# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from fairseq import utils
from fairseq.models import (
    FairseqLanguageModel,
    register_model,
    register_model_architecture,
)
from fairseq.models.lstm import Embedding, LSTMDecoder


DEFAULT_MAX_TARGET_POSITIONS = 1e5


@register_model("lstm_lm")
class LSTMLanguageModel(FairseqLanguageModel):
    def __init__(self, decoder):
        super().__init__(decoder)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('--dropout', type=float, metavar='D',
                            help='dropout probability')
        parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
                            help='decoder embedding dimension')
        parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
                            help='path to pre-trained decoder embedding')
        parser.add_argument('--decoder-hidden-size', type=int, metavar='N',
                            help='decoder hidden size')
        parser.add_argument('--decoder-layers', type=int, metavar='N',
                            help='number of decoder layers')
        parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N',
                            help='decoder output embedding dimension')
        parser.add_argument('--decoder-attention', type=str, metavar='BOOL',
                            help='decoder attention')
        parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
                            help='comma separated list of adaptive softmax cutoff points. '
                                 'Must be used with adaptive_loss criterion')
        parser.add_argument('--residuals', default=False,
                            action='store_true',
                            help='applying residuals between LSTM layers')

        # Granular dropout settings (if not specified these default to --dropout)
        parser.add_argument('--decoder-dropout-in', type=float, metavar='D',
                            help='dropout probability for decoder input embedding')
        parser.add_argument('--decoder-dropout-out', type=float, metavar='D',
                            help='dropout probability for decoder output')
        parser.add_argument('--share-decoder-input-output-embed', default=False,
                            action='store_true',
                            help='share decoder input and output embeddings')
        # fmt: on

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        if getattr(args, "max_target_positions", None) is not None:
            max_target_positions = args.max_target_positions
        else:
            max_target_positions = getattr(
                args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
            )

        def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim):
            num_embeddings = len(dictionary)
            padding_idx = dictionary.pad()
            embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
            embed_dict = utils.parse_embedding(embed_path)
            utils.print_embed_overlap(embed_dict, dictionary)
            return utils.load_embedding(embed_dict, dictionary, embed_tokens)

        pretrained_decoder_embed = None
        if args.decoder_embed_path:
            pretrained_decoder_embed = load_pretrained_embedding_from_file(
                args.decoder_embed_path, task.target_dictionary, args.decoder_embed_dim
            )

        if args.share_decoder_input_output_embed:
            # double check all parameters combinations are valid
            if task.source_dictionary != task.target_dictionary:
                raise ValueError(
                    "--share-decoder-input-output-embeddings requires a joint dictionary"
                )

            if args.decoder_embed_dim != args.decoder_out_embed_dim:
                raise ValueError(
                    "--share-decoder-input-output-embeddings requires "
                    "--decoder-embed-dim to match --decoder-out-embed-dim"
                )

        decoder = LSTMDecoder(
            dictionary=task.dictionary,
            embed_dim=args.decoder_embed_dim,
            hidden_size=args.decoder_hidden_size,
            out_embed_dim=args.decoder_out_embed_dim,
            num_layers=args.decoder_layers,
            dropout_in=args.decoder_dropout_in,
            dropout_out=args.decoder_dropout_out,
            attention=False,  # decoder-only language model doesn't support attention
            encoder_output_units=0,
            pretrained_embed=pretrained_decoder_embed,
            share_input_output_embed=args.share_decoder_input_output_embed,
            adaptive_softmax_cutoff=(
                utils.eval_str_list(args.adaptive_softmax_cutoff, type=int)
                if args.criterion == "adaptive_loss"
                else None
            ),
            max_target_positions=max_target_positions,
            residuals=args.residuals,
        )

        return cls(decoder)


@register_model_architecture("lstm_lm", "lstm_lm")
def base_architecture(args):
    args.dropout = getattr(args, "dropout", 0.1)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_hidden_size = getattr(
        args, "decoder_hidden_size", args.decoder_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 1)
    args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
    args.decoder_attention = getattr(args, "decoder_attention", "0")
    args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout)
    args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.adaptive_softmax_cutoff = getattr(
        args, "adaptive_softmax_cutoff", "10000,50000,200000"
    )
    args.residuals = getattr(args, "residuals", False)