Commit ca78c4b8 by xuchen

add the local attention

parent f1cf477d
...@@ -135,3 +135,4 @@ experimental/* ...@@ -135,3 +135,4 @@ experimental/*
# Weights and Biases logs # Weights and Biases logs
wandb/ wandb/
/examples/translation/iwslt14.tokenized.de-en/ /examples/translation/iwslt14.tokenized.de-en/
toy/
...@@ -150,6 +150,7 @@ class S2TTransformerModel(FairseqEncoderDecoderModel): ...@@ -150,6 +150,7 @@ class S2TTransformerModel(FairseqEncoderDecoderModel):
"selfattn", "selfattn",
"rel_selfattn", "rel_selfattn",
"relative", "relative",
"local",
], ],
help="transformer encoder self-attention layer type" help="transformer encoder self-attention layer type"
) )
...@@ -187,6 +188,7 @@ class S2TTransformerModel(FairseqEncoderDecoderModel): ...@@ -187,6 +188,7 @@ class S2TTransformerModel(FairseqEncoderDecoderModel):
"selfattn", "selfattn",
"rel_selfattn", "rel_selfattn",
"relative", "relative",
"local",
], ],
help="transformer decoder self-attention layer type" help="transformer decoder self-attention layer type"
) )
...@@ -277,6 +279,29 @@ class S2TTransformerModel(FairseqEncoderDecoderModel): ...@@ -277,6 +279,29 @@ class S2TTransformerModel(FairseqEncoderDecoderModel):
default="learnable_dense", default="learnable_dense",
help='decoder layer history type' help='decoder layer history type'
) )
parser.add_argument(
'--hard-mask-window',
type=float,
metavar="D",
default=0,
help='window size of local mask'
)
parser.add_argument(
'--gauss-mask-sigma',
type=float,
metavar="D",
default=0,
help='standard deviation of the gauss mask'
)
parser.add_argument(
'--init-mask-weight',
type=float,
metavar="D",
default=0.5,
help='initialized weight for local mask'
)
pass pass
@classmethod @classmethod
...@@ -627,6 +652,10 @@ def base_architecture(args): ...@@ -627,6 +652,10 @@ def base_architecture(args):
args.max_decoder_relative_length = getattr(args, 'max_decoder_relative_length', -1) args.max_decoder_relative_length = getattr(args, 'max_decoder_relative_length', -1)
args.k_only = getattr(args, 'k_only', True) args.k_only = getattr(args, 'k_only', True)
args.hard_mask_window = getattr(args, 'hard_mask_window', 0)
args.gauss_mask_sigma = getattr(args, 'gauss_mask_sigma', 0)
args.init_mask_weight = getattr(args, 'init_mask_weight', 0)
@register_model_architecture("s2t_transformer", "s2t_transformer_s") @register_model_architecture("s2t_transformer", "s2t_transformer_s")
def s2t_transformer_s(args): def s2t_transformer_s(args):
......
...@@ -26,6 +26,7 @@ from .layer_norm import Fp32LayerNorm, LayerNorm ...@@ -26,6 +26,7 @@ from .layer_norm import Fp32LayerNorm, LayerNorm
from .learned_positional_embedding import LearnedPositionalEmbedding from .learned_positional_embedding import LearnedPositionalEmbedding
from .lightweight_convolution import LightweightConv, LightweightConv1dTBC from .lightweight_convolution import LightweightConv, LightweightConv1dTBC
from .linearized_convolution import LinearizedConvolution from .linearized_convolution import LinearizedConvolution
from .local_multihead_attention import LocalMultiheadAttention
from .multihead_attention import MultiheadAttention from .multihead_attention import MultiheadAttention
from .positional_embedding import PositionalEmbedding from .positional_embedding import PositionalEmbedding
from .rel_position_multihead_attention import RelPositionMultiheadAttention from .rel_position_multihead_attention import RelPositionMultiheadAttention
...@@ -70,6 +71,7 @@ __all__ = [ ...@@ -70,6 +71,7 @@ __all__ = [
"LightweightConv1dTBC", "LightweightConv1dTBC",
"LightweightConv", "LightweightConv",
"LinearizedConvolution", "LinearizedConvolution",
"LocalMultiheadAttention",
"MultiheadAttention", "MultiheadAttention",
"PositionalEmbedding", "PositionalEmbedding",
"RelPositionMultiheadAttention", "RelPositionMultiheadAttention",
......
