
,
"x after sae"
)
# gather cosine similarity
# gather cosine similarity
...
@@ -945,7 +964,7 @@ class S2TTransformerEncoder(FairseqEncoder):
...
@@ -945,7 +964,7 @@ class S2TTransformerEncoder(FairseqEncoder):
self
.
show_debug
(
x
,
"x after encoding layer norm"
)
self
.
show_debug
(
x
,
"x after encoding layer norm"
)
if
self
.
use_ctc
and
ctc_logit
is
None
:
if
self
.
use_ctc
and
ctc_logit
is
None
:
ctc_logit
=
self
.
ctc
(
x
,
encoder_padding_mask
,
"Source output"
)
ctc_logit
=
self
.
ctc
(
x
,
encoder_padding_mask
,
"Source output"
,
is_top
=
True
)
self
.
show_debug
(
x
,
"x after ctc"
)
self
.
show_debug
(
x
,
"x after ctc"
)
return
{
return
{
...
@@ -1145,6 +1164,8 @@ def base_architecture(args):
...
@@ -1145,6 +1164,8 @@ def base_architecture(args):
args
.
sae_out_norm
=
getattr
(
args
,
"sae_out_norm"
,
False
)
args
.
sae_out_norm
=
getattr
(
args
,
"sae_out_norm"
,
False
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_hard
=
getattr
(
args
,
"sae_distribution_hard"
,
False
)
args
.
sae_gumbel
=
getattr
(
args
,
"sae_gumbel"
,
False
)
# mixup
# mixup
args
.
inter_mixup
=
getattr
(
args
,
"inter_mixup"
,
False
)
args
.
inter_mixup
=
getattr
(
args
,
"inter_mixup"
,
False
)
...
...
fairseq/models/transformer_ctc.py
查看文件 @
a201a883
...
@@ -319,7 +319,7 @@ class TransformerCTCModel(FairseqEncoderDecoderModel):
...
@@ -319,7 +319,7 @@ class TransformerCTCModel(FairseqEncoderDecoderModel):
help
=
"upsampling ratio of the representation for CTC calculation"
,
help
=
"upsampling ratio of the representation for CTC calculation"
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"--
interleaved
-ctc-temperature"
,
"--
sae
-ctc-temperature"
,
default
=
1
,
default
=
1
,
type
=
float
,
type
=
float
,
help
=
"temperature of the CTC probability in sae"
,
help
=
"temperature of the CTC probability in sae"
,
...
@@ -351,6 +351,16 @@ class TransformerCTCModel(FairseqEncoderDecoderModel):
...
@@ -351,6 +351,16 @@ class TransformerCTCModel(FairseqEncoderDecoderModel):
help
=
"cutoff of the distribution in sae"
,
help
=
"cutoff of the distribution in sae"
,
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"--sae-gumbel"
,
action
=
"store_true"
,
help
=
"use gumbel softmax in sae"
,
)
parser
.
add_argument
(
"--sae-distribution-hard"
,
action
=
"store_true"
,
help
=
"use hard distribution in sae"
,
)
parser
.
add_argument
(
"--share-ctc-and-sae"
,
"--share-ctc-and-sae"
,
action
=
"store_true"
,
action
=
"store_true"
,
help
=
"share the weight of ctc and sae"
,
help
=
"share the weight of ctc and sae"
,
...
@@ -629,7 +639,6 @@ class TransformerCTCEncoder(FairseqEncoder):
...
@@ -629,7 +639,6 @@ class TransformerCTCEncoder(FairseqEncoder):
self
.
ctc
.
ctc_projection
.
weight
=
decoder_embed_tokens
.
weight
self
.
ctc
.
ctc_projection
.
weight
=
decoder_embed_tokens
.
weight
self
.
interleaved_ctc_temperature
=
args
.
interleaved_ctc_temperature
self
.
interleaved_ctc_drop_prob
=
args
.
interleaved_ctc_drop_prob
self
.
interleaved_ctc_drop_prob
=
args
.
interleaved_ctc_drop_prob
self
.
interleaved_ctc_upsampling_ratio
=
int
(
args
.
interleaved_ctc_upsampling_ratio
)
self
.
interleaved_ctc_upsampling_ratio
=
int
(
args
.
interleaved_ctc_upsampling_ratio
)
self
.
interleaved_ctc_layers
=
[]
self
.
interleaved_ctc_layers
=
[]
...
