#!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import math import re from functools import partial from typing import List, Optional, Tuple import torch import torch.nn as nn from fairseq.models import ( FairseqEncoder, ) from fairseq.models.speech_to_text.utils import ( NoOp, lengths_to_padding_mask, segments_to_sequence, ) from fairseq.models.speech_to_text.utils import ( attention_suppression, layer_norm_backward_hook, ) from torch import Tensor, device as Device from torch.quantization.qconfig import ( default_dynamic_qconfig, per_channel_dynamic_qconfig, ) class RelativePositionEmbedding(nn.Module): """ Implementation according to https://arxiv.org/abs/1803.02155 """ def __init__(self, head_dim, max_position, norm_init=True): super().__init__() self.head_dim = head_dim self.max_position = max_position self.embeddings = nn.Parameter(torch.Tensor(max_position * 2 + 1, head_dim)) if norm_init: nn.init.xavier_normal_(self.embeddings) else: nn.init.xavier_uniform_(self.embeddings) def forward(self, input: Tensor): output = nn.functional.embedding(input.long(), self.embeddings) return output class Fp32LayerNorm(nn.Module): def __init__( self, input_dim, clamp_grad=True, max_grad_value=256, eps=1e-5, elementwise_affine=True, ): super().__init__() self.torch_module = torch.nn.LayerNorm( input_dim, eps=eps, elementwise_affine=elementwise_affine ) if clamp_grad: hook = partial(layer_norm_backward_hook, clamp_value=max_grad_value) self.torch_module.register_backward_hook(hook) def forward(self, input): output = torch.nn.functional.layer_norm( input.float(), self.torch_module.normalized_shape, self.torch_module.weight.float() if self.torch_module.weight is not None else None, self.torch_module.bias.float() if self.torch_module.bias is not None else None, self.torch_module.eps, ).type_as(input) return output # ------------------------------------------------------------------------------ # PositionwiseFF # ------------------------------------------------------------------------------ class PositionwiseFF(nn.Module): """ FFN layer in transformer. Args: input_dim: input embedding dimension ffn_dim: FFN layer inner dimension dropout_on_fc1: dropout for first linear layer dropout_on_fc2: dropout fr second linear layer activation_fn: activation function used after first linear layer. \ Only relu or gelu is supported. """ def __init__( self, input_dim, ffn_dim, dropout_on_fc1, dropout_on_fc2, activation_fn ): super(PositionwiseFF, self).__init__() self.input_dim = input_dim self.ffn_dim = ffn_dim if activation_fn == "relu": ac = nn.ReLU() elif activation_fn == "gelu": ac = nn.GELU() else: raise ValueError("Unsupported activation_fn = ({})".format(activation_fn)) # fc1 -> ac -> dropout -> fc2 -> dropout self.module = nn.Sequential( nn.Linear(input_dim, ffn_dim), ac, nn.Dropout(dropout_on_fc1), nn.Linear(ffn_dim, input_dim), nn.Dropout(dropout_on_fc2), ) self.layer_norm = Fp32LayerNorm(input_dim) def forward(self, input): module_out = self.module(self.layer_norm(input)) output = module_out + input return output def quantize_(self, params=None): if params and "per_channel" in params and params["per_channel"]: qconfig = per_channel_dynamic_qconfig else: qconfig = default_dynamic_qconfig torch.quantization.quantize_dynamic( self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True ) return self # ------------------------------------------------------------------------------ # SummarizationLayer # ------------------------------------------------------------------------------ class SummarizationLayer(nn.Module): def __init__(self, method, segment_size, embedding_dim): super(SummarizationLayer, self).__init__() self.segment_size = segment_size self.embedding_dim = embedding_dim nonlin_match = re.match(r"nonlinear\((?P<act>[a-z]+),(?P<dim>[0-9]+)\)", method) self.method = method if method == "mean": self.module = nn.AvgPool1d( kernel_size=segment_size, stride=segment_size, ceil_mode=True, ) elif method == "max": self.module = nn.MaxPool1d( kernel_size=segment_size, stride=segment_size, ceil_mode=True, ) elif method == "linear": self.module = nn.Linear(segment_size, 1) elif nonlin_match: nonlin_args = nonlin_match.groupdict() act_type = nonlin_args["act"] hid_dim = int(nonlin_args["dim"]) if act_type == "relu": act = nn.ReLU() elif act_type == "gelu": act = nn.GELU() else: raise ValueError("Unsupported activation_fn = ({})".format(act_type)) self.module = nn.Sequential( nn.Linear(segment_size, hid_dim), act, nn.Linear(hid_dim, 1), ) else: raise ValueError("Unsupported summarization method = ({})".format(method)) def forward(self, input): # T, B, D -> B, D, T input = input.permute(1, 2, 0) if self.method == "mean" or self.method == "max": output = self.module(input) output = output.permute(2, 0, 1) return output full_seg_length = input.size(2) // self.segment_size * self.segment_size if full_seg_length > 0: # at least one seg is full B = input.size(0) D = input.size(1) input_todo = ( input[:, :, :full_seg_length] .contiguous() .view(B, -1, self.segment_size) ) output = self.module(input_todo) output = output.view(B, D, -1) else: output = input.new_zeros(input.size(0), input.size(1), 0) left = input.size(2) - full_seg_length if left > 0: # when last seg is not full, use zeros as last memory placeholder zeros = input.new_zeros(input.size(0), input.size(1), 1) output = torch.cat([output, zeros], dim=2) output = output.permute(2, 0, 1) return output # ------------------------------------------------------------------------------ # NoSegAugmentedMemoryMultiheadAttentionBmm # ------------------------------------------------------------------------------ class NoSegAugmentedMemoryMultiheadAttentionBmm(nn.Module): """ Whole utterance augmented memory multihead attention using BMM. Different with previous augmented memory multihead attention where the utterance is chunked into segments. Here we use attention mask achieve so. The input embedding [right_context, utterance, summary] is a concatenation of right context, utterance and summary. Right context block is the concatenation of all the right context for each segments. [right_context_0, right_context_1, ..., right_context_n] For example, if we have utterance = [v0, v1, v2, ...., v20]. segment size 8, right_context size 4. Then the right context blocks = [v8, v9, v10, v11, v16, v17, v18, v19, 0, 0, 0, 0], where v8, v9, v10, and v11 are the right context for first segment. v16, v17, v18 and v19 are the right context for second segment. 