Commit f006cf77 by xuchen

Modify the readme file

parent dc35a9b5
<p align="center">
<img src="docs/fairseq_logo.png" width="150">
<br />
<br />
<a href="https://github.com/pytorch/fairseq/blob/master/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue.svg" /></a>
<a href="https://github.com/pytorch/fairseq/releases"><img alt="Latest Release" src="https://img.shields.io/github/release/pytorch/fairseq.svg" /></a>
<a href="https://github.com/pytorch/fairseq/actions?query=workflow:build"><img alt="Build Status" src="https://github.com/pytorch/fairseq/workflows/build/badge.svg" /></a>
<a href="https://fairseq.readthedocs.io/en/latest/?badge=latest"><img alt="Documentation Status" src="https://readthedocs.org/projects/fairseq/badge/?version=latest" /></a>
</p>
--------------------------------------------------------------------------------
Fairseq(-py) is a sequence modeling toolkit that allows researchers and
developers to train custom models for translation, summarization, language
modeling and other text generation tasks.
We provide reference implementations of various sequence modeling papers:
<details><summary>List of implemented papers</summary><p>
* **Convolutional Neural Networks (CNN)**
+ [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
+ [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
+ [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
+ [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
+ [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
* **LightConv and DynamicConv models**
+ [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
* **Long Short-Term Memory (LSTM) networks**
+ Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
* **Transformer (self-attention) networks**
+ Attention Is All You Need (Vaswani et al., 2017)
+ [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
+ [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
+ [Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/README.adaptive_inputs.md)
+ [Lexically constrained decoding with dynamic beam allocation (Post & Vilar, 2018)](examples/constrained_decoding/README.md)
+ [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)](examples/truncated_bptt/README.md)
+ [Adaptive Attention Span in Transformers (Sukhbaatar et al., 2019)](examples/adaptive_span/README.md)
+ [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
+ [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
+ [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
+ [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
+ [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
+ [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
+ [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
+ [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
+ [Generating Medical Reports from Patient-Doctor Conversations Using Sequence-to-Sequence Models (Enarvi et al., 2020)](examples/pointer_generator/README.md)
+ [Linformer: Self-Attention with Linear Complexity (Wang et al., 2020)](examples/linformer/README.md)
+ [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
+ [Deep Transformers with Latent Depth (Li et al., 2020)](examples/latent_depth/README.md)
* **Non-autoregressive Transformers**
+ Non-Autoregressive Neural Machine Translation (Gu et al., 2017)
+ Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al. 2018)
+ Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al. 2019)
+ Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019)
+ [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
* **Finetuning**
+ [Better Fine-Tuning by Reducing Representational Collapse (Aghajanyan et al. 2020)](examples/rxf/README.md)
</p></details>
### What's New:
* December 2020: [GottBERT model and code released](examples/gottbert/README.md)
* November 2020: Adopted the [Hydra](https://github.com/facebookresearch/hydra) configuration framework
* [see documentation explaining how to use it for new and existing projects](docs/hydra_integration.md)
* November 2020: [fairseq 0.10.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.10.0)
* October 2020: [Added R3F/R4F (Better Fine-Tuning) code](examples/rxf/README.md)
* October 2020: [Deep Transformer with Latent Depth code released](examples/latent_depth/README.md)
* October 2020: [Added CRISS models and code](examples/criss/README.md)
* September 2020: [Added Linformer code](examples/linformer/README.md)
* September 2020: [Added pointer-generator networks](examples/pointer_generator/README.md)
* August 2020: [Added lexically constrained decoding](examples/constrained_decoding/README.md)
* August 2020: [wav2vec2 models and code released](examples/wav2vec/README.md)
* July 2020: [Unsupervised Quality Estimation code released](examples/unsupervised_quality_estimation/README.md)
<details><summary>Previous updates</summary><p>
* May 2020: [Follow fairseq on Twitter](https://twitter.com/fairseq)
* April 2020: [Monotonic Multihead Attention code released](examples/simultaneous_translation/README.md)
* April 2020: [Quant-Noise code released](examples/quant_noise/README.md)
* April 2020: [Initial model parallel support and 11B parameters unidirectional LM released](examples/megatron_11b/README.md)
* March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md)
* February 2020: [mBART model and code released](examples/mbart/README.md)
* February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/master/examples/backtranslation#training-your-own-model-wmt18-english-german)
