Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
S
S2T
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
xuchen
S2T
Commits
4f452308
Commit
4f452308
authored
Jan 07, 2024
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
prepend target language tag (to enc)
parent
ab42136f
显示空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
54 行增加
和
10 行删除
+54
-10
fairseq/data/audio/aligned_speech_to_text_dataset.py
+22
-4
fairseq/data/audio/speech_to_text_dataset.py
+23
-3
fairseq/tasks/speech_to_text.py
+9
-3
没有找到文件。
fairseq/data/audio/aligned_speech_to_text_dataset.py
查看文件 @
4f452308
...
...
@@ -95,6 +95,13 @@ class S2TDataConfig(object):
return
self
.
config
.
get
(
"prepend_tgt_lang_tag"
,
False
)
@property
def
prepend_tgt_lang_tag_to_enc
(
self
)
->
bool
:
"""Prepend target lang ID token as the target BOS (e.g. for to-many
multilingual setting). During inference, this requires `--prefix-size 1`
to force BOS to be lang ID token."""
return
self
.
config
.
get
(
"prepend_tgt_lang_tag_to_enc"
,
False
)
@property
def
input_feat_per_channel
(
self
):
"""The dimension of input features (per audio channel)"""
return
self
.
config
.
get
(
"input_feat_per_channel"
,
80
)
...
...
@@ -317,6 +324,7 @@ class SpeechToTextDataset(FairseqDataset):
self
.
__class__
.
__name__
+
f
'(split="{self.split}", n_samples={self.n_samples}, '
f
"prepend_tgt_lang_tag={self.data_cfg.prepend_tgt_lang_tag}, "
f
"prepend_tgt_lang_tag_to_enc={self.data_cfg.prepend_tgt_lang_tag_to_enc}, "
f
"shuffle={self.shuffle}, transforms={self.feature_transforms})"
)
...
...
@@ -326,7 +334,7 @@ class SpeechToTextDataset(FairseqDataset):
return
re
.
match
(
pattern
,
token
)
def
check_tgt_lang_tag
(
self
):
if
self
.
data_cfg
.
prepend_tgt_lang_tag
:
if
self
.
data_cfg
.
prepend_tgt_lang_tag
or
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
assert
self
.
tgt_langs
is
not
None
and
self
.
tgt_dict
is
not
None
tgt_lang_tags
=
[
self
.
LANG_TAG_TEMPLATE
.
format
(
t
)
for
t
in
set
(
self
.
tgt_langs
)
...
...
@@ -361,7 +369,7 @@ class SpeechToTextDataset(FairseqDataset):
target
=
self
.
tgt_dict
.
encode_line
(
tokenized
,
add_if_not_exist
=
False
,
append_eos
=
True
)
.
long
()
if
self
.
data_cfg
.
prepend_tgt_lang_tag
:
if
self
.
data_cfg
.
prepend_tgt_lang_tag
or
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
lang_tag
=
self
.
LANG_TAG_TEMPLATE
.
format
(
self
.
tgt_langs
[
index
])
lang_tag_idx
=
self
.
tgt_dict
.
index
(
lang_tag
)
target
=
torch
.
cat
((
torch
.
LongTensor
([
lang_tag_idx
]),
target
),
0
)
...
...
@@ -372,7 +380,7 @@ class SpeechToTextDataset(FairseqDataset):
aligned_target
=
self
.
tgt_dict
.
encode_line
(
tokenized
,
add_if_not_exist
=
False
,
append_eos
=
True
)
.
long
()
if
self
.
data_cfg
.
prepend_tgt_lang_tag
:
if
self
.
data_cfg
.
prepend_tgt_lang_tag
or
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
lang_tag
=
self
.
LANG_TAG_TEMPLATE
.
format
(
self
.
tgt_langs
[
index
])
lang_tag_idx
=
self
.
tgt_dict
.
index
(
lang_tag
)
aligned_target
=
torch
.
cat
((
torch
.
