#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import gc import itertools as it import math import os.path as osp import warnings from collections import deque, namedtuple from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Tuple import numpy as np import torch from examples.speech_recognition.data.replabels import unpack_replabels from fairseq import tasks from fairseq.data.dictionary import Dictionary from fairseq.dataclass.configs import FairseqDataclass from fairseq.dataclass.constants import ChoiceEnum from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.models.fairseq_model import FairseqModel from fairseq.utils import apply_to_sample from omegaconf import MISSING, open_dict try: from flashlight.lib.sequence.criterion import (CpuViterbiPath, get_data_ptr_as_bytes) from flashlight.lib.text.decoder import (LM, CriterionType, DecodeResult, KenLM, LexiconDecoder, LexiconDecoderOptions, LexiconFreeDecoder, LexiconFreeDecoderOptions, LMState, SmearingMode, Trie) from flashlight.lib.text.dictionary import create_word_dict, load_words except ImportError: warnings.warn( "flashlight python bindings are required to use this functionality. " "Please install from " "https://github.com/facebookresearch/flashlight/tree/master/bindings/python" ) LM = object LMState = object CRITERION_CHOICES = ChoiceEnum(["ctc", "asg"]) DECODER_CHOICES = ChoiceEnum(["viterbi", "kenlm", "fairseqlm"]) @dataclass class DecoderConfig(FairseqDataclass): name: DECODER_CHOICES = field( default="viterbi", metadata={"help": "The type of decoder to use"}, ) nbest: int = field( default=1, metadata={"help": "Number of decodings to return"}, ) criterion: CRITERION_CHOICES = field( default="ctc", metadata={"help": "Criterion to use"}, ) asgtransitions: List[int] = field( default=MISSING, metadata={"help": "ASG transition indices"}, ) maxreplabel: int = field( default=2, metadata={"help": "Maximum repeated labels for ASG criterion"}, ) unitlm: bool = field( default=False, metadata={"help": "If set, use unit language model"}, ) lmpath: str = field( default=MISSING, metadata={"help": "Language model for KenLM decoder"}, ) lexicon: Optional[str] = field( default=None, metadata={"help": "Lexicon for Flashlight decoder"}, ) beam: int = field( default=50, metadata={"help": "Number of beams to use for decoding"}, ) beamthreshold: float = field( default=15.0, metadata={"help": "Threshold for beam search decoding"}, ) beamsizetoken: Optional[int] = field( default=None, metadata={"help": "Beam size to use"} ) wordscore: float = field( default=1.5, metadata={"help": "Word score for KenLM decoder"}, ) unkweight: float = field( default=-math.inf, metadata={"help": "Unknown weight for KenLM decoder"}, ) silweight: float = field( default=-0.3, metadata={"help": "Silence weight for KenLM decoder"}, ) lmweight: float = field( default=1.5, metadata={"help": "Weight for LM while interpolating score"}, ) unitlm: bool = field( default=False, metadata={"help": "If using a unit language model"}, ) class BaseDecoder: def __init__(self, cfg: DecoderConfig, tgt_dict: Dictionary) -> None: self.tgt_dict = tgt_dict self.vocab_size = len(tgt_dict) self.nbest = cfg.nbest self.unitlm = cfg.unitlm if cfg.criterion == "ctc": self.criterion_type = CriterionType.CTC self.blank = ( tgt_dict.index("<ctc_blank>") if "<ctc_blank>" in tgt_dict.indices else tgt_dict.bos() ) if "<sep>" in tgt_dict.indices: self.silence = tgt_dict.index("<sep>") elif "|" in tgt_dict.indices: self.silence = tgt_dict.index("|") else: self.silence = tgt_dict.eos() self.asgtransitions = None elif cfg.criterion == "asg_loss": self.criterion_type = CriterionType.ASG self.blank = -1 self.silence = -1 self.asgtransitions = cfg.asgtransitions self.maxreplabel = cfg.maxreplabel assert