# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from fairseq.model_parallel.models.transformer import ModelParallelTransformerDecoder from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer_lm import TransformerLanguageModel try: from fairseq.model_parallel.megatron.mpu import VocabParallelEmbedding has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("model_parallel_transformer_lm") class ModelParallelTransformerLanguageModel(TransformerLanguageModel): @staticmethod def add_args(parser): TransformerLanguageModel.add_args(parser) @classmethod def build_model(cls, args, task): """Build a new model instance.""" if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) # make sure all arguments are present in older models base_lm_architecture(args) task.source_dictionary.pad_to_multiple_(args.model_parallel_size * 8) task.target_dictionary.pad_to_multiple_(args.model_parallel_size * 8) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) if args.character_embeddings: raise NotImplementedError( "Character embeddings is not supported for model parallel" ) elif args.adaptive_input: raise NotImplementedError( "Adaptive input is not supported for model parallel" ) else: embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_input_dim ) decoder = ModelParallelTransformerDecoder( args, task.target_dictionary, embed_tokens, no_encoder_attn=True, ) return cls(decoder) @staticmethod def add_args(parser): TransformerLanguageModel.add_args(parser) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): def _vocab_init(tensor, **kwargs): nn.init.normal_(tensor, mean=0, std=embed_dim ** -0.5) nn.init.constant_(tensor[1], 0) embed_tokens = VocabParallelEmbedding( len(dictionary), embed_dim, dictionary.pad(), init_method=_vocab_init ) return embed_tokens def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.relu_dropout = getattr(args, "relu_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = getattr(args, "character_embeddings", False) args.character_filters = getattr( args, "character_filters", "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]", ) args.character_embedding_dim = getattr(args, "character_embedding_dim", 4) args.char_embedder_highway_layers = getattr(args, "char_embedder_highway_layers", 2) args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0.0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0.0) args.add_bos_token = getattr(args, "add_bos_token", False) @register_model_architecture("model_parallel_transformer_lm", "transformer_lm_megatron") def transformer_lm_megatron(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 3072) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072 * 4) args.decoder_layers = getattr(args, "decoder_layers", 72) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture( "model_parallel_transformer_lm", "transformer_lm_megatron_11b" ) def transformer_lm_megatron_11b(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 3072) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072 * 6) args.decoder_layers = getattr(args, "decoder_layers", 72) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args)