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Dict, Optional, Tuple
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
from torch import Tensor, nn
from torch.nn import Parameter
@with_incremental_state
class LocalMultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
self_attention=False,
encoder_decoder_attention=False,
q_noise=0.0,
qn_block_size=8,
hard_mask_window=0,
gauss_mask_sigma=0,
init_mask_weight=0.5,
):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, (
"Self-attention requires query, key and " "value to be of the same size"
)
self.k_proj = quant_noise(
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.v_proj = quant_noise(
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.q_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.out_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
self.onnx_trace = False
if hard_mask_window != 0:
self.hard_mask_window = hard_mask_window
else:
self.hard_mask_window = 0
if gauss_mask_sigma != 0:
self.multihead_gauss_mask_sigma = Parameter(torch.Tensor(num_heads, 1, 1))
nn.init.constant_(self.multihead_gauss_mask_sigma, gauss_mask_sigma)
else:
self.multihead_gauss_mask_sigma = None
self.multihead_mask_weight = Parameter(torch.Tensor(num_heads, 1, 1))
nn.init.constant_(self.multihead_mask_weight, init_mask_weight)
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def reset_parameters(self):
if self.qkv_same_dim:
# Empirically observed the convergence to be much better with
# the scaled initialization
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = True,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
is_tpu = query.device.type == "xla"
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
],
dim=1,
)
q = (
q.contiguous()
.view(tgt_len, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if k is not None:
k = (
k.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if v is not None:
v = (
v.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: Optional[Tensor] = None
if "prev_key_padding_mask" in saved_state:
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = LocalMultiheadAttention._append_prev_key_padding_mask(
key_padding_mask=key_padding_mask,
prev_key_padding_mask=prev_key_padding_mask,
batch_size=bsz,
src_len=k.size(1),
static_kv=static_kv,
)
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_key_padding_mask"] = key_padding_mask
# In this branch incremental_state is never None
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
src_len = k.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
torch.zeros(key_padding_mask.size(0), 1).type_as(
key_padding_mask
),
],
dim=1,
)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if self.hard_mask_window != 0:
hard_mask_window = self.hard_mask_window
if 0 < self.hard_mask_window <= 1:
hard_mask_window = int(src_len * self.hard_mask_window)
x1 = torch.arange(-1, src_len - 1, 1).view(-1, 1)
x2 = torch.arange(-1, src_len - 1, 1).view(1, -1)
dis = x2 - x1
mask_diag = torch.abs(dis) > hard_mask_window
mask_diag = mask_diag.unsqueeze(0)
attn_weights = attn_weights.masked_fill(mask_diag, float("-inf"))
if self.multihead_gauss_mask_sigma is not None:
x1 = torch.arange(-1, src_len - 1, 1).view(-1, 1)
x2 = torch.arange(-1, src_len - 1, 1).view(1, -1)
diag_growing = -(x1 - x2) ** 2 / 2.0
e_diag_gauss_mask = diag_growing.unsqueeze(0).repeat(self.num_heads, 1, 1)
e_sigma_square = 1 / torch.square(self.multihead_gauss_mask_sigma)
e_diag_gauss_mask_final = e_diag_gauss_mask * e_sigma_square
e_diag_gauss_mask_final = torch.unsqueeze(e_diag_gauss_mask_final, 0)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
multihead_mask_weight = torch.sigmoid(self.multihead_mask_weight.unsqueeze(0))
attn_weights = (1 - multihead_mask_weight) * attn_weights + multihead_mask_weight * e_diag_gauss_mask_final
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace:
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if not is_tpu:
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
else:
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = utils.softmax(
attn_weights, dim=-1, onnx_trace=self.onnx_trace
)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
assert v is not None
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
if self.onnx_trace and attn.size(1) == 1:
# when ONNX tracing a single decoder step (sequence length == 1)
# the transpose is a no-op copy before view, thus unnecessary
attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
attn_weights: Optional[Tensor] = None
if need_weights:
attn_weights = attn_weights_float.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
@staticmethod
def _append_prev_key_padding_mask(
key_padding_mask: Optional[Tensor],
prev_key_padding_mask: Optional[Tensor],
batch_size: int,
src_len: int,
static_kv: bool,
) -> Optional[Tensor]:
# saved key padding masks have shape (bsz, seq_len)
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
)
# During incremental decoding, as the padding token enters and
# leaves the frame, there will be a time when prev or current
# is None
elif prev_key_padding_mask is not None:
filler = torch.zeros(
(batch_size, src_len - prev_key_padding_mask.size(1)),
device=prev_key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), filler.float()], dim=1
)
elif key_padding_mask is not None:
filler = torch.zeros(
(batch_size, src_len - key_padding_mask.size(1)),
device=key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[filler.float(), key_padding_mask.float()], dim=1
)
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
@torch.jit.export
def reorder_incremental_state(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
new_order: Tensor,
):
"""Reorder buffered internal state (for incremental generation)."""