len(self.asgtransitions) == self.vocab_size ** 2 else: raise RuntimeError(f"unknown criterion: {cfg.criterion}") def generate( self, models: List[FairseqModel], sample: Dict[str, Any], **unused ) -> List[List[Dict[str, torch.LongTensor]]]: encoder_input = { k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens" } emissions = self.get_emissions(models, encoder_input) return self.decode(emissions) def get_emissions( self, models: List[FairseqModel], encoder_input: Dict[str, Any], ) -> torch.FloatTensor: model = models[0] encoder_out = model(**encoder_input) if self.criterion_type == CriterionType.CTC: if hasattr(model, "get_logits"): emissions = model.get_logits(encoder_out) else: emissions = model.get_normalized_probs( encoder_out, log_probs=True) elif self.criterion_type == CriterionType.ASG: emissions = encoder_out["encoder_out"] else: raise ValueError("Criterion not implemented: " f"{self.criterion_type}") return emissions.transpose(0, 1).float().cpu().contiguous() def get_tokens(self, idxs: torch.IntTensor) -> torch.LongTensor: idxs = (g[0] for g in it.groupby(idxs)) if self.criterion_type == CriterionType.CTC: idxs = filter(lambda x: x != self.blank, idxs) elif self.criterion_type == CriterionType.ASG: idxs = filter(lambda x: x >= 0, idxs) idxs = unpack_replabels( list(idxs), self.tgt_dict, self.maxreplabel) return torch.LongTensor(list(idxs)) def decode( self, emissions: torch.FloatTensor, ) -> List[List[Dict[str, torch.LongTensor]]]: raise NotImplementedError class ViterbiDecoder(BaseDecoder): def decode( self, emissions: torch.FloatTensor, ) -> List[List[Dict[str, torch.LongTensor]]]: B, T, N = emissions.size() if self.asgtransitions is None: transitions = torch.FloatTensor(N, N).zero_() else: transitions = torch.FloatTensor(self.asgtransitions).view(N, N) viterbi_path = torch.IntTensor(B, T) workspace = torch.ByteTensor( CpuViterbiPath.get_workspace_size(B, T, N)) CpuViterbiPath.compute( B, T, N, get_data_ptr_as_bytes(emissions), get_data_ptr_as_bytes(transitions), get_data_ptr_as_bytes(viterbi_path), get_data_ptr_as_bytes(workspace), ) return [ [{"tokens": self.get_tokens(viterbi_path[b].tolist()), "score": 0}] for b in range(B) ] class KenLMDecoder(BaseDecoder): def __init__(self, cfg: DecoderConfig, tgt_dict: Dictionary) -> None: super().__init__(cfg, tgt_dict) if cfg.lexicon: self.lexicon = load_words(cfg.lexicon) self.word_dict = create_word_dict(self.lexicon) self.unk_word = self.word_dict.get_index("<unk>") self.lm = KenLM(cfg.lmpath, self.word_dict) self.trie = Trie(self.vocab_size, self.silence) start_state = self.lm.start(False) for word, spellings in self.lexicon.items(): word_idx = self.word_dict.get_index(word) _, score = self.lm.score(start_state, word_idx) for spelling in spellings: spelling_idxs = [ tgt_dict.index(token) for token in spelling ] assert tgt_dict.unk() not in spelling_idxs, \ f"{spelling} {spelling_idxs}" self.trie.insert(spelling_idxs, word_idx, score) self.trie.smear(SmearingMode.MAX) self.decoder_opts = LexiconDecoderOptions( beam_size=cfg.beam, beam_size_token=cfg.beamsizetoken or len(tgt_dict), beam_threshold=cfg.beamthreshold, lm_weight=cfg.lmweight, word_score=cfg.wordscore, unk_score=cfg.unkweight, sil_score=cfg.silweight, log_add=False, criterion_type=self.criterion_type, ) if self.asgtransitions is None: self.asgtransitions = [] self.decoder = LexiconDecoder( self.decoder_opts, self.trie, self.lm, self.silence, self.blank, self.unk_word, self.asgtransitions, self.unitlm, ) else: assert self.unitlm, "Lexicon-free decoding requires unit LM" d = {w: [[w]] for w in tgt_dict.symbols} self.word_dict = create_word_dict(d) self.lm = KenLM(cfg.lmpath, self.word_dict) self.decoder_opts = LexiconFreeDecoderOptions( beam_size=cfg.beam, beam_size_token=cfg.beamsizetoken