@@ -661,7 +670,10 @@ class TransformerCTCEncoder(FairseqEncoder):
...
@@ -661,7 +670,10 @@ class TransformerCTCEncoder(FairseqEncoder):
"embed_norm"
:
getattr
(
args
,
"sae_embed_norm"
,
False
),
"embed_norm"
:
getattr
(
args
,
"sae_embed_norm"
,
False
),
"out_norm"
:
getattr
(
args
,
"sae_out_norm"
,
False
),
"out_norm"
:
getattr
(
args
,
"sae_out_norm"
,
False
),
"ctc_compress_strategy"
:
getattr
(
args
,
"ctc_compress_strategy"
,
None
),
"ctc_compress_strategy"
:
getattr
(
args
,
"ctc_compress_strategy"
,
None
),
"ctc_temperature"
:
getattr
(
args
,
"sae_ctc_temperature"
,
1.0
),
"distribution_cutoff"
:
getattr
(
args
,
"sae_distribution_cutoff"
,
None
),
"distribution_cutoff"
:
getattr
(
args
,
"sae_distribution_cutoff"
,
None
),
"gumbel"
:
getattr
(
args
,
"sae_gumbel"
,
False
),
"distribution_hard"
:
getattr
(
args
,
"sae_distribution_hard"
,
None
),
"drop_prob"
:
getattr
(
args
,
"sae_drop_prob"
,
0
),
"drop_prob"
:
getattr
(
args
,
"sae_drop_prob"
,
0
),
"gt_ratio"
:
self
.
sae_ground_truth_ratio
,
"gt_ratio"
:
self
.
sae_ground_truth_ratio
,
}
}
...
@@ -743,9 +755,6 @@ class TransformerCTCEncoder(FairseqEncoder):
...
@@ -743,9 +755,6 @@ class TransformerCTCEncoder(FairseqEncoder):
return
x
return
x
if
len
(
x
.
size
())
==
3
:
if
len
(
x
.
size
())
==
3
:
# bsz, seq_len, dim = x.size()
# up_x = x.unsqueeze(2).expand(-1, -1, ratio, -1).reshape(bsz, -1, dim)
seq_len
,
bsz
,
dim
=
x
.
size
()
seq_len
,
bsz
,
dim
=
x
.
size
()
x
=
x
.
permute
(
1
,
2
,
0
)
x
=
x
.
permute
(
1
,
2
,
0
)
up_x
=
self
.
un_sample
(
x
)
up_x
=
self
.
un_sample
(
x
)
...
@@ -755,20 +764,25 @@ class TransformerCTCEncoder(FairseqEncoder):
...
@@ -755,20 +764,25 @@ class TransformerCTCEncoder(FairseqEncoder):
up_x
=
x
.
unsqueeze
(
2
)
.
expand
(
-
1
,
-
1
,
ratio
)
.
reshape
(
bsz
,
-
1
)
up_x
=
x
.
unsqueeze
(
2
)
.
expand
(
-
1
,
-
1
,
ratio
)
.
reshape
(
bsz
,
-
1
)
up_padding
=
padding
.
unsqueeze
(
-
1
)
.
expand
(
-
1
,
-
1
,
int
(
ratio
))
.
reshape
(
bsz
,
-
1
)
up_padding
=
padding
.
unsqueeze
(
-
1
)
.
expand
(
-
1
,
-
1
,
int
(
ratio
))
.
reshape
(
bsz
,
-
1
)
# output_length = int(seq_len * ratio * 2/3)
perturb
=
False
# select_matrix = torch.rand(bsz, ratio * seq_len).to(up_x.device)
if
perturb
:
# select_matrix[:, 1::ratio] = 1
output_length
=
int
(
seq_len
*
ratio
*
2
/
3
)
# mask = select_matrix.sort(dim=-1, descending=True)[1][:, :output_length]
select_matrix
=
torch
.
rand
(
bsz
,
ratio
*
seq_len
)
.
to
(
up_x
.
device
)
# mask = mask.sort(dim=-1)[0]
select_matrix
[:,
1
::
ratio
]
=
1
#
mask
=
select_matrix
.
sort
(
dim
=-
1
,
descending
=
True
)[
1
][:,
:
output_length
]
# if len(x.size()) == 3:
mask
=
mask
.
sort
(
dim
=-
1
)[
0
]
# out_x = torch.gather(up_x, dim=1, index=mask.unsqueeze(-1).expand(-1, -1, dim)).contiguous()
# else:
if
len
(
x
.