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer_k = input_buffer[k]
if input_buffer_k is not None:
if self.encoder_decoder_attention and input_buffer_k.size(
0
) == new_order.size(0):
break
input_buffer[k] = input_buffer_k.index_select(0, new_order)
incremental_state = self._set_input_buffer(incremental_state, input_buffer)
return incremental_state
def _get_input_buffer(
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
) -> Dict[str, Optional[Tensor]]:
result = self.get_incremental_state(incremental_state, "attn_state")
if result is not None:
return result
else:
empty_result: Dict[str, Optional[Tensor]] = {}
return empty_result
def _set_input_buffer(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
buffer: Dict[str, Optional[Tensor]],
):
return self.set_incremental_state(incremental_state, "attn_state", buffer)
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
return attn_weights
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
items_to_add = {}
keys_to_remove = []
for k in state_dict.keys():
if k.endswith(prefix + "in_proj_weight"):
# in_proj_weight used to be q + k + v with same dimensions
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
keys_to_remove.append(k)
k_bias = prefix + "in_proj_bias"
if k_bias in state_dict.keys():
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
dim : 2 * dim
]
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
keys_to_remove.append(prefix + "in_proj_bias")
for k in keys_to_remove:
del state_dict[k]
for key, value in items_to_add.items():
state_dict[key] = value
...@@ -12,7 +12,8 @@ from fairseq.modules import ( ...@@ -12,7 +12,8 @@ from fairseq.modules import (
LayerNorm, LayerNorm,
MultiheadAttention, MultiheadAttention,
RelPositionMultiheadAttention, RelPositionMultiheadAttention,
RelativeMultiheadAttention RelativeMultiheadAttention,
LocalMultiheadAttention,
) )
from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise from fairseq.modules.quant_noise import quant_noise
...@@ -103,6 +104,21 @@ class TransformerEncoderLayer(nn.Module): ...@@ -103,6 +104,21 @@ class TransformerEncoderLayer(nn.Module):
else: else:
print("The maximum encoder relative length %d can not be -1!" % max_relative_length) print("The maximum encoder relative length %d can not be -1!" % max_relative_length)
exit(1) exit(1)
elif self.attn_type == "local":
hard_mask_window = getattr(args, "hard_mask_window", 0)
gauss_mask_sigma = getattr(args, "gauss_mask_sigma", 0)
init_mask_weight = getattr(args, "init_mask_weight", 0)
return LocalMultiheadAttention(
embed_dim,
args.encoder_attention_heads,
dropout=args.attention_dropout,
self_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
hard_mask_window=hard_mask_window,
gauss_mask_sigma=gauss_mask_sigma,
init_mask_weight=init_mask_weight
)
else: else:
print("The encoder attention type %s is not supported!" % self.attn_type) print("The encoder attention type %s is not supported!" % self.attn_type)
exit(1) exit(1)
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论