0, 0, 0 and 0 are right context for the last segment. utterance is corresponding to input embedding sequence summary is concatenation of average of each segments. [summary_0, summary_1, ..., ]. In augmented memory multihead attention, the query is [right_context, utterance, summary], key is [memory, right_context, utterance]. Different with AugmentedMemoryMultiheadAttentionBmm, memory here is passed from previous attention layer. For the first attention layer, memory is average of each segment. Memory is a concatenation of memory from each segments in previous attention layer. For example, current layer is i, then memory is [m_0, m_1, ..., m_n]. Each m_k is the output from seg_k in layer i-1. args: input_dim: input embedding dimension num_heads: number of heads in multihead self-attention dropout: attention dropout std_scale: if std_scale is not None. The weak attention suppression is turned on. For std_scale = 0.5, all the attention smaller than mean + 0.5 * std will be suppressed. scaled_init: whether to use scaled init for linear weight tanh_on_mem: whether to use tanh on memory output use_mem: whether to use memory or not. When max_memory_size is 0, then we don't have memory anymore. layer_index: current self-attention layer index that is used in depth initialization max_relative_position: max relative position used in relative position embedding rpe_old_option: To be compatible with previous model. The previous model was trained with attention += attention + rpe. The correct equation should be attention = attention + rpe """ def __init__( self, input_dim, num_heads, dropout=0.0, std_scale=None, scaled_init=False, tanh_on_mem=False, use_mem=True, mini_batches=False, negative_inf="-inf", layer_index=-1, max_relative_position=0, rpe_old_option=True, ): if input_dim % num_heads: raise ValueError( "input_dim ({}) must be divisible by num_heads ({})".format( input_dim, num_heads ) ) super().__init__() embed_dim = input_dim self.e2h_kv = torch.nn.Linear(input_dim, 2 * input_dim, bias=True) self.e2h_q = torch.nn.Linear(input_dim, input_dim, bias=True) self.rpe_old_option = rpe_old_option if max_relative_position > 0: self.use_rpe = True self.rpe_k = RelativePositionEmbedding( head_dim=input_dim // num_heads, max_position=max_relative_position, ) self.rpe_v = RelativePositionEmbedding( head_dim=input_dim // num_heads, max_position=max_relative_position, ) else: self.use_rpe = False self.rpe_k = None self.rpe_v = None if scaled_init: if layer_index == -1: gain = 1.0 / math.sqrt(2) else: # https://arxiv.org/abs/2005.09684 depthwise initialization # stablize the training greatly. Use depthwise initialization to # replace incremental loss. gain = 1.0 / math.sqrt(layer_index + 1) torch.nn.init.xavier_uniform_(self.e2h_kv.weight, gain=gain) torch.nn.init.xavier_uniform_(self.e2h_q.weight, gain=gain) self.out_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.scaling = self.head_dim ** -0.5 self.std_scale = std_scale self.use_mem = use_mem self.mini_batches = mini_batches self.negative_inf = negative_inf if tanh_on_mem: self.squash_mem = torch.tanh self.nonlinear_squash_mem = True else: self.squash_mem = NoOp() self.nonlinear_squash_mem = False def prepare_qkv( self, input: Tensor, mems: Tensor, lengths: Tensor, summary_length: int, lc_length: int, ): # T: right_context length + utterance_length + summary_length T, B, D = input.shape mem_length = mems.size(0) utterance_length = torch.max(lengths) right_context_blocks_length = T - utterance_length - summary_length rc_block = input[:right_context_blocks_length, :, :] utterance_block = input[right_context_blocks_length : T - summary_length, :, :] if B == 1: padding_mask = None else: klengths = lengths + mem_length + right_context_blocks_length + lc_length padding_mask = lengths_to_padding_mask(lengths=klengths) mem_rc_input = torch.cat([mems, rc_block, utterance_block], dim=0) # In training lc_length = 0 key_length = mem_rc_input.size(0) + lc_length rc_input_sum = input q = self.e2h_q(rc_input_sum) kv = self.e2h_kv(mem_rc_input) k, v = kv.chunk(chunks=2, dim=2) result_qkv = (q, k, v) input_shape = (T, B, D) result_lengths_info = ( mem_length, utterance_length, right_context_blocks_length, key_length, ) if padding_mask is not None: assert padding_mask.size(0) == B assert padding_mask.size(1) == key_length return result_qkv, input_shape, result_lengths_info, padding_mask def prepare_attention_weights( self, q: Tensor, new_k: Tensor, new_v: Tensor, input_shape: Tuple[int, int, int], rpe: Optional[Tensor], ) -> Tuple[Tensor, Tensor, Tensor]: T, B, D = input_shape q = ( q.contiguous().view(-1, B * self.num_heads, self.head_dim).transpose(0, 1) * self.scaling ) k = ( new_k.contiguous() .view(-1, B * self.num_heads, self.head_dim) .transpose(0, 1) ) v = ( new_v.contiguous() .view(-1, B * self.num_heads, self.head_dim) .transpose(0, 1) ) attention_weights = torch.bmm(q, k.transpose(1, 2)) if self.use_rpe and rpe is not None and self.rpe_v is not None: r_k = self.rpe_k(rpe) # [q, B*h, d] * [q, k, d] -> [B*h, q, k] attention_weights_rpe = torch.matmul( q.transpose(0, 1), r_k.transpose(1, 2) ).transpose(0, 1) attention_weights = attention_weights + attention_weights_rpe attention_weights_float = attention_weights.float() return attention_weights, attention_weights_float, v def prepare_attention_output( self, attention_weights: Tensor, attention_weights_float: Tensor, v: Tensor, input_shape: Tuple[int, int, int], key_length: int, padding_mask: Optional[Tensor], rpe: Optional[Tensor], ) -> Tensor: T, B, D = input_shape if padding_mask is not None: attention_weights_float = attention_weights_float.view( B, self.num_heads, T, key_length ) attention_weights_float = attention_weights_float.masked_fill( padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf") ) attention_weights_float = attention_weights_float.view( B * self.num_heads, T, key_length ) if self.std_scale is not None: attention_weights_float = attention_suppression( attention_weights_float, self.std_scale ) attention_weights_float = torch.nn.functional.softmax( attention_weights_float, dim=-1 ) attention_weights = attention_weights_float.type_as(attention_weights) attention_probs = torch.nn.functional.dropout( attention_weights, p=self.dropout, training=self.training ) # [T, key_length, B, n_head]+ [key_length, B, n_head, d_head] # -> [T, B, n_head, d_head] attention = torch.bmm(attention_probs, v) if self.use_rpe and rpe is not None and self.rpe_v is not None: r_v = self.rpe_v(rpe) attention_rpe = torch.matmul( attention_probs.transpose(0, 1), r_v ).transpose(0, 1) if self.rpe_old_option: attention += attention + attention_rpe else: attention = attention + attention_rpe assert list(attention.shape) == [B * self.num_heads, T, self.head_dim] attention = attention.transpose(0, 1).contiguous().view(T, B, self.embed_dim) rc_output_memory = self.out_proj(attention) return rc_output_memory @torch.jit.unused def forward( self, input: Tensor, lengths: Tensor, mems: Tensor, attention_mask: Tensor, pre_mems: Optional[Tensor] = None, left_context_key: Optional[Tensor] = None, left_context_val: Optional[Tensor] = None, rpe: Optional[Tensor] = None, ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """ forward function for NoSegAugmentedMemoryMultiheadAttentionBmm in training. args: input: formed in the following way [right_context_0, right_contex_1, ..., seg_0, seg_1, ..., summary_0, summary_1,..] lengths: the length of query which is [seg_0, seg_1, ....] mems: [mem_0, mem_1, ...]. attention_mask: attention mask for query = [right_context, query, summary] key = [mem, right_context, query]. This is only used for traing. """ if self.use_mem: mem_length = mems.size(0) summary_length = mem_length + 1 if pre_mems is not None: mems = torch.cat([pre_mems, mems], dim=0) else: mem_length = 0 summary_length = 0 # In training, lc_length = 0 if left_context_key is not None: lc_length = left_context_key.size(0) else: lc_length = 0 results = self.prepare_qkv( input=input, mems=mems, lengths=lengths, summary_length=summary_length, lc_length=lc_length, ) result_qkv, input_shape, result_lengths_info, padding_mask = results q, k, v = result_qkv ( mem_length, utterance_length, right_context_blocks_length, key_length, ) = result_lengths_info if left_context_key is not None: # add the cache key and value new_k = torch.cat( [ k[: mem_length + right_context_blocks_length, :, :], left_context_key, k[-utterance_length:, :, :], ], dim=0, ) new_v = torch.cat( [ v[: mem_length + right_context_blocks_length, :, :], left_context_val, v[-utterance_length:, :, :], ], dim=0, ) next_k = new_k[mem_length + right_context_blocks_length :, :, :] next_v = new_v[mem_length + right_context_blocks_length :, :, :] else: new_k = k new_v = v next_k = None next_v = None attention_weights, attention_weights_float, v = self.prepare_attention_weights( q=q, new_k=new_k, new_v=new_v, input_shape=input_shape, rpe=rpe, ) # mask attention attention_mask = attention_mask.unsqueeze(0) attention_weights_float = attention_weights_float.masked_fill( attention_mask, float(self.negative_inf) ) rc_output_memory = self.prepare_attention_output( attention_weights=attention_weights, attention_weights_float=attention_weights_float, v=v, input_shape=input_shape, key_length=key_length, padding_mask=padding_mask, rpe=rpe, ) if self.use_mem: # next_m length equals to summary length - 1 # last memory is ignored if self.mini_batches: next_m = rc_output_memory[-summary_length:] else: next_m = rc_output_memory[-summary_length:-1] next_m = self.squash_mem(next_m) # rc and output rc_output = rc_output_memory[:-summary_length] if not self.nonlinear_squash_mem: next_m = torch.clamp(next_m, min=-10, max=10) else: next_m = mems rc_output = rc_output_memory return rc_output, next_m, next_k, next_v @torch.jit.export def forward_jit( self, input: Tensor, lengths: Tensor, mems: Tensor, left_context_key: Tensor, left_context_val: Tensor, rpe: Optional[Tensor], ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """ forward function for NoSegAugmentedMemoryMultiheadAttentionBmm in decoding. args: input: formed in the following way [right_context_0, right_contex_1, ..., seg_0, seg_1, ..., summary_0, summary_1,..] lengths: the length of query which is [seg_0, seg_1, ....] mems: [mem_0, mem_1, ...]. left_context_key: left_context for key part. This is only used for online decoding. In training, this is empty tensor left_context_val: left_context for value part. This is only used for online decoding. In training, this is empty tensor """ lc_length = left_context_key.size(0) # In decoding, summary_length = 1 or 0 if self.use_mem: summary_length = 1 else: summary_length = 0 results = self.prepare_qkv( input=input, mems=mems, lengths=lengths, summary_length=summary_length, lc_length=lc_length, ) result_qkv, input_shape, result_lengths_info, padding_mask = results q, k, v = result_qkv ( mem_length, utterance_length, right_context_blocks_length, key_length, ) = result_lengths_info # add the cache key and value new_k = torch.cat( [ k[: mem_length + right_context_blocks_length, :, :], left_context_key, k[-utterance_length:, :, :], ], dim=0, ) new_v = torch.cat( [ v[: mem_length + right_context_blocks_length, :, :], left_context_val, v[-utterance_length:, :, :], ], dim=0, ) next_k = new_k[mem_length + right_context_blocks_length :, :, :] next_v = new_v[mem_length + right_context_blocks_length :, :, :] attention_weights, attention_weights_float, v = self.prepare_attention_weights( q=q, new_k=new_k, new_v=new_v, input_shape=input_shape, rpe=rpe, ) # In online decoding, we don't have attention mask. But we still need # to disable the attention from summary query to memory attention_weights_float[:, -1, :mem_length] = float(self.negative_inf) rc_output_memory = self.prepare_attention_output( attention_weights=attention_weights, attention_weights_float=attention_weights_float, v=v, input_shape=input_shape, key_length=key_length, padding_mask=padding_mask, rpe=rpe, ) # In decoding, summary length is 1 if self.use_mem: next_m = rc_output_memory[-1:] next_m = self.squash_mem(next_m) # rc and output rc_output = rc_output_memory[:-1] if not self.nonlinear_squash_mem: next_m = torch.clamp(next_m, min=-10, max=10) else: rc_output = rc_output_memory # empty tensor as input mems next_m = mems return rc_output, next_m, next_k, next_v def quantize_(self, params=None): if params and "per_channel" in params and params["per_channel"]: qconfig = per_channel_dynamic_qconfig else: qconfig = default_dynamic_qconfig torch.quantization.quantize_dynamic( self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True ) return self class NoSegAugmentedMemoryTransformer(nn.Module): """ Whole utterance augmented memory transformer. This is not pyspeech nn layer. It is used as a module in a master layer where multiple transformers is used. """ def __init__( self, input_dim, num_heads, ffn_dim, dropout_in_attn=0.0, dropout_on_attn=None, dropout_on_fc1=None, dropout_on_fc2=None, activation_fn="relu", tanh_on_mem=False, std_scale=None, scaled_init=False, segment_size=128, use_mem=True, mini_batches=False, negative_inf="-inf", layer_index=-1, summarization_method="mean", max_relative_position=0, rpe_old_option=True, ): super(NoSegAugmentedMemoryTransformer, self).