size
())
==
3
:
# out_x = torch.gather(up_x, dim=1, index=mask).contiguous()
up_x
=
up_x
.
transpose
(
0
,
1
)
# out_padding = torch.gather(up_padding, dim=1, index=mask).contiguous()
out_x
=
torch
.
gather
(
up_x
,
dim
=
1
,
index
=
mask
.
unsqueeze
(
-
1
)
.
expand
(
-
1
,
-
1
,
dim
))
.
contiguous
()
out_x
=
out_x
.
transpose
(
0
,
1
)
out_x
=
up_x
else
:
out_padding
=
up_padding
out_x
=
torch
.
gather
(
up_x
,
dim
=
1
,
index
=
mask
)
.
contiguous
()
out_padding
=
torch
.
gather
(
up_padding
,
dim
=
1
,
index
=
mask
)
.
contiguous
()
else
:
out_x
=
up_x
.
contiguous
()
out_padding
=
up_padding
.
contiguous
()
return
out_x
,
out_padding
return
out_x
,
out_padding
def
set_ctc_infer
(
self
,
ctc_infer
,
post_process
,
src_dict
=
None
,
tgt_dict
=
None
):
def
set_ctc_infer
(
self
,
ctc_infer
,
post_process
,
src_dict
=
None
,
tgt_dict
=
None
):
...
@@ -869,8 +883,8 @@ class TransformerCTCEncoder(FairseqEncoder):
...
@@ -869,8 +883,8 @@ class TransformerCTCEncoder(FairseqEncoder):
# CTC
# CTC
if
self
.
use_ctc
and
self
.
inter_ctc
and
self
.
ctc_layer
==
layer_idx
:
if
self
.
use_ctc
and
self
.
inter_ctc
and
self
.
ctc_layer
==
layer_idx
:
x
,
ctc_padding_mask
=
self
.
upsampling
(
x
,
encoder_padding_mask
)
up_
x
,
ctc_padding_mask
=
self
.
upsampling
(
x
,
encoder_padding_mask
)
ctc_logit
=
self
.
ctc
(
x
.
clone
()
,
ctc_padding_mask
)
ctc_logit
=
self
.
ctc
(
up_x
,
ctc_padding_mask
)
# Interleaved CTC
# Interleaved CTC
if
layer_idx
in
self
.
interleaved_ctc_layers
:
if
layer_idx
in
self
.
interleaved_ctc_layers
:
...
@@ -879,12 +893,10 @@ class TransformerCTCEncoder(FairseqEncoder):
...
@@ -879,12 +893,10 @@ class TransformerCTCEncoder(FairseqEncoder):
if
p
<
self
.
interleaved_ctc_drop_prob
:
if
p
<
self
.
interleaved_ctc_drop_prob
:
break
break
x
,
ctc_padding_mask
=
self
.
upsampling
(
x
,
encoder_padding_mask
)
up_
x
,
ctc_padding_mask
=
self
.
upsampling
(
x
,
encoder_padding_mask
)
norm_x
=
self
.
layer_norm
(
x
)
norm_x
=
self
.
layer_norm
(
up_
x
)
logit
=
self
.
ctc
(
norm_x
,
ctc_padding_mask
)
logit
=
self
.
ctc
(
norm_x
,
ctc_padding_mask
)
interleaved_ctc_logits
.
append
(
logit
)
interleaved_ctc_logits
.
append
(
logit
)
prob
=
utils
.
softmax
(
logit
/
self
.
interleaved_ctc_temperature
,
dim
=-
1
)
# CTC alignment
# CTC alignment
oracle
=
None
oracle
=
None
...
@@ -898,7 +910,7 @@ class TransformerCTCEncoder(FairseqEncoder):
...
@@ -898,7 +910,7 @@ class TransformerCTCEncoder(FairseqEncoder):
device
=
oracle
.
device
)
<
self
.
sae_ground_truth_ratio
)
.
bool
()
device
=
oracle
.
device
)
<
self
.
sae_ground_truth_ratio
)
.
bool
()
force_emit
=
best_aligns_pad
.
masked_fill
(
~
oracle_mask
,
-
1
)
force_emit
=
best_aligns_pad
.
masked_fill
(
~
oracle_mask
,
-
1
)
x
,
_
=
self
.
sae
([
norm_x
,
prob
],
ctc_padding_mask
,
oracle
,
oracle_mask
)
x
,
_
=
self
.
sae
([
norm_x
,
logit
],
ctc_padding_mask
,
oracle
,
oracle_mask
)
x
=
x
.
permute
(
1
,
2
,
0
)
x
=
x
.
permute
(
1
,
2
,
0
)
# x = nn.functional.interpolate(x, scale_factor=1/self.interleaved_ctc_upsampling_ratio, mode="linear")
# x = nn.functional.interpolate(x, scale_factor=1/self.interleaved_ctc_upsampling_ratio, mode="linear")
...