* December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0)
* November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
* November 2019: [CamemBERT model and code released](examples/camembert/README.md)
* November 2019: [BART model and code released](examples/bart/README.md)
* November 2019: [XLM-R models and code released](examples/xlmr/README.md)
* September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
* August 2019: [WMT'19 models released](examples/wmt19/README.md)
* July 2019: fairseq relicensed under MIT license
* July 2019: [RoBERTa models and code released](examples/roberta/README.md)
* June 2019: [wav2vec models and code released](examples/wav2vec/README.md)
</p></details>
### Features:
* multi-GPU training on one machine or across multiple machines (data and model parallel)
* fast generation on both CPU and GPU with multiple search algorithms implemented:
+ beam search
+ Diverse Beam Search ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424))
+ sampling (unconstrained, top-k and top-p/nucleus)
+ [lexically constrained decoding](examples/constrained_decoding/README.md) (Post & Vilar, 2018)
* [gradient accumulation](https://fairseq.readthedocs.io/en/latest/getting_started.html#large-mini-batch-training-with-delayed-updates) enables training with large mini-batches even on a single GPU
* [mixed precision training](https://fairseq.readthedocs.io/en/latest/getting_started.html#training-with-half-precision-floating-point-fp16) (trains faster with less GPU memory on [NVIDIA tensor cores](https://developer.nvidia.com/tensor-cores))
* [extensible](https://fairseq.readthedocs.io/en/latest/overview.html): easily register new models, criterions, tasks, optimizers and learning rate schedulers
* [flexible configuration](docs/hydra_integration.md) based on [Hydra](https://github.com/facebookresearch/hydra) allowing a combination of code, command-line and file based configuration
We also provide [pre-trained models for translation and language modeling](#pre-trained-models-and-examples)
with a convenient `torch.hub` interface:
``` python
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'
```
See the PyTorch Hub tutorials for [translation](https://pytorch.org/hub/pytorch_fairseq_translation/)
and [RoBERTa](https://pytorch.org/hub/pytorch_fairseq_roberta/) for more examples.
# Requirements and Installation
* [PyTorch](http://pytorch.org/) version >= 1.5.0
* Python version >= 3.6
* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
* **To install fairseq** and develop locally:
``` bash
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./
# to install the latest stable release (0.10.x)
# pip install fairseq
```
* **For faster training** install NVIDIA's [apex](https://github.com/NVIDIA/apex) library:
``` bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
--global-option="--deprecated_fused_adam" --global-option="--xentropy" \
--global-option="--fast_multihead_attn" ./
```
* **For large datasets** install [PyArrow](https://arrow.apache.org/docs/python/install.html#using-pip): `pip install pyarrow`
* If you use Docker make sure to increase the shared memory size either with `--ipc=host` or `--shm-size`
as command line options to `nvidia-docker run` .
# Getting Started
The [full documentation](https://fairseq.readthedocs.io/) contains instructions
for getting started, training new models and extending fairseq with new model
types and tasks.
# Pre-trained models and examples
We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below,
as well as example training and evaluation commands.
* [Translation](examples/translation/README.md): convolutional and transformer models are available
* [Language Modeling](examples/language_model/README.md): convolutional and transformer models are available
We also have more detailed READMEs to reproduce results from specific papers:
* [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
* [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
* [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
* [Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)](examples/quant_noise/README.md)
* [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
* [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
* [Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019)](examples/layerdrop/README.md)
* [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md)
* [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
* [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
* [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
* [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
* [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
* [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
* [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
* [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
* [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
* [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
* [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
* [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/README.conv.md)
# Join the fairseq community
* Twitter: https://twitter.com/fairseq
* Facebook page: https://www.facebook.com/groups/fairseq.users
* Google group: https://groups.google.com/forum/#!forum/fairseq-users
# License
fairseq(-py) is MIT-licensed.