__init__() self.attention = NoSegAugmentedMemoryMultiheadAttentionBmm( input_dim=input_dim, num_heads=num_heads, dropout=dropout_in_attn, scaled_init=scaled_init, tanh_on_mem=tanh_on_mem, std_scale=std_scale, use_mem=use_mem, mini_batches=mini_batches, negative_inf=negative_inf, layer_index=layer_index, max_relative_position=max_relative_position, ) self.dropout = nn.Dropout(dropout_on_attn) self.pos_ff = PositionwiseFF( input_dim=input_dim, ffn_dim=ffn_dim, dropout_on_fc1=dropout_on_fc1, dropout_on_fc2=dropout_on_fc2, activation_fn=activation_fn, ) self.layer_norm_pre = Fp32LayerNorm(input_dim) self.layer_norm = Fp32LayerNorm(input_dim) self.segment_size = segment_size self.use_mem = use_mem self.memory_op = SummarizationLayer( summarization_method, segment_size, input_dim ) def set_mini_batches(self, mini_batches): self.attention.mini_batches = mini_batches def gen_summary_queries(self, input): sum_input = self.memory_op(input) return sum_input def pre_attention_ops(self, input, right_context_blocks): rc_length = right_context_blocks.size(0) input_length = input.size(0) rc_and_input = torch.cat([right_context_blocks, input], dim=0) residual_input = rc_and_input rc_and_input = self.layer_norm_pre(rc_and_input) query_input = rc_and_input[-input_length:, :, :] return rc_length, input_length, residual_input, query_input, rc_and_input def after_attention_ops(self, attention_output, residual_input): output = self.dropout(attention_output) output = output + residual_input output = self.pos_ff(output) output = self.layer_norm(output) return output @torch.jit.export def forward_jit( self, input: Tensor, lengths: Tensor, mems: Tensor, left_context_key: Tensor, left_context_val: Tensor, right_context_blocks: Tensor, rpe: Optional[Tensor], ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: results = self.pre_attention_ops(input, right_context_blocks) rc_length, input_length, residual_input, query_input, rc_and_input = results # In online decoding, the summary query size is always 1 or 0 if self.use_mem: summary_query = self.gen_summary_queries(query_input) summary_query = summary_query[0:1, :, :] rc_qu_su = torch.cat([rc_and_input, summary_query], dim=0) else: rc_qu_su = rc_and_input rc_output, next_m, next_k, next_v = self.attention.forward_jit( input=rc_qu_su, lengths=lengths, mems=mems, left_context_key=left_context_key, left_context_val=left_context_val, rpe=rpe, ) rc_output = self.after_attention_ops(rc_output, residual_input) results = ( rc_output[-input_length:, :, :], next_m, rc_output[0:rc_length, :, :], next_k, next_v, ) return results @torch.jit.unused def forward( self, input, lengths, mems, right_context_blocks, attention_mask, pre_mems, left_context_key, left_context_val, rpe, ): results = self.pre_attention_ops(input, right_context_blocks) rc_length, input_length, residual_input, query_input, rc_and_input = results if self.use_mem: summary_query = self.gen_summary_queries(query_input) rc_qu_su = torch.cat([rc_and_input, summary_query], dim=0) else: rc_qu_su = rc_and_input rc_output, next_m, next_k, next_v = self.attention( input=rc_qu_su, lengths=lengths, mems=mems, attention_mask=attention_mask, pre_mems=pre_mems, left_context_key=left_context_key, left_context_val=left_context_val, rpe=rpe, ) # [TODO] Note memory did not go through pos_ff. What happen if we pass # memory through the pos_ff as well? rc_output = self.after_attention_ops(rc_output, residual_input) results = ( rc_output[-input_length:, :, :], next_m, rc_output[0:rc_length, :, :], next_k, next_v, ) return results class NoSegAugmentedMemoryTransformerEncoderLayer(FairseqEncoder): """ Whole utterance augmented memory transformer encoder layer. This is a master layer where we can define multiple augmented memory transformers. There are two reasons to setup the master layer. 1. We only need to define once about the attention mask. All the layers in the master layer share the same mask. 2. pyspeech nn layer has special input and output format. Defining one master layer is easier to passing memory between different layes inside the master layer args: input_dim: input embedding dimension num_heads: number of heads in multihead self-attention ffn_dim: ffn dimension in FFN layer num_layers: number of augmented memory transformer layers dropout_in_attn: dropout used in multi-head self-attention dropout_on_attn: dropout used for output from te multihead self-attention dropout_on_fc1: dropout used in FFN layer for the first linear layer dropout_on_fc2: dropout used in FFN layer for the second linear layer segment_size: segment size for each segment context_config: (left_context_size, right_context_size) defines the surround context size for each segment max_memory_size: maximum memory size used for each segment scaled_init: whether use scaled init for weight initialization in attention layer std_scale: if std_scale is not None. The weak attention suppression is turned on. For std_scale = 0.5, all the attention smaller than mean + 0.5 * std will be suppressed. activation_fn: activation function used in FFN layer. [ReLU, GELU] supported tanh_on_mem: whether use tanh on memory mini_batches: use mini-btach training negative_inf: the negative infinity value used in attention masking. default is "-inf". For some situation, e.g. LM. it is better to use "-1e8" to avoid nan issue. summarization_method: method to generate segment summrization embedding max_relative_position: max relatie position for relative position embedding rpe_old_option: To be compatible with previous model. The previous model was trained with attention += attention + rpe. The correct equation should be attention = attention + rpe [TODO]: remove the rpe_old_option by the end of 2021 Q1. """ def __init__( self, input_dim, num_heads, ffn_dim, num_layers=1, dropout_in_attn=0.0, dropout_on_attn=0.0, dropout_on_fc1=0.0, dropout_on_fc2=0.0, segment_size=128, context_config=(0, 0), max_memory_size=0, scaled_init=True, std_scale=None, activation_fn="relu", tanh_on_mem=False, mini_batches=False, negative_inf="-inf", deep_init=True, summarization_method="mean", max_relative_position=0, rpe_old_option=True, ): super().