or len(tgt_dict), beam_threshold=cfg.beamthreshold, lm_weight=cfg.lmweight, sil_score=cfg.silweight, log_add=False, criterion_type=self.criterion_type, ) self.decoder = LexiconFreeDecoder( self.decoder_opts, self.lm, self.silence, self.blank, [] ) def decode( self, emissions: torch.FloatTensor, ) -> List[List[Dict[str, torch.LongTensor]]]: B, T, N = emissions.size() hypos = [] for b in range(B): emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0) results = self.decoder.decode(emissions_ptr, T, N) nbest_results = results[: self.nbest] hypos.append([ { "tokens": self.get_tokens(result.tokens), "score": result.score, "words": [ self.word_dict.get_entry(x) for x in result.words if x >= 0 ], } for result in nbest_results ]) return hypos FairseqLMState = namedtuple( "FairseqLMState", [ "prefix", "incremental_state", "probs", ] ) class FairseqLM(LM): def __init__(self, dictionary: Dictionary, model: FairseqModel) -> None: super().__init__() self.dictionary = dictionary self.model = model self.unk = self.dictionary.unk() self.save_incremental = False # this currently does not work properly self.max_cache = 20_000 model.cuda() model.eval() model.make_generation_fast_() self.states = {} self.stateq = deque() def start(self, start_with_nothing: bool) -> LMState: state = LMState() prefix = torch.LongTensor([[self.dictionary.eos()]]) incremental_state = {} if self.save_incremental else None with torch.no_grad(): res = self.model( prefix.cuda(), incremental_state=incremental_state) probs = self.model.get_normalized_probs( res, log_probs=True, sample=None) if incremental_state is not None: incremental_state = apply_to_sample( lambda x: x.cpu(), incremental_state) self.states[state] = FairseqLMState( prefix.numpy(), incremental_state, probs[0, -1].cpu().numpy() ) self.stateq.append(state) return state def score( self, state: LMState, token_index: int, no_cache: bool = False, ) -> Tuple[LMState, int]: """ Evaluate language model based on the current lm state and new word Parameters: ----------- state: current lm state token_index: index of the word (can be lexicon index then you should store inside LM the mapping between indices of lexicon and lm, or lm index of a word) Returns: -------- (LMState, float): pair of (new state, score for the current word) """ curr_state = self.states[state] def trim_cache(targ_size: int) -> None: while len(self.stateq) > targ_size: rem_k = self.stateq.popleft() rem_st = self.states[rem_k] rem_st = FairseqLMState(rem_st.prefix, None, None) self.states[rem_k] = rem_st if curr_state.probs is None: new_incremental_state = ( curr_state.incremental_state.copy() if curr_state.incremental_state is not None else None ) with torch.no_grad(): if new_incremental_state is not None: new_incremental_state = apply_to_sample( lambda x: x.cuda(), new_incremental_state ) elif self.save_incremental: new_incremental_state = {} res = self.model( torch.from_numpy(curr_state.prefix).cuda(), incremental_state=new_incremental_state, ) probs = self.model.get_normalized_probs( res, log_probs=True, sample=None ) if new_incremental_state is not None: new_incremental_state = apply_to_sample( lambda x: x.cpu(), new_incremental_state ) curr_state = FairseqLMState( curr_state.prefix, new_incremental_state, probs[0, -1].cpu( ).numpy() ) if not no_cache: self.states[state] = curr_state self.stateq.append(state) score = curr_state.probs[token_index].item() trim_cache(self.max_cache) outstate = state.child(token_index) if outstate not in self.states and not no_cache: prefix = np.concatenate( [curr_state.prefix, torch.LongTensor([[token_index]])], -1 ) incr_state = curr_state.incremental_state self.states[outstate] = FairseqLMState(prefix, incr_state, None) if token_index == self.unk: score = float("-inf") return outstate, score def finish(self, state: LMState) -> Tuple[LMState, int]: """ Evaluate eos for language model based on the current lm state Returns: -------- (LMState, float): pair of (new state, score for the current word) """ return self.score(state, self.dictionary.eos()) def empty_cache(self) -> None: self.states = {} self.stateq = deque() gc.collect() class FairseqLMDecoder(BaseDecoder): def __init__(self, cfg: DecoderConfig, tgt_dict: Dictionary) -> None: super().