@@ -915,7 +927,8 @@ class TransformerCTCEncoder(FairseqEncoder):
...
@@ -915,7 +927,8 @@ class TransformerCTCEncoder(FairseqEncoder):
x
=
self
.
layer_norm
(
x
)
x
=
self
.
layer_norm
(
x
)
if
self
.
use_ctc
and
ctc_logit
is
None
:
if
self
.
use_ctc
and
ctc_logit
is
None
:
ctc_logit
=
self
.
ctc
(
x
,
ctc_padding_mask
)
up_x
,
ctc_padding_mask
=
self
.
upsampling
(
x
,
encoder_padding_mask
)
ctc_logit
=
self
.
ctc
(
up_x
,
ctc_padding_mask
)
# The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
# The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
# `forward` so we use a dictionary instead.
# `forward` so we use a dictionary instead.
...
@@ -1592,6 +1605,8 @@ def base_architecture(args):
...
@@ -1592,6 +1605,8 @@ def base_architecture(args):
args
.
share_ctc_and_sae
=
getattr
(
args
,
"share_ctc_and_sae"
,
False
)
args
.
share_ctc_and_sae
=
getattr
(
args
,
"share_ctc_and_sae"
,
False
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_drop_prob
=
getattr
(
args
,
"sae_drop_prob"
,
0
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_cutoff
=
getattr
(
args
,
"sae_distribution_cutoff"
,
None
)
args
.
sae_distribution_hard
=
getattr
(
args
,
"sae_distribution_hard"
,
False
)
args
.
sae_gumbel
=
getattr
(
args
,
"sae_gumbel"
,
False
)
@register_model_architecture
(
"transformer_ctc"
,
"transformer_ctc_relative"
)
@register_model_architecture
(
"transformer_ctc"
,
"transformer_ctc_relative"
)
...
...
fairseq/modules/speech_to_text/adapter.py
查看文件 @
a201a883
...
@@ -100,34 +100,45 @@ class Adapter(nn.Module):
...
@@ -100,34 +100,45 @@ class Adapter(nn.Module):
if
self
.
cal_context
:
if
self
.
cal_context
:
self
.
distribution_cutoff
=
strategy
.
get
(
"distribution_cutoff"
,
None
)
self
.
distribution_cutoff
=
strategy
.
get
(
"distribution_cutoff"
,
None
)
self
.
distribution_temperature
=
strategy
.
get
(
"ctc_temperature"
,
1.0
)
self
.
gumbel
=
strategy
.
get
(
"gumbel"
,
False
)
self
.
distribution_hard
=
strategy
.
get
(
"distribution_hard"
,
False
)
self
.
ground_truth_ratio
=
strategy
.
get
(
"gt_ratio"
,
0
)
self
.
drop_prob
=
strategy
.
get
(
"drop_prob"
,
0
)
if
self
.
distribution_cutoff
is
not
None
:
if
self
.
distribution_cutoff
is
not
None
:
self
.
distribution_cutoff
=
int
(
self
.
distribution_cutoff
)
logger
.
info
(
"Distribution cutoff:
%
d"
%
self
.
distribution_cutoff
)
logger
.
info
(
"Distribution cutoff:
%
d"
%
self
.
distribution_cutoff
)
if
self
.
distribution_temperature
!=
1.0
:
self
.
drop_prob
=
strategy
.
get
(
"drop_prob"
,
0
)
logger
.
info
(
"Temperature:
%
f"
%
self
.
distribution_temperature
)
if
self
.
gumbel
:
logger
.
info
(
"Gumbel softmax."
)
if
self
.
distribution_hard
:
logger
.
info
(
"Hard distribution."