__init__(None) if input_dim % num_heads: raise ValueError( "input_dim ({}) must be divisible by num_heads ({})".format( input_dim, num_heads ) ) # we used to support growing memory size. However, it will cause # cross stream batching failure. Now we need to have exact max memory size if max_memory_size < 0: raise ValueError("max_memory_size must be >= 0") # Only assign right_context. In decoding, left context will be cached. # No need to let the online decoder to re-assign the left context self.left_context, self.right_context = context_config self.segment_size = segment_size self.memory_dim = input_dim self.max_memory_size = max_memory_size self.mini_batches = mini_batches if self.max_memory_size != 0: self.use_mem = True else: self.use_mem = False self.memory_op = SummarizationLayer( summarization_method, segment_size, input_dim ) self.layers = torch.nn.ModuleList() self.num_layers = num_layers self.max_relative_position = max_relative_position if self.max_relative_position > 0: self.use_rpe = True else: self.use_rpe = False for i in range(self.num_layers): if deep_init: layer_index = i else: layer_index = -1 self.layers.append( NoSegAugmentedMemoryTransformer( num_heads=num_heads, input_dim=input_dim, ffn_dim=ffn_dim, dropout_in_attn=dropout_in_attn, dropout_on_attn=dropout_on_attn, dropout_on_fc1=dropout_on_fc1, dropout_on_fc2=dropout_on_fc2, segment_size=segment_size, std_scale=std_scale, activation_fn=activation_fn, tanh_on_mem=tanh_on_mem, scaled_init=scaled_init, use_mem=self.use_mem, mini_batches=mini_batches, negative_inf=negative_inf, layer_index=layer_index, summarization_method=summarization_method, max_relative_position=max_relative_position, rpe_old_option=rpe_old_option, ) ) def set_mini_batches(self, mini_batches): # handy function only used for unit test self.mini_batches = mini_batches for layer in self.layers: layer.set_mini_batches(mini_batches) def _get_relative_position( self, input: Tensor, max_relative_position: int, left_context_length: int, past_length: int, is_decoding: bool, ): # For training, we copy the right context to the start of the utterance # First dimension in distance is corresponding to query. # [right context, utterance, summary vector] # Second dimension in distance is corresponding to key. # [Memory bank, right context, utterance] # For summary vector in query part, the distance with # all other position is 2*max_position. For memory bank in key, # the distance with all other positions is 0. T, B, D = input.shape num_segs = math.ceil((T - self.right_context) / self.segment_size) # utterance u_st = past_length * self.segment_size u_ed = u_st + T utterance_ranges = torch.arange(u_st, u_ed - self.right_context) # left context. Only in minibatch or decoding left_context_ranges = torch.arange(u_st - left_context_length, u_st) # Right context block # right context + utterance right_context_blocks = [] for i in range(0, num_segs - 1): st = (i + 1) * self.segment_size + u_st ed = st + self.right_context assert ed < u_ed temp = torch.arange(st, ed) right_context_blocks.append(temp) right_context_blocks.append(torch.arange(u_ed - self.right_context, u_ed)) right_context_ranges = torch.cat(right_context_blocks) if self.use_mem: # Memory bank # The position for memory -n, .., -1 if is_decoding: memory_size = min(past_length, self.max_memory_size) else: memory_size = num_segs + past_length - 1 memory_bank_ranges = torch.arange( -max_relative_position - 1, -max_relative_position - 1 - memory_size, -1 ) # summary vector # The position for summary vector as the T+max_relative_position+1. # After the clamping, the relative position is max_relative_position summary_pos_st = u_ed + max_relative_position + 1 summary_vector_ranges = torch.arange( summary_pos_st, summary_pos_st + num_segs ) key_ranges = torch.cat( [ memory_bank_ranges, right_context_ranges, left_context_ranges, utterance_ranges, ] ) query_ranges = torch.cat( [right_context_ranges, utterance_ranges, summary_vector_ranges] ) else: key_ranges = torch.cat( [right_context_ranges, left_context_ranges, utterance_ranges] ) query_ranges = torch.cat([right_context_ranges, utterance_ranges]) distance = key_ranges[None, :] - query_ranges[:, None] distance_clamp = ( torch.clamp(distance, -max_relative_position, max_relative_position) + max_relative_position ) distance_clamp = distance_clamp.to(input.device).long().detach() return distance_clamp def _get_attention_mask(self, input, past_length=0, left_context_cache=0): # attention mask for each query contains three parts: # 1. memory part # 2. left_context + segment # 3. right_context_block # so for each segment and its correspoinding right context block, # the attention matrix is formed by 9 parts: # [0, m, 0, 0, right_context, 0, 0, seg, 0] # [before memory, memory, after memory, before right context, right_context, # after right context, before seg, seg, after seg] # # Query is formed in the way as [right_context_blocks, utterance, summary] # # Note: put m and right_context before segment is convenient # for padding_mask operation. # Key lengths = m_length + right_context_block_length + lengths utterance_length, batch_size, _ = input.shape summary_length = math.ceil(utterance_length / self.segment_size) num_segs = summary_length rc_length = self.right_context * num_segs rc = self.right_context lc = self.left_context # using mini-batches, there is left context cache available for current # sequence. lcc = left_context_cache # max_memory_size is 0 then we don't have memory and summary # past_length is the memory carry from previous sequence if self.use_mem: mem_length = num_segs - 1 + past_length else: mem_length = 0 rc_mask = [] query_mask = [] summary_mask = [] for j in range(0, num_segs): ssize = min(self.segment_size, utterance_length - j * self.segment_size) rc_size = rc rc_mat = [] q_mat = [] s_mat = [] m_start = max(j + past_length - self.max_memory_size, 0) # max_memory_size is 0, then we don't use memory if self.use_mem: # part 0: before memory rc_mat.append(input.new_zeros(rc_size, m_start)) q_mat.append(input.new_zeros(ssize, m_start)) s_mat.append(input.new_zeros(1, m_start)) # part 1: memory col_1 = j + past_length - m_start