The license applies to the pre-trained models as well.
# Citation
Please cite as:
``` bibtex
@inproceedings{ott2019fairseq,
title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
year = {2019},
}
```
<p align="center"> # Fairseq_ST使用说明
<img src="docs/fairseq_logo.png" width="150">
<br />
<br />
<a href="https://github.com/pytorch/fairseq/blob/master/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue.svg" /></a>
<a href="https://github.com/pytorch/fairseq/releases"><img alt="Latest Release" src="https://img.shields.io/github/release/pytorch/fairseq.svg" /></a>
<a href="https://github.com/pytorch/fairseq/actions?query=workflow:build"><img alt="Build Status" src="https://github.com/pytorch/fairseq/workflows/build/badge.svg" /></a>
<a href="https://fairseq.readthedocs.io/en/latest/?badge=latest"><img alt="Documentation Status" src="https://readthedocs.org/projects/fairseq/badge/?version=latest" /></a>
</p>
--------------------------------------------------------------------------------
Fairseq(-py) is a sequence modeling toolkit that allows researchers and
developers to train custom models for translation, summarization, language
modeling and other text generation tasks.
We provide reference implementations of various sequence modeling papers:
<details><summary>List of implemented papers</summary><p>
* **Convolutional Neural Networks (CNN)**
+ [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
+ [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
+ [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
+ [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
+ [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
* **LightConv and DynamicConv models**
+ [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
* **Long Short-Term Memory (LSTM) networks**
+ Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
* **Transformer (self-attention) networks**
+ Attention Is All You Need (Vaswani et al., 2017)
+ [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
+ [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
+ [Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/README.adaptive_inputs.md)
+ [Lexically constrained decoding with dynamic beam allocation (Post & Vilar, 2018)](examples/constrained_decoding/README.md)
+ [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)](examples/truncated_bptt/README.md)
+ [Adaptive Attention Span in Transformers (Sukhbaatar et al., 2019)](examples/adaptive_span/README.md)
+ [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
+ [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
+ [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
+ [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
+ [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
+ [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
+ [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
+ [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
+ [Generating Medical Reports from Patient-Doctor Conversations Using Sequence-to-Sequence Models (Enarvi et al., 2020)](examples/pointer_generator/README.md)
+ [Linformer: Self-Attention with Linear Complexity (Wang et al., 2020)](examples/linformer/README.md)
+ [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
+ [Deep Transformers with Latent Depth (Li et al., 2020)](examples/latent_depth/README.md)
* **Non-autoregressive Transformers**
+ Non-Autoregressive Neural Machine Translation (Gu et al., 2017)
+ Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al. 2018)
+ Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al. 2019)
+ Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019)
+ [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
* **Finetuning**
+ [Better Fine-Tuning by Reducing Representational Collapse (Aghajanyan et al. 2020)](examples/rxf/README.md)
</p></details>
### What's New:
* December 2020: [GottBERT model and code released](examples/gottbert/README.md)
* November 2020: Adopted the [Hydra](https://github.com/facebookresearch/hydra) configuration framework
* [see documentation explaining how to use it for new and existing projects](docs/hydra_integration.md)
* November 2020: [fairseq 0.10.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.10.0)
* October 2020: [Added R3F/R4F (Better Fine-Tuning) code](examples/rxf/README.md)
* October 2020: [Deep Transformer with Latent Depth code released](examples/latent_depth/README.md)
* October 2020: [Added CRISS models and code](examples/criss/README.md)
* September 2020: [Added Linformer code](examples/linformer/README.md)
* September 2020: [Added pointer-generator networks](examples/pointer_generator/README.md)
