# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
import logging
import os
from collections import OrderedDict

import torch
from fairseq import metrics, options, utils
from fairseq.data import (
    Dictionary,
    LanguagePairDataset,
    RoundRobinZipDatasets,
    TransformEosLangPairDataset,
)
from fairseq.models import FairseqMultiModel
from fairseq.tasks.translation import load_langpair_dataset

from . import LegacyFairseqTask, register_task


logger = logging.getLogger(__name__)


def _lang_token(lang: str):
    return "__{}__".format(lang)


def _lang_token_index(dic: Dictionary, lang: str):
    """Return language token index."""
    idx = dic.index(_lang_token(lang))
    assert idx != dic.unk_index, "cannot find language token for lang {}".format(lang)
    return idx


@register_task("multilingual_translation")
class MultilingualTranslationTask(LegacyFairseqTask):
    """A task for training multiple translation models simultaneously.

    We iterate round-robin over batches from multiple language pairs, ordered
    according to the `--lang-pairs` argument.

    The training loop is roughly:

        for i in range(len(epoch)):
            for lang_pair in args.lang_pairs:
                batch = next_batch_for_lang_pair(lang_pair)
                loss = criterion(model_for_lang_pair(lang_pair), batch)
                loss.backward()
            optimizer.step()

    In practice, `next_batch_for_lang_pair` is abstracted in a FairseqDataset
    (e.g., `RoundRobinZipDatasets`) and `model_for_lang_pair` is a model that
    implements the `FairseqMultiModel` interface.

    During inference it is required to specify a single `--source-lang` and
    `--target-lang`, which indicates the inference langauge direction.
    `--lang-pairs`, `--encoder-langtok`, `--decoder-langtok` have to be set to
    the same value as training.
    """

    @staticmethod
    def add_args(parser):
        """Add task-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('data', metavar='DIR', help='path to data directory')
        parser.add_argument('--lang-pairs', default=None, metavar='PAIRS',
                            help='comma-separated list of language pairs (in training order): en-de,en-fr,de-fr')
        parser.add_argument('-s', '--source-lang', default=None, metavar='SRC',
                            help='source language (only needed for inference)')
        parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET',
                            help='target language (only needed for inference)')
        parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL',
                            help='pad the source on the left (default: True)')
        parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL',
                            help='pad the target on the left (default: False)')
        parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N',
                            help='max number of tokens in the source sequence')
        parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N',
                            help='max number of tokens in the target sequence')
        parser.add_argument('--upsample-primary', default=1, type=int,
                            help='amount to upsample primary dataset')
        parser.add_argument('--encoder-langtok', default=None, type=str, choices=['src', 'tgt'],
                            metavar='SRCTGT',
                            help='replace beginning-of-sentence in source sentence with source or target '
                                 'language token. (src/tgt)')
        parser.add_argument('--decoder-langtok', action='store_true',
                            help='replace beginning-of-sentence in target sentence with target language token')
        # fmt: on

    def __init__(self, args, dicts, training):
        super().__init__(args)
        self.dicts = dicts
        self.training = training
        if training:
            self.lang_pairs = args.lang_pairs
        else:
            self.lang_pairs = ["{}-{}".format(args.source_lang, args.target_lang)]
        # eval_lang_pairs for multilingual translation is usually all of the
        # lang_pairs. However for other multitask settings or when we want to
        # optimize for certain languages we want to use a different subset. Thus
        # the eval_lang_pairs class variable is provided for classes that extend
        # this class.
        self.eval_lang_pairs = self.lang_pairs
        # model_lang_pairs will be used to build encoder-decoder model pairs in
        # models.build_model(). This allows multitask type of sub-class can
        # build models other than the input lang_pairs
        self.model_lang_pairs = self.lang_pairs
        self.langs = list(dicts.keys())

    @classmethod
    def setup_task(cls, args, **kwargs):
        dicts, training = cls.prepare(args, **kwargs)
        return cls(args, dicts, training)

    @classmethod
    def update_args(cls, args):
        args.left_pad_source = utils.eval_bool(args.left_pad_source)
        args.left_pad_target = utils.eval_bool(args.left_pad_target)

        if args.lang_pairs is None:
            raise ValueError(
                "--lang-pairs is required. List all the language pairs in the training objective."
            )
        if isinstance(args.lang_pairs, str):
            args.lang_pairs = args.lang_pairs.split(",")

    @classmethod
    def prepare(cls, args, **kargs):
        cls.update_args(args)
        sorted_langs = sorted(
            list({x for lang_pair in args.lang_pairs for x in lang_pair.split("-")})
        )
        if args.source_lang is not None or args.target_lang is not None:
            training = False
        else:
            training = True

