# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import logging import os import tempfile import unittest from io import StringIO import torch from fairseq import options from fairseq_cli import train from tests.utils import ( create_dummy_data, generate_main, preprocess_lm_data, preprocess_translation_data, train_translation_model, ) class TestTranslationGPU(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_fp16(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_fp16") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, "fconv_iwslt_de_en", ["--fp16"]) generate_main(data_dir) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_memory_efficient_fp16(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_memory_efficient_fp16") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "fconv_iwslt_de_en", ["--memory-efficient-fp16"] ) generate_main(data_dir) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_transformer_fp16(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "64", "--decoder-embed-dim", "64", "--fp16", ], run_validation=True, ) generate_main(data_dir) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_levenshtein_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_levenshtein_transformer" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "levenshtein_transformer", [ "--apply-bert-init", "--early-exit", "6,6,6", "--criterion", "nat_loss", ], task="translation_lev", ) gen_config = [ "--task", "translation_lev", "--iter-decode-max-iter", "9", "--iter-decode-eos-penalty", "0", "--print-step", ] # non-ensemble generation generate_main(data_dir, gen_config) # ensemble generation generate_main( data_dir, gen_config, path=os.pathsep.join([ os.path.join(data_dir, "checkpoint_last.pt"), os.path.join(data_dir, "checkpoint_last.pt"), ]), ) def _quantize_language_model(data_dir, arch, extra_flags=None, run_validation=False): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", "language_modeling", data_dir, "--arch", arch, "--optimizer", "adam", "--lr", "0.0001", "--criterion", "adaptive_loss", "--adaptive-softmax-cutoff", "5,10,15", "--max-tokens", "500", "--tokens-per-sample", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--ddp-backend", "no_c10d", "--num-workers", "0", ] + (extra_flags or []), ) train.main(train_args) # try scalar quantization scalar_quant_train_parser = options.get_training_parser() scalar_quant_train_args = options.parse_args_and_arch( scalar_quant_train_parser, [ "--task", "language_modeling", data_dir, "--arch", arch, "--optimizer", "adam", "--lr", "0.0001", "--criterion", "adaptive_loss", "--adaptive-softmax-cutoff", "5,10,15", "--max-tokens", "500", "--tokens-per-sample", "500", "--save-dir", data_dir, "--max-update", "3", "--no-progress-bar", "--distributed-world-size", "1", "--ddp-backend", "no_c10d", "--num-workers", "0", "--quant-noise-scalar", "0.5", ] + (extra_flags or []), ) train.main(scalar_quant_train_args) # try iterative PQ quantization quantize_parser = options.get_training_parser() quantize_args = options.parse_args_and_arch( quantize_parser, [ "--task", "language_modeling", data_dir, "--arch", arch, "--optimizer", "adam", "--lr", "0.0001", "--criterion", "adaptive_loss", "--adaptive-softmax-cutoff", "5,10,15", "--max-tokens", "50", "--tokens-per-sample", "50", "--max-update", "6", "--no-progress-bar", "--distributed-world-size", "1", "--ddp-backend", "no_c10d", "--num-workers", "0", "--restore-file", os.path.join(data_dir, "checkpoint_last.pt"), "--reset-optimizer", "--quantization-config-path", os.path.join( os.path.dirname(__file__), "transformer_quantization_config.yaml" ), ] + (extra_flags or []), ) train.main(quantize_args) class TestQuantization(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_quantization(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_quantization") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) # tests both scalar and iterative PQ quantization _quantize_language_model(data_dir, "transformer_lm") class TestOptimizersGPU(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_flat_grads(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_flat_grads") as data_dir: # Use just a bit of data and tiny model to keep this test runtime reasonable create_dummy_data(data_dir, num_examples=10, maxlen=5) preprocess_translation_data(data_dir) with self.assertRaises(RuntimeError): # adafactor isn't compatible with flat grads, which # are used by default with --fp16 train_translation_model( data_dir, "lstm", [ "--required-batch-size-multiple", "1", "--encoder-layers", "1", "--encoder-hidden-size", "32", "--decoder-layers", "1", "--optimizer", "adafactor", "--fp16", ], ) # but it should pass once we set --fp16-no-flatten-grads train_translation_model( data_dir, "lstm", [ "--required-batch-size-multiple", "1", "--encoder-layers", "1", "--encoder-hidden-size", "32", "--decoder-layers", "1", "--optimizer", "adafactor", "--fp16", "--fp16-no-flatten-grads", ], ) if __name__ == "__main__": unittest.main()