* August 2020: [Added lexically constrained decoding](examples/constrained_decoding/README.md)
* August 2020: [wav2vec2 models and code released](examples/wav2vec/README.md)
* July 2020: [Unsupervised Quality Estimation code released](examples/unsupervised_quality_estimation/README.md)
<details><summary>Previous updates</summary><p>
* May 2020: [Follow fairseq on Twitter](https://twitter.com/fairseq)
* April 2020: [Monotonic Multihead Attention code released](examples/simultaneous_translation/README.md)
* April 2020: [Quant-Noise code released](examples/quant_noise/README.md)
* April 2020: [Initial model parallel support and 11B parameters unidirectional LM released](examples/megatron_11b/README.md)
* March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md)
* February 2020: [mBART model and code released](examples/mbart/README.md)
* February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/master/examples/backtranslation#training-your-own-model-wmt18-english-german)
* December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0)
* November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
* November 2019: [CamemBERT model and code released](examples/camembert/README.md)
* November 2019: [BART model and code released](examples/bart/README.md)
* November 2019: [XLM-R models and code released](examples/xlmr/README.md)
* September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
* August 2019: [WMT'19 models released](examples/wmt19/README.md)
* July 2019: fairseq relicensed under MIT license
* July 2019: [RoBERTa models and code released](examples/roberta/README.md)
* June 2019: [wav2vec models and code released](examples/wav2vec/README.md)
</p></details>
### Features:
* multi-GPU training on one machine or across multiple machines (data and model parallel)
* fast generation on both CPU and GPU with multiple search algorithms implemented:
+ beam search
+ Diverse Beam Search ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424))
+ sampling (unconstrained, top-k and top-p/nucleus)
+ [lexically constrained decoding](examples/constrained_decoding/README.md) (Post & Vilar, 2018)
* [gradient accumulation](https://fairseq.readthedocs.io/en/latest/getting_started.html#large-mini-batch-training-with-delayed-updates) enables training with large mini-batches even on a single GPU
* [mixed precision training](https://fairseq.readthedocs.io/en/latest/getting_started.html#training-with-half-precision-floating-point-fp16) (trains faster with less GPU memory on [NVIDIA tensor cores](https://developer.nvidia.com/tensor-cores))
* [extensible](https://fairseq.readthedocs.io/en/latest/overview.html): easily register new models, criterions, tasks, optimizers and learning rate schedulers
* [flexible configuration](docs/hydra_integration.md) based on [Hydra](https://github.com/facebookresearch/hydra) allowing a combination of code, command-line and file based configuration
We also provide [pre-trained models for translation and language modeling](#pre-trained-models-and-examples)
with a convenient `torch.hub` interface:
``` python
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'
```
See the PyTorch Hub tutorials for [translation](https://pytorch.org/hub/pytorch_fairseq_translation/) # 简要说明
and [RoBERTa](https://pytorch.org/hub/pytorch_fairseq_roberta/) for more examples.
# Requirements and Installation Fairseq_ST基于原始的Fairseq,仅做了少量修改增加易用性以及对语音翻译任务的适配。
* [PyTorch](http://pytorch.org/) version >= 1.5.0 目前支持功能:
* Python version >= 3.6
* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
* **To install fairseq** and develop locally:
``` bash - 针对每个数据集创建egs文件夹保存运行脚本
git clone https://github.com/pytorch/fairseq - 通过读取yaml配置文件进行训练
cd fairseq - 支持ctc多任务学习
pip install --editable ./
# on MacOS: 后续目标:
# CFLAGS="-stdlib=libc++" pip install --editable ./
# to install the latest stable release (0.10.x) - 输入层CNN结构调整
# pip install fairseq - Conformer模型结构
``` - 预训练模型加载
- SATE模型结构
此外,语音翻译任务需要对每个任务预先下载好原始数据,除了已经提供的数据集,如LibriSpeech和MuST-C外,其他数据集需要额外编写代码进行处理,参考examples/speech_to_text路径下的处理文件。
# 需求条件
* **For faster training** install NVIDIA's [apex](https://github.com/NVIDIA/apex) library: 1. Python ≥3.6
2. torch ≥ 1.4, torchaudio ≥ 0.4.0, cuda ≥ 10.1
3. apex
4. nccl
5. gcc ≥ 4.9
6. python包 pandas sentencepiece configargparse gpustat tensorboard editdistance
``` bash 服务器为8.130.161.160,账户名为xuchen,密码为点。
git clone https://github.com/NVIDIA/apex
cd apex 服务器包含以下文件:
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
--global-option="--deprecated_fused_adam" --global-option="--xentropy" \ ```markdown
--global-option="--fast_multihead_attn" ./ .