        # load dictionaries
        dicts = OrderedDict()
        for lang in sorted_langs:
            paths = utils.split_paths(args.data)
            assert len(paths) > 0
            dicts[lang] = cls.load_dictionary(
                os.path.join(paths[0], "dict.{}.txt".format(lang))
            )
            if len(dicts) > 0:
                assert dicts[lang].pad() == dicts[sorted_langs[0]].pad()
                assert dicts[lang].eos() == dicts[sorted_langs[0]].eos()
                assert dicts[lang].unk() == dicts[sorted_langs[0]].unk()
            if args.encoder_langtok is not None or args.decoder_langtok:
                for lang_to_add in sorted_langs:
                    dicts[lang].add_symbol(_lang_token(lang_to_add))
            logger.info("[{}] dictionary: {} types".format(lang, len(dicts[lang])))
        return dicts, training

    def get_encoder_langtok(self, src_lang, tgt_lang):
        if self.args.encoder_langtok is None:
            return self.dicts[src_lang].eos()
        if self.args.encoder_langtok == "src":
            return _lang_token_index(self.dicts[src_lang], src_lang)
        else:
            return _lang_token_index(self.dicts[src_lang], tgt_lang)

    def get_decoder_langtok(self, tgt_lang):
        if not self.args.decoder_langtok:
            return self.dicts[tgt_lang].eos()
        return _lang_token_index(self.dicts[tgt_lang], tgt_lang)

    def alter_dataset_langtok(
        self,
        lang_pair_dataset,
        src_eos=None,
        src_lang=None,
        tgt_eos=None,
        tgt_lang=None,
    ):
        if self.args.encoder_langtok is None and not self.args.decoder_langtok:
            return lang_pair_dataset

        new_src_eos = None
        if (
            self.args.encoder_langtok is not None
            and src_eos is not None
            and src_lang is not None
            and tgt_lang is not None
        ):
            new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang)
        else:
            src_eos = None

        new_tgt_bos = None
        if self.args.decoder_langtok and tgt_eos is not None and tgt_lang is not None:
            new_tgt_bos = self.get_decoder_langtok(tgt_lang)
        else:
            tgt_eos = None

        return TransformEosLangPairDataset(
            lang_pair_dataset,
            src_eos=src_eos,
            new_src_eos=new_src_eos,
            tgt_bos=tgt_eos,
            new_tgt_bos=new_tgt_bos,
        )

    def load_dataset(self, split, epoch=1, **kwargs):
        """Load a dataset split."""
        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0
        data_path = paths[(epoch - 1) % len(paths)]

        def language_pair_dataset(lang_pair):
            src, tgt = lang_pair.split("-")
            langpair_dataset = load_langpair_dataset(
                data_path,
                split,
                src,
                self.dicts[src],
                tgt,
                self.dicts[tgt],
                combine=True,
                dataset_impl=self.args.dataset_impl,
                upsample_primary=self.args.upsample_primary,
                left_pad_source=self.args.left_pad_source,
                left_pad_target=self.args.left_pad_target,
                max_source_positions=self.args.max_source_positions,
                max_target_positions=self.args.max_target_positions,
            )
            return self.alter_dataset_langtok(
                langpair_dataset,
                src_eos=self.dicts[src].eos(),
                src_lang=src,
                tgt_eos=self.dicts[tgt].eos(),
                tgt_lang=tgt,
            )

        self.datasets[split] = RoundRobinZipDatasets(
            OrderedDict(
                [
                    (lang_pair, language_pair_dataset(lang_pair))
                    for lang_pair in self.lang_pairs
                ]
            ),
            eval_key=None
            if self.training
            else "%s-%s" % (self.args.source_lang, self.args.target_lang),
        )

    def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
        if constraints is not None:
            raise NotImplementedError(
                "Constrained decoding with the multilingual_translation task is not supported"
            )

        lang_pair = "%s-%s" % (self.args.source_lang, self.args.target_lang)
        return RoundRobinZipDatasets(
            OrderedDict(
                [
                    (
                        lang_pair,
                        self.alter_dataset_langtok(
                            LanguagePairDataset(
                                src_tokens, src_lengths, self.source_dictionary
                            ),
                            src_eos=self.source_dictionary.eos(),
                            src_lang=self.args.source_lang,
                            tgt_eos=self.target_dictionary.eos(),
                            tgt_lang=self.args.target_lang,
                        ),
                    )
                ]
            ),
            eval_key=lang_pair,
        )

    def build_model(self, args):
        def check_args():
            messages = []
            if (
                len(set(self.args.lang_pairs).symmetric_difference(args.lang_pairs))
                != 0
            ):
                messages.append(
                    "--lang-pairs should include all the language pairs {}.".format(
                        args.lang_pairs
                    )
                )
            if self.args.encoder_langtok != args.encoder_langtok:
                messages.append(
                    "--encoder-langtok should be {}.".format(args.encoder_langtok)
                )
            if self.args.decoder_langtok != args.decoder_langtok:
                messages.append(
                    "--decoder-langtok should {} be set.".format(
                        "" if args.decoder_langtok else "not"
                    )
                )

            if len(messages) > 0:
                raise ValueError(" ".join(messages))