rc_mat.append(torch.ones(rc_size, col_1, device=input.device)) q_mat.append(torch.ones(ssize, col_1, device=input.device)) # based on D22875746, disable summary query attention # on memeory is better for long form utterance s_mat.append(input.new_zeros(1, col_1)) # part 2: after memory col_2 = mem_length - (j + past_length) rc_mat.append(input.new_zeros(rc_size, col_2)) q_mat.append(input.new_zeros(ssize, col_2)) s_mat.append(input.new_zeros(1, col_2)) # part 3: before right context rc_start = j * rc rc_mat.append(input.new_zeros(rc_size, rc_start)) q_mat.append(input.new_zeros(ssize, rc_start)) s_mat.append(input.new_zeros(1, rc_start)) # part 4: right context rc_end = rc_start + rc col_4 = rc rc_mat.append(torch.ones(rc_size, col_4, device=input.device)) q_mat.append(torch.ones(ssize, col_4, device=input.device)) s_mat.append(torch.ones(1, col_4, device=input.device)) # part 5: after right context col_5 = rc_length - rc_end rc_mat.append(input.new_zeros(rc_size, col_5)) q_mat.append(input.new_zeros(ssize, col_5)) s_mat.append(input.new_zeros(1, col_5)) # part 6: before query segment seg_start = max(j * self.segment_size + lcc - lc, 0) rc_mat.append(input.new_zeros(rc_size, seg_start)) q_mat.append(input.new_zeros(ssize, seg_start)) s_mat.append(input.new_zeros(1, seg_start)) # part 7: query segment # note: right context is put in right context block # here we only need to consider about left context seg_end = min((j + 1) * self.segment_size + lcc, utterance_length + lcc) col_7 = seg_end - seg_start rc_mat.append(torch.ones(rc_size, col_7, device=input.device)) q_mat.append(torch.ones(ssize, col_7, device=input.device)) s_mat.append(torch.ones(1, col_7, device=input.device)) # part 8: after query segment col_8 = utterance_length + lcc - seg_end rc_mat.append(input.new_zeros(rc_size, col_8)) q_mat.append(input.new_zeros(ssize, col_8)) s_mat.append(input.new_zeros(1, col_8)) rc_mask.append(torch.cat(rc_mat, dim=1)) query_mask.append(torch.cat(q_mat, dim=1)) summary_mask.append(torch.cat(s_mat, dim=1)) # no memory, then we don't need summary either if self.use_mem: attention_mask = ( 1 - torch.cat( [ torch.cat(rc_mask, dim=0), torch.cat(query_mask, dim=0), torch.cat(summary_mask, dim=0), ], dim=0, ) ).to(torch.bool) else: attention_mask = ( 1 - torch.cat( [torch.cat(rc_mask, dim=0), torch.cat(query_mask, dim=0)], dim=0 ) ).to(torch.bool) return attention_mask @torch.jit.export def init_state( self, batch_size: int, device: Optional[Device] = None ) -> List[Tensor]: empty_memory = torch.zeros( self.num_layers, self.max_memory_size, batch_size, self.memory_dim, device=device, ) left_context_key = torch.zeros( self.num_layers, self.left_context, batch_size, self.memory_dim, device=device, ) left_context_val = torch.zeros( self.num_layers, self.left_context, batch_size, self.memory_dim, device=device, ) past_length = torch.zeros(1, batch_size, dtype=torch.int32, device=device) return [empty_memory, left_context_key, left_context_val, past_length] @torch.jit.export def batch_state(self, states: List[List[Tensor]]) -> List[Tensor]: if len(states) == 0: return [] batched_m = [] batched_lc_key = [] batched_lc_val = [] batched_past_length = [] for state in states: if len(state) == 0: continue m, lc_key, lc_val, past_length = state batched_m.append(m) batched_lc_key.append(lc_key) batched_lc_val.append(lc_val) batched_past_length.append(past_length) if ( (len(batched_m) == 0) or (len(batched_lc_key) == 0) or (len(batched_lc_val) == 0) or (len(batched_past_length) == 0) ): return [ torch.tensor([]), torch.tensor([]), torch.tensor([]), torch.tensor([]), ] batched_m = torch.cat(batched_m, dim=2) batched_lc_key = torch.cat(batched_lc_key, dim=2) batched_lc_val = torch.cat(batched_lc_val, dim=2) batched_past_length = torch.cat(batched_past_length, dim=1) return [batched_m, batched_lc_key, batched_lc_val, batched_past_length] @torch.jit.export def reorder_state(self, state: List[Tensor], indices: Tensor) -> List[Tensor]: if len(state) == 0: return [] m, lc_key, lc_val, past_length = state indices = indices.to(device=m.device) reord_m = torch.index_select(m, 2, indices) reord_lc_key = torch.index_select(lc_key, 2, indices) reord_lc_val = torch.index_select(lc_val, 2, indices) reord_past_length = torch.index_select(past_length, 1, indices) return [reord_m, reord_lc_key, reord_lc_val, reord_past_length] @torch.jit.export def reset_state(self, state: List[Tensor], indices: Tensor) -> List[Tensor]: m, lc_key, lc_val, past_length = state m = m.index_fill(dim=2, index=indices, value=0.0) lc_key = lc_key.index_fill(dim=2, index=indices, value=0.0) lc_val = lc_val.index_fill(dim=2, index=indices, value=0.0) past_length = past_length.index_fill(dim=1, index=indices, value=0) return [m, lc_key, lc_val, past_length] @torch.jit.export def state_size(self) -> int: return 4 @torch.jit.export def batch_size_in_state( self, state: Optional[List[Tensor]], sloppy: bool = True ) -> Optional[int]: if state is None: return None return state[0].size(2) def gen_summary_queries(self, input): sum_input = self.memory_op(input) return sum_input def _gen_right_context_padded_input(self, input): # This function deals with input that is already # padded with right context (e.g. minibatch training) right_context_blocks = [] T, B, D = input.shape num_segs = math.ceil((T - self.right_context) / self.segment_size) for i in range(0, num_segs - 1): st = (i + 1) * self.segment_size ed = st + self.right_context assert ed < T temp = input[st:ed, :, :] right_context_blocks.append(temp) # last segment right context is already available right_context_blocks.append(input[T - self.right_context :, :, :]) return torch.cat(right_context_blocks, dim=0) def _gen_segs_right_context(self, input, lengths): segments = [] T, B, D = input.size() nT = T - self.right_context # assume input is right context padded num_segs = math.ceil(nT / self.segment_size) # pad zeros to the utterance to make sure each # segment has the same right context. For the for i in range(0, num_segs - 1): st = i * self.segment_size ed = min(T, st + self.segment_size + self.right_context) temp = input[st:ed, :, :] rest_lengths = torch.clamp( lengths - self.segment_size, min=0, max=nT - (i + 1) * self.segment_size ) segments.append((temp, lengths - rest_lengths + self.right_context)) lengths = rest_lengths last_seg = input[st + self.segment_size :, :, :] segments.append((last_seg, rest_lengths + self.right_context)) return