├── st
├── data
├── fairseq
└── tools
├── apex-master
├── bak
├── cuda10.1
├── gcc
├── LibriSpeech
├── moses
├── nccl
└── Python-3.8.8
``` ```
* **For large datasets** install [PyArrow](https://arrow.apache.org/docs/python/install.html#using-pip): `pip install pyarrow` st文件夹下包含了数据文件夹data和代码文件夹fairseq,tools文件夹下包含了上述常用包,其中bak文件夹中保存了程序未安装之前的压缩包。
* If you use Docker make sure to increase the shared memory size either with `--ipc=host` or `--shm-size`
as command line options to `nvidia-docker run` . 使用过程中注意配置.bashrc文件。
# Getting Started # 代码结构
The [full documentation](https://fairseq.readthedocs.io/) contains instructions 运行脚本存放于fairseq根目录下的egs文件夹,针对每个数据集分别建立了不同的文件夹来执行操作,目前包括语音识别数据集LibriSpeech以及语音翻译数据集MuST-C的执行脚本。
for getting started, training new models and extending fairseq with new model
types and tasks. 以librispeech文件夹举例,其中包含以下文件:
# Pre-trained models and examples ```markdown
librispeech
We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below, ├── conf
as well as example training and evaluation commands. │   └── train_config.yaml
├── local
* [Translation](examples/translation/README.md): convolutional and transformer models are available │   ├── monitor.sh
* [Language Modeling](examples/language_model/README.md): convolutional and transformer models are available │   ├── parse_options.sh
│   ├── path.sh
We also have more detailed READMEs to reproduce results from specific papers: │   └── utils.sh
├── decode.sh
* [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md) ├── history.log
* [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md) ├── run.sh
* [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md) ├── train_history.log
* [Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)](examples/quant_noise/README.md) └── train.sh
* [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
* [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
* [Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019)](examples/layerdrop/README.md)
* [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md)
* [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
* [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
* [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
* [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
* [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
* [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
* [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
* [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
* [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
* [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
* [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
* [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/README.conv.md)
# Join the fairseq community
* Twitter: https://twitter.com/fairseq
* Facebook page: https://www.facebook.com/groups/fairseq.users
* Google group: https://groups.google.com/forum/#!forum/fairseq-users
# License
fairseq(-py) is MIT-licensed.
The license applies to the pre-trained models as well.
# Citation
Please cite as:
``` bibtex
@inproceedings{ott2019fairseq,
title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
year = {2019},
}
``` ```
- run.sh是核心脚本,包含了数据的处理以及模型的训练及解码,train.sh和decode.sh分别调用run.sh来实现单独的训练和解码功能。
- history.log保存了历史的训练信息,包含模型训练使用的显卡、数据集以及模型存储位置。
- conf文件夹下为训练配置,目前修改了Fairseq使其支持读取yaml配置文件。模型训练所要使用的配置可以在该文件中进行设置。
- local文件夹下为一些常用脚本
- monitor.sh为检测程序,可以检测是否有显卡空闲,如果空闲一定数据,则执行某个任务
- parse_options.sh为支持其他文件调用run.sh的辅助文件
- path.sh暂时还未使用
- utils.sh中包含了显卡检测函数
mustc文件夹和librispeech文件夹类似,其中run.sh额外支持了语音翻译任务的训练。
\ No newline at end of file
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论