)
if
self
.
drop_prob
!=
0
:
if
self
.
drop_prob
!=
0
:
logger
.
info
(
"
Adapter d
rop probability:
%
f"
%
self
.
drop_prob
)
logger
.
info
(
"
D
rop probability:
%
f"
%
self
.
drop_prob
)
self
.
ground_truth_ratio
=
strategy
.
get
(
"gt_ratio"
,
0
)
self
.
out_norm
=
strategy
.
get
(
"out_norm"
,
False
)
self
.
out_norm
=
strategy
.
get
(
"out_norm"
,
False
)
if
self
.
out_norm
:
if
self
.
out_norm
:
self
.
out_ln
=
LayerNorm
(
dim
)
self
.
out_ln
=
LayerNorm
(
dim
)
def
forward
(
self
,
x
,
padding
=
None
,
oracle
=
None
,
oracle_mask
=
None
):
def
forward
(
self
,
x
,
padding
=
None
,
oracle
=
None
,
oracle_mask
=
None
):
representation
,
logit
=
x
representation
,
distribution
=
x
distribution
=
distribution
.
type_as
(
representation
)
seq_len
,
bsz
,
dim
=
representation
.
size
()
seq_len
,
bsz
,
dim
=
representation
.
size
()
org_distribution
=
distribution
vocab_size
=
distribution
.
size
(
-
1
)
distribution
=
distribution
.
contiguous
()
.
view
(
-
1
,
vocab_size
)
linear_out
=
None
linear_out
=
None
soft_out
=
None
soft_out
=
None
if
self
.
cal_linear
:
if
self
.
cal_linear
:
linear_out
=
self
.
linear_adapter
(
representation
)
linear_out
=
self
.
linear_adapter
(
representation
)
if
self
.
cal_context
:
if
self
.
cal_context
:
if
self
.
training
and
self
.
gumbel
:
distribution
=
F
.
gumbel_softmax
(
logit
,
tau
=
self
.
distribution_temperature
,
hard
=
self
.
distribution_hard
)
else
:
distribution
=
F
.
softmax
(
logit
/
self
.
distribution_temperature
,
dim
=-
1
)
vocab_size
=
distribution
.
size
(
-
1
)
distribution
=
distribution
.
contiguous
()
.
view
(
-
1
,
vocab_size
)
org_distribution
=
distribution
if
self
.
distribution_cutoff
is
not
None
:
if
self
.
distribution_cutoff
is
not
None
:
cutoff
=
min
(
int
(
self
.
distribution_cutoff
),
vocab_size
-
1
)
cutoff
=
min
(
int
(
self
.
distribution_cutoff
),
vocab_size
-
1
)
...
@@ -184,11 +195,15 @@ class Adapter(nn.Module):
...
@@ -184,11 +195,15 @@ class Adapter(nn.Module):
out
=
representation
out
=
representation
elif
self
.
adapter_type
==
"shrink"
:
elif
self
.
adapter_type
==
"shrink"
:
if
self
.
training
and
self
.
gumbel
:
distribution
=
F
.
gumbel_softmax
(
logit
,
tau
=
self
.
distribution_temperature
,
hard
=
self
.
distribution_hard
)
else
:
distribution
=
F
.
softmax
(
logit
/
self
.
distribution_temperature
,
dim
=-
1
)
lengths
=
(
~
padding
)
.
long
()
.
sum
(
-
1
)
lengths
=
(
~
padding
)
.
long
()
.
sum
(
-
1
)
with
torch
.
no_grad
():
with
torch
.
no_grad
():
batch_predicted
=
[]
batch_predicted
=
[]
prob_ctc
=
org_
distribution
.
transpose
(
0
,
1
)
# T x B x D -> B x T x D
prob_ctc
=
distribution
.
transpose
(
0
,
1
)
# T x B x D -> B x T x D
for
b
in
range
(
prob_ctc
.
shape
[
0
]):
for
b
in
range
(
prob_ctc
.
shape
[
0
]):
predicted
=
prob_ctc
[
b
][:
lengths
[
b
]]
.
argmax
(
-
1
)
.
tolist
()
predicted
=
prob_ctc
[
b
][:
lengths
[
b
]]
.
argmax
(
-
1
)
.
tolist
()
batch_predicted
.
append
([(
p
[
0
],
len
(
list
(
p
[
1
])))
for
p
in
groupby
(
predicted
)])
batch_predicted
.
append
([(
p
[
0
],
len
(
list
(
p
[
1
])))
for
p
in
groupby
(
predicted
)])
...
...
fairseq/modules/speech_to_text/ctc.py
查看文件 @
a201a883
...
@@ -39,18 +39,23 @@ class CTC(nn.Module):
...