__init__(cfg, tgt_dict) self.lexicon = load_words(cfg.lexicon) if cfg.lexicon else None self.idx_to_wrd = {} checkpoint = torch.load(cfg.lmpath, map_location="cpu") if "cfg" in checkpoint and checkpoint["cfg"] is not None: lm_args = checkpoint["cfg"] else: lm_args = convert_namespace_to_omegaconf(checkpoint["args"]) with open_dict(lm_args.task): lm_args.task.data = osp.dirname(cfg.lmpath) task = tasks.setup_task(lm_args.task) model = task.build_model(lm_args.model) model.load_state_dict(checkpoint["model"], strict=False) self.trie = Trie(self.vocab_size, self.silence) self.word_dict = task.dictionary self.unk_word = self.word_dict.unk() self.lm = FairseqLM(self.word_dict, model) if self.lexicon: start_state = self.lm.start(False) for i, (word, spellings) in enumerate(self.lexicon.items()): if self.unitlm: word_idx = i self.idx_to_wrd[i] = word score = 0 else: word_idx = self.word_dict.index(word) _, score = self.lm.score( start_state, word_idx, no_cache=True) for spelling in spellings: spelling_idxs = [ tgt_dict.index(token) for token in spelling ] assert tgt_dict.unk() not in spelling_idxs, \ f"{spelling} {spelling_idxs}" self.trie.insert(spelling_idxs, word_idx, score) self.trie.smear(SmearingMode.MAX) self.decoder_opts = LexiconDecoderOptions( beam_size=cfg.beam, beam_size_token=cfg.beamsizetoken or len(tgt_dict), beam_threshold=cfg.beamthreshold, lm_weight=cfg.lmweight, word_score=cfg.wordscore, unk_score=cfg.unkweight, sil_score=cfg.silweight, log_add=False, criterion_type=self.criterion_type, ) if self.asgtransitions is None: self.asgtransitions = [] self.decoder = LexiconDecoder( self.decoder_opts, self.trie, self.lm, self.silence, self.blank, self.unk_word, self.asgtransitions, self.unitlm, ) else: assert self.unitlm, "Lexicon-free decoding requires unit LM" d = {w: [[w]] for w in tgt_dict.symbols} self.word_dict = create_word_dict(d) self.lm = KenLM(cfg.lmpath, self.word_dict) self.decoder_opts = LexiconFreeDecoderOptions( beam_size=cfg.beam, beam_size_token=cfg.beamsizetoken or len(tgt_dict), beam_threshold=cfg.beamthreshold, lm_weight=cfg.lmweight, sil_score=cfg.silweight, log_add=False, criterion_type=self.criterion_type, ) self.decoder = LexiconFreeDecoder( self.decoder_opts, self.lm, self.silence, self.blank, [] ) def decode( self, emissions: torch.FloatTensor, ) -> List[List[Dict[str, torch.LongTensor]]]: B, T, N = emissions.size() hypos = [] def make_hypo(result: DecodeResult) -> Dict[str, Any]: hypo = { "tokens": self.get_tokens(result.tokens), "score": result.score, } if self.lexicon: hypo["words"] = [ self.idx_to_wrd[x] if self.unitlm else self.word_dict[x] for x in result.words if x >= 0 ] return hypo for b in range(B): emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0) results = self.decoder.decode(emissions_ptr, T, N) nbest_results = results[:self.nbest] hypos.append([make_hypo(result) for result in nbest_results]) self.lm.empty_cache() return hypos def Decoder(cfg: DecoderConfig, tgt_dict: Dictionary) -> BaseDecoder: if cfg.name == "viterbi": return ViterbiDecoder(cfg, tgt_dict) if cfg.name == "kenlm": return KenLMDecoder(cfg, tgt_dict) if cfg.name == "fairseqlm": return FairseqLMDecoder(cfg, tgt_dict) raise NotImplementedError(f"Invalid decoder name: {cfg.name}")