        # Update args -> the fact that the constructor here
        # changes the args object doesn't mean you get the same one here
        self.update_args(args)

        # Check if task args are consistant with model args
        check_args()

        from fairseq import models

        model = models.build_model(args, self)
        if not isinstance(model, FairseqMultiModel):
            raise ValueError(
                "MultilingualTranslationTask requires a FairseqMultiModel architecture"
            )
        return model

    def _per_lang_pair_train_loss(
        self, lang_pair, model, update_num, criterion, sample, optimizer, ignore_grad
    ):
        loss, sample_size, logging_output = criterion(
            model.models[lang_pair], sample[lang_pair]
        )
        if ignore_grad:
            loss *= 0
        optimizer.backward(loss)
        return loss, sample_size, logging_output

    def train_step(
        self, sample, model, criterion, optimizer, update_num, ignore_grad=False
    ):
        model.train()
        from collections import defaultdict

        agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, defaultdict(float)
        curr_lang_pairs = [
            lang_pair
            for lang_pair in self.model_lang_pairs
            if sample[lang_pair] is not None and len(sample[lang_pair]) != 0
        ]

        for idx, lang_pair in enumerate(curr_lang_pairs):

            def maybe_no_sync():
                if (
                    self.args.distributed_world_size > 1
                    and hasattr(model, "no_sync")
                    and idx < len(curr_lang_pairs) - 1
                ):
                    return model.no_sync()
                else:
                    return contextlib.ExitStack()  # dummy contextmanager

            with maybe_no_sync():
                loss, sample_size, logging_output = self._per_lang_pair_train_loss(
                    lang_pair,
                    model,
                    update_num,
                    criterion,
                    sample,
                    optimizer,
                    ignore_grad,
                )
            agg_loss += loss.detach().item()
            # TODO make summing of the sample sizes configurable
            agg_sample_size += sample_size
            for k in logging_output:
                agg_logging_output[k] += logging_output[k]
                agg_logging_output[f"{lang_pair}:{k}"] += logging_output[k]
        return agg_loss, agg_sample_size, agg_logging_output

    def _per_lang_pair_valid_loss(self, lang_pair, model, criterion, sample):
        return criterion(model.models[lang_pair], sample[lang_pair])

    def valid_step(self, sample, model, criterion):
        model.eval()
        with torch.no_grad():
            from collections import defaultdict

            agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, defaultdict(float)
            for lang_pair in self.eval_lang_pairs:
                if (
                    lang_pair not in sample
                    or sample[lang_pair] is None
                    or len(sample[lang_pair]) == 0
                ):
                    continue
                loss, sample_size, logging_output = self._per_lang_pair_valid_loss(
                    lang_pair, model, criterion, sample
                )
                agg_loss += loss.data.item()
                # TODO make summing of the sample sizes configurable
                agg_sample_size += sample_size
                for k in logging_output:
                    agg_logging_output[k] += logging_output[k]
                    agg_logging_output[f"{lang_pair}:{k}"] += logging_output[k]
        return agg_loss, agg_sample_size, agg_logging_output

    def inference_step(
        self, generator, models, sample, prefix_tokens=None, constraints=None
    ):
        with torch.no_grad():
            if self.args.decoder_langtok:
                bos_token = _lang_token_index(
                    self.target_dictionary, self.args.target_lang
                )
            else:
                bos_token = self.target_dictionary.eos()
            return generator.generate(
                models,
                sample,
                prefix_tokens=prefix_tokens,
                constraints=constraints,
                bos_token=bos_token,
            )

    def reduce_metrics(self, logging_outputs, criterion):
        with metrics.aggregate():
            # pass 'sample_size', 'nsentences', 'ntokens' stats to fairseq_task
            super().reduce_metrics(logging_outputs, criterion)
            for k in ["sample_size", "nsentences", "ntokens"]:
                metrics.log_scalar(k, sum(l[k] for l in logging_outputs))

    @property
    def source_dictionary(self):
        if self.training:
            return next(iter(self.dicts.values()))
        else:
            return self.dicts[self.args.source_lang]

    @property
    def target_dictionary(self):
        if self.training:
            return next(iter(self.dicts.values()))
        else:
            return self.dicts[self.args.target_lang]

    def max_positions(self):
        """Return the max sentence length allowed by the task."""
        if len(self.datasets.values()) == 0:
            return {
                "%s-%s"
                % (self.args.source_lang, self.args.target_lang): (
                    self.args.max_source_positions,
                    self.args.max_target_positions,
                )
            }
        return OrderedDict(
            [
                (key, (self.args.max_source_positions, self.args.max_target_positions))
                for split in self.datasets.keys()
                for key in self.datasets[split].datasets.keys()
            ]
        )