# Simultaneous Speech Translation (SimulST) on MuST-C This is an instruction of training and evaluating a transformer *wait-k* simultaneous model on MUST-C English-Germen Dataset, from [SimulMT to SimulST: Adapting Simultaneous Text Translation to End-to-End Simultaneous Speech Translation](https://www.aclweb.org/anthology/2020.aacl-main.58.pdf). [MuST-C](https://www.aclweb.org/anthology/N19-1202) is multilingual speech-to-text translation corpus with 8-language translations on English TED talks. ## Data Preparation [Download](https://ict.fbk.eu/must-c) and unpack MuST-C data to a path `${MUSTC_ROOT}/en-${TARGET_LANG_ID}`, then preprocess it with ```bash # Additional Python packages for S2T data processing/model training pip install pandas torchaudio sentencepiece # Generate TSV manifests, features, vocabulary, # global cepstral and mean estimation, # and configuration for each language python examples/speech_to_text/prep_mustc_data.py \ --data-root ${MUSTC_ROOT} --task asr \ --vocab-type unigram --vocab-size 10000 \ --cmvn-type global python examples/speech_to_text/prep_mustc_data.py \ --data-root ${MUSTC_ROOT} --task st \ --vocab-type unigram --vocab-size 10000 --cmvn-type global ``` ## ASR Pretraining We just need a pretrained offline ASR model ``` fairseq-train ${MUSTC_ROOT}/en-de \ --config-yaml config_asr.yaml --train-subset train_asr --valid-subset dev_asr \ --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \ --arch convtransformer_espnet --optimizer adam --lr 0.0005 --lr-scheduler inverse_sqrt \ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 ``` ## Simultaneous Speech Translation Training ### Wait-K with fixed pre-decision module Fixed pre-decision indicates that the model operate simultaneous policy on the boundaries of fixed chunks. Here is a example of fixed pre-decision ratio 7 (the simultaneous decision is made every 7 encoder states) and a wait-3 policy model ``` fairseq-train ${MUSTC_ROOT}/en-de \ --config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \ --save-dir ${ST_SAVE_DIR} --num-workers 8 \ --optimizer adam --lr 0.0001 --lr-scheduler inverse_sqrt --clip-norm 10.0 \ --criterion label_smoothed_cross_entropy \ --warmup-updates 4000 --max-update 100000 --max-tokens 40000 --seed 2 \ --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} \ --task speech_to_text \ --arch convtransformer_simul_trans_espnet \ --simul-type waitk_fixed_pre_decision \ --waitk-lagging 3 \ --fixed-pre-decision-ratio 7 ``` ### Monotonic multihead attention with fixed pre-decision module ``` fairseq-train ${MUSTC_ROOT}/en-de \ --config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \ --save-dir ${ST_SAVE_DIR} --num-workers 8 \ --optimizer adam --lr 0.0001 --lr-scheduler inverse_sqrt --clip-norm 10.0 \ --warmup-updates 4000 --max-update 100000 --max-tokens 40000 --seed 2 \ --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} \ --task speech_to_text \ --criterion latency_augmented_label_smoothed_cross_entropy \ --latency-weight-avg 0.1 \ --arch convtransformer_simul_trans_espnet \ --simul-type infinite_lookback_fixed_pre_decision \ --fixed-pre-decision-ratio 7 ``` ## Inference & Evaluation [SimulEval](https://github.com/facebookresearch/SimulEval) is used for evaluation. The source file is a list of paths of audio files, while target file is the corresponding translations. ``` pip install simuleval simuleval \ --agent examples/speech_to_text/simultaneous_translation/agents/fairseq_simul_st_agent.py --src-file ${SRC_LIST_OF_AUDIO} --tgt-file ${TGT_FILE} --data-bin ${MUSTC_ROOT}/en-de \ --model-path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \ --tgt-splitter-type SentencePieceModel \ --tgt-splitter-path ${MUSTC_ROOT}/en-de/spm.model \ --scores ``` A pretrained checkpoint can be downloaded from [here](https://dl.fbaipublicfiles.com/simultaneous_translation/convtransformer_wait5_pre7), which is a wait-5 model with a pre-decision of 280 ms. The databin (containing dictionary, gcmvn file and sentencepiece model) can be found [here](https://dl.fbaipublicfiles.com/simultaneous_translation/must_c_v1.0_en_de_databin). The quality is measured by detokenized BLEU. So make sure that the predicted words sent to the server are detokenized. The latency metrics are * Average Proportion * Average Lagging * Differentiable Average Lagging Again they will also be evaluated on detokenized text.