segments @torch.jit.unused def forward( self, input: Tensor, padding_masks: Tensor, state: Optional[List[Tensor]] = None ) -> Tuple[Tensor, Tensor, List[Tensor], List[Tensor]]: # Xutai: originally the second argument is lengths. lengths = (~padding_masks).sum(dim=1).long() # mini batch training. if self.mini_batches: return self.forward_mini_batches(input, lengths, state) # regular full sequence training. Note, assume the right context in provided # in the input. T, B, D = input.size() right_context_blocks = self._gen_right_context_padded_input(input) # generate the relative positional embedding if self.use_rpe: rpe = self._get_relative_position( input=input, max_relative_position=self.max_relative_position, left_context_length=0, past_length=0, is_decoding=False, ) else: rpe = None input = input[: T - self.right_context, :, :] attention_mask = self._get_attention_mask(input) # firt layer use each segment mean as memory # ignore the last one seg average if self.use_mem: mems = self.gen_summary_queries(input)[:-1, :, :] else: mems = torch.zeros(0, input.size(1), input.size(2), device=input.device) mems = mems.type_as(input) output = input all_outputs = [] for layer in self.layers: output, mems, right_context_blocks, _, _ = layer( input=output, lengths=lengths, attention_mask=attention_mask, mems=mems, right_context_blocks=right_context_blocks, pre_mems=None, left_context_key=None, left_context_val=None, rpe=rpe, ) all_outputs.append(output) return output, padding_masks, [], all_outputs def forward_jit_mini_batch_init( self, seg: Tensor, state: Optional[List[Tensor]] = None, is_decoding: bool = False, ): # Prepare state. In whole sequence training, state is ignored. # For minibatch training, we need to prepare state if state is None: state = self.init_state(batch_size=seg.size(1), device=seg.device) if seg.dtype == torch.half: state = [state[0].half(), state[1].half(), state[2].half(), state[3]] if self.use_mem: # note input average only on seg, not on right context # first layer use each segmetn mean as memory. the last # one segment average is used in state full_mems = self.gen_summary_queries(seg) if is_decoding: mems = full_mems[0:1, :, :] state_mems = torch.cat([state[0][0], mems], dim=0) else: mems = full_mems[:-1, :, :] state_mems = torch.cat([state[0][0], full_mems], dim=0) else: mems = state[0][0] state_mems = mems # track processed segment number or memory number # the same batch as the same bumber of past length past_length = state[3][0][0].item() past_left_context = min(past_length * self.segment_size, self.left_context) past_length = min(self.max_memory_size, past_length) return state, mems, state_mems, past_length, past_left_context def state_update_before( self, layer: int, state: List[Tensor], past_length: int, past_left_context: int ): pre_mems = state[0][layer][self.max_memory_size - past_length :, :, :] lc_key = state[1][layer][self.left_context - past_left_context :, :, :] lc_val = state[2][layer][self.left_context - past_left_context :, :, :] return pre_mems, lc_key, lc_val def state_update_after( self, layer: int, state: List[Tensor], mems: Tensor, next_key: Tensor, next_val: Tensor, mems_list: List[Tensor], lc_key_list: List[Tensor], lc_val_list: List[Tensor], ): # mems is used for next layer if layer < self.num_layers - 1: state_mems = torch.cat([state[0][layer + 1], mems], dim=0) mems_list.append(state_mems[-self.max_memory_size :, :, :]) # when mems pass to next sequence, we need the last memory. when mems # use for the next layer, we can ignore the last memory mems = mems[:-1, :, :] # note state[1][i] and state[2][i] original length equals to self.left_context new_k = torch.cat([state[1][layer], next_key], dim=0) new_v = torch.cat([state[2][layer], next_val], dim=0) lc_key_list.append(new_k[-self.left_context :, :, :]) lc_val_list.append(new_v[-self.left_context :, :, :]) return mems_list, lc_key_list, lc_val_list, mems def state_update_after_loop( self, state: List[Tensor], mems_list: List[Tensor], lc_key_list: List[Tensor], lc_val_list: List[Tensor], update_length: int, ): state[0] = torch.stack(mems_list, dim=0) state[1] = torch.stack(lc_key_list, dim=0) state[2] = torch.stack(lc_val_list, dim=0) state[3] = state[3] + update_length return state @torch.jit.unused def forward_mini_batches( self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None ) -> Tuple[Tensor, Tensor, List[Tensor], List[Tensor]]: T, B, D = input.size() # input without right context seg = input[: T - self.right_context, :, :] # get right context blocks right_context_blocks = self._gen_right_context_padded_input(input) mems_list = [] lc_key_list = [] lc_val_list = [] results = self.forward_jit_mini_batch_init(seg, state, False) state, mems, state_mems, past_length, past_left_context = results # relative position embedding if self.use_rpe: rpe = self._get_relative_position( input=input, max_relative_position=self.max_relative_position, left_context_length=past_left_context, past_length=past_length, is_decoding=False, ) else: rpe = None # get attention mask based on seg (not include right context) and available # left context attention_mask = self._get_attention_mask(seg, past_length, past_left_context) mems_list.append(state_mems[-self.max_memory_size :, :, :]) output = seg i = 0 all_outputs = [] for layer in self.layers: # In order to make cross stream batching work, mem, left context key # and left context value in the state should always be the same shape. # We use the past length to track the processed segment number. In this # way, we take out the essential memory, left context key and left # context val from the state. After finish the forward for current segment # we add the new memory, left context key and left context value into the # staate and trim out the oldest part to keep the shape consistent. pre_mems, lc_key, lc_val = self.state_update_before( i, state, past_length, past_left_context ) output, mems, right_context_blocks, next_key, next_val = layer.forward( input=output, lengths=lengths, attention_mask=attention_mask, mems=mems, right_context_blocks=right_context_blocks, pre_mems=pre_mems, left_context_key=lc_key, left_context_val=lc_val, rpe=rpe, ) all_outputs.append(output) mems_list, lc_key_list, lc_val_list, mems = self.state_update_after( layer=i, state=state, mems=mems, next_key=next_key, next_val=next_val, mems_list=mems_list, lc_key_list=lc_key_list, lc_val_list=lc_val_list, ) i += 1 # update state update_length = math.ceil((T - self.right_context) / self.segment_size) state = self.state_update_after_loop( state=state, mems_list=mems_list, lc_key_list=lc_key_list, lc_val_list=lc_val_list, update_length=update_length, ) return output, lengths, state, all_outputs def forward_jit_test( self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None ) -> Tuple[Tensor, Tensor, List[Tensor]]: """ This one simulate sequence encoder forward jit. This is for unit test purpose. It is not used in training or decoding. Note, extra_right_context is set in the model. In unit test, input = [utterance, right_context], lengths = [utterance_length]. args: input: input utterance lengths: utterance input length state: None here. input is whole utterance """ # [TODO] sequence_to_segment has bug in lengths. seg_src_tokens_lengths = self._gen_segs_right_context(input, lengths) seg_enc_tokens_lengths: List[Tuple[Tensor, Tensor]] = [] state: Optional[List[Tensor]] = None for seg_src_tokens, seg_src_lengths in seg_src_tokens_lengths: seg_enc_tokens, seg_enc_lengths, state = self.forward_jit( input=seg_src_tokens, lengths=seg_src_lengths, state=state ) seg_enc_tokens_lengths.append((seg_enc_tokens, seg_enc_lengths)) enc_tokens, enc_lengths = segments_to_sequence( segments=seg_enc_tokens_lengths, time_axis=0 ) state = [] # returns trivial state return enc_tokens, enc_lengths, state @torch.jit.export def forward_jit( self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None ) -> Tuple[Tensor, Tensor, List[Tensor]]: """ Forward helper for online decoding. args: input: [seg, right_context]. We assume in online we always padding the right context to the preset right context size. For the last segment, we may have short segment size, but right context size is the same as other segments lengths: utterance input length is the utterance segment length and right context size state: [memory, left_context_key, left_context_val]. To improve throughput, in addition to memory, we also cache key and value for left_context in multihead self-attention """ # In online decoding, input = [segment, right_context] # Lengths = [segment_length, right_context_length] # so we need strip right context in output T, B, D = input.size() rc_str = T - self.right_context rc_end = T right_context_blocks = input[rc_str:rc_end, :, :] seg = input[:rc_str, :, :] lengths = torch.clamp(lengths - self.right_context, min=0) mems_list = [] lc_key_list = [] lc_val_list = [] results = self.forward_jit_mini_batch_init(seg, state, True) state, mems, state_mems, past_length, past_left_context = results # relative position embedding if self.use_rpe: rpe = self._get_relative_position( input=input, max_relative_position=self.max_relative_position, left_context_length=past_left_context, past_length=past_length, is_decoding=True, ) else: rpe = None # memory for first layer. mems_list.append(state_mems[-self.max_memory_size :, :, :]) output = seg i = 0 for layer in self.layers: # In order to make cross stream batching work, mem, left context key # and left context value in the state should always be the same shape. # We use the past length to track the processed segment number. In this # way, we take out the essential memory, left context key and left # context val from the state. After finish the forward for current segment # we add the new memory, left context key and left context value into the # staate and trim out the oldest part to keep the shape consistent. true_mems, lc_key, lc_val = self.state_update_before( layer=i, state=state, past_length=past_length, past_left_context=past_left_context, ) output, mems, right_context_blocks, next_key, next_val = layer.forward_jit( input=output, lengths=lengths, mems=true_mems, right_context_blocks=right_context_blocks, left_context_key=lc_key, left_context_val=lc_val, rpe=rpe, ) # mems is used for next layer mems_list, lc_key_list, lc_val_list, _ = self.state_update_after( layer=i, state=state, mems_list=mems_list, mems=mems, next_key=next_key, next_val=next_val, lc_key_list=lc_key_list, lc_val_list=lc_val_list, ) i += 1 # update state state = self.state_update_after_loop( state=state, mems_list=mems_list, lc_key_list=lc_key_list, lc_val_list=lc_val_list, update_length=1, ) return output, lengths, state def quantize_(self, params=None): if params and "per_channel" in params and params["per_channel"]: qconfig = per_channel_dynamic_qconfig else: qconfig = default_dynamic_qconfig torch.quantization.quantize_dynamic( self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True ) return self # ------------------------------------------------------------------------------ # Emformer encoder for seq2seq model # This is a wrapper over the original emformer # ------------------------------------------------------------------------------ def emformer_encoder(klass): class SpeechEncoder(klass): def __init__(self, args): super().__init__(args) stride = SpeechEncoder.conv_layer_stride(args) trf_left_context = args.segment_left_context // stride trf_right_context = args.segment_right_context // stride context_config = [trf_left_context, trf_right_context] self.transformer_layers = nn.ModuleList( [ NoSegAugmentedMemoryTransformerEncoderLayer( input_dim=args.encoder_embed_dim, num_heads=args.encoder_attention_heads, ffn_dim=args.encoder_ffn_embed_dim, num_layers=args.encoder_layers, dropout_in_attn=args.dropout, dropout_on_attn=args.dropout, dropout_on_fc1=args.dropout, dropout_on_fc2=args.dropout, activation_fn=args.activation_fn, context_config=context_config, segment_size=args.segment_length, max_memory_size=args.max_memory_size, scaled_init=True, # TODO: use constant for now. tanh_on_mem=args.amtrf_tanh_on_mem, ) ] ) def forward(self, src_tokens, src_lengths): encoder_out = super().forward(src_tokens, src_lengths) output = encoder_out["encoder_out"][0] encoder_padding_masks = encoder_out["encoder_padding_mask"][0] # This is because that in the original implementation # the output didn't consider the last segment as right context. encoder_padding_masks = encoder_padding_masks[:, : output.size(0)] return { "encoder_out": [output], "encoder_padding_mask": [encoder_padding_masks], "encoder_embedding": [], "encoder_states": [], "src_tokens": [], "src_lengths": [], } @staticmethod def conv_layer_stride(args): # TODO: make it configurable from the args return 4 SpeechEncoder.__name__ = klass.__name__ return SpeechEncoder