@@ -39,18 +39,23 @@ class CTC(nn.Module):
self
.
post_process
=
"sentencepiece"
self
.
post_process
=
"sentencepiece"
self
.
blank_idx
=
0
self
.
blank_idx
=
0
def
set_infer
(
self
,
is_infer
,
text_post_process
,
dictionary
):
def
set_infer
(
self
,
is_infer
,
text_post_process
,
dictionary
,
path
):
self
.
infer_decoding
=
is_infer
self
.
infer_decoding
=
is_infer
self
.
post_process
=
text_post_process
self
.
post_process
=
text_post_process
self
.
dictionary
=
dictionary
self
.
dictionary
=
dictionary
self
.
path
=
path
if
self
.
path
is
not
None
:
self
.
save_stream
=
open
(
self
.
path
,
"a"
)
else
:
self
.
save_stream
=
None
def
forward
(
self
,
x
,
padding
=
None
,
tag
=
None
):
def
forward
(
self
,
x
,
padding
=
None
,
tag
=
None
,
is_top
=
False
):
if
self
.
need_layernorm
:
if
self
.
need_layernorm
:
x
=
self
.
LayerNorm
(
x
)
x
=
self
.
LayerNorm
(
x
)
x
=
self
.
ctc_projection
(
self
.
ctc_dropout_module
(
x
))
x
=
self
.
ctc_projection
(
self
.
ctc_dropout_module
(
x
))
if
not
self
.
training
and
self
.
infer_decoding
:
if
not
self
.
training
and
self
.
infer_decoding
and
is_top
:
assert
self
.
dictionary
is
not
None
assert
self
.
dictionary
is
not
None
input_lengths
=
(
~
padding
)
.
sum
(
-
1
)
input_lengths
=
(
~
padding
)
.
sum
(
-
1
)
self
.
infer
(
x
.
transpose
(
0
,
1
)
.
float
()
.
contiguous
()
.
cpu
(),
input_lengths
,
tag
)
self
.
infer
(
x
.
transpose
(
0
,
1
)
.
float
()
.
contiguous
()
.
cpu
(),
input_lengths
,
tag
)
...
@@ -79,6 +84,9 @@ class CTC(nn.Module):
...
@@ -79,6 +84,9 @@ class CTC(nn.Module):
pred_units
=
self
.
dictionary
.
string
(
pred_units_arr
)
pred_units
=
self
.
dictionary
.
string
(
pred_units_arr
)
pred_words_raw
=
post_process
(
pred_units
,
self
.
post_process
)
.
split
()
pred_words_raw
=
post_process
(
pred_units
,
self
.
post_process
)
.
split
()
if
self
.
save_stream
is
not
None
:
self
.
save_stream
.
write
(
" "
.
join
(
pred_words_raw
)
+
"
\n
"
)
if
tag
is
not
None
:
if
tag
is
not
None
:
logger
.
info
(
"
%
s CTC prediction:
%
s"
%
(
tag
,
" "
.
join
(
pred_words_raw
)))
logger
.
info
(
"
%
s CTC prediction:
%
s"
%
(
tag
,
" "
.
join
(
pred_words_raw
)))
else
:
else
:
...
...
fairseq_cli/generate.py
查看文件 @
a201a883
...
@@ -108,7 +108,7 @@ def _main(cfg: DictConfig, output_file, translation_path=None):
...
@@ -108,7 +108,7 @@ def _main(cfg: DictConfig, output_file, translation_path=None):
for
model
in
models
:
for
model
in
models
:
if
hasattr
(
model
,
"encoder"
)
and
hasattr
(
model
.
encoder
,
"set_ctc_infer"
):
if
hasattr
(
model
,
"encoder"
)
and
hasattr
(
model
.
encoder
,
"set_ctc_infer"
):
model
.
encoder
.
set_ctc_infer
(
cfg
.
generation
.
ctc_infer
,
"sentencepiece"
,
model
.
encoder
.
set_ctc_infer
(
cfg
.
generation
.
ctc_infer
,
"sentencepiece"
,
src_dict
,
tgt_dict
)
src_dict
,
tgt_dict
,
translation_path
)
# os.path.dirname(translation_path)
)
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
task
.
load_dataset
(
cfg
.
dataset
.
gen_subset
,
task_cfg
=
saved_cfg
.
task
)
task
.
load_dataset
(
cfg
.
dataset
.
gen_subset
,
task_cfg
=
saved_cfg
.
task
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论