LongTensor
([
lang_tag_idx
]),
aligned_target
),
0
)
...
...
@@ -383,7 +391,7 @@ class SpeechToTextDataset(FairseqDataset):
ctc_target
=
self
.
tgt_dict
.
encode_line
(
tokenized
,
add_if_not_exist
=
False
,
append_eos
=
True
)
.
long
()
if
self
.
data_cfg
.
prepend_tgt_lang_tag
:
if
self
.
data_cfg
.
prepend_tgt_lang_tag
or
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
lang_tag
=
self
.
LANG_TAG_TEMPLATE
.
format
(
self
.
tgt_langs
[
index
])
lang_tag_idx
=
self
.
tgt_dict
.
index
(
lang_tag
)
ctc_target
=
torch
.
cat
((
torch
.
LongTensor
([
lang_tag_idx
]),
ctc_target
),
0
)
...
...
@@ -415,6 +423,7 @@ class SpeechToTextDataset(FairseqDataset):
target
,
target_lengths
=
None
,
None
prev_output_tokens
=
None
ntokens
=
None
tgt_lang_idx
=
None
if
self
.
tgt_texts
is
not
None
:
target
=
fairseq_data_utils
.
collate_tokens
(
[
t
for
_
,
_
,
t
,
_
,
_
,
_
in
samples
],
...
...
@@ -424,6 +433,11 @@ class SpeechToTextDataset(FairseqDataset):
move_eos_to_beginning
=
False
,
)
target
=
target
.
index_select
(
0
,
order
)
if
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
tgt_lang_idx
=
target
[:,
0
]
if
not
self
.
data_cfg
.
prepend_tgt_lang_tag
:
target
=
target
[:,
1
:]
target_lengths
=
torch
.
tensor
(
[
t
.
size
(
0
)
for
_
,
_
,
t
,
_
,
_
,
_
in
samples
],
dtype
=
torch
.
long
)
.
index_select
(
0
,
order
)
...
...
@@ -436,6 +450,9 @@ class SpeechToTextDataset(FairseqDataset):
)
prev_output_tokens
=
prev_output_tokens
.
index_select
(
0
,
order
)
ntokens
=
sum
(
t
.
size
(
0
)
for
_
,
_
,
t
,
_
,
_
,
_
in
samples
)
if
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
and
not
self
.
data_cfg
.
prepend_tgt_lang_tag
:
prev_output_tokens
=
torch
.
cat
((
prev_output_tokens
[:,
0
:
1
],
prev_output_tokens
[:,
2
:]),
dim
=
1
)
ntokens
-=
1
if
self
.
aligned_tgt_texts
is
not
None
:
aligned_target
=
fairseq_data_utils
.
collate_tokens
(
...
...
@@ -493,6 +510,7 @@ class SpeechToTextDataset(FairseqDataset):
"src_tokens"
:
frames
,
"src_lengths"
:
n_frames
,
"prev_output_tokens"
:
prev_output_tokens
,
"tgt_lang_idx"
:
tgt_lang_idx
,
},
"transcript"
:
{
"tokens"
:
transcript
,
...
...
fairseq/data/audio/speech_to_text_dataset.py
查看文件 @
4f452308
...
...
@@ -97,6 +97,13 @@ class S2TDataConfig(object):
return
self
.
config
.
get
(
"prepend_tgt_lang_tag"
,
False
)
@property
def
prepend_tgt_lang_tag_to_enc
(
self
)
->
bool
:
"""Prepend target lang ID token as the target BOS (e.g. for to-many
multilingual setting). During inference, this requires `--prefix-size 1`
to force BOS to be lang ID token."""
return
self
.
config
.
get
(
"prepend_tgt_lang_tag_to_enc"
,
False
)
@property
def
input_feat_per_channel
(
self
):
"""The dimension of input features (per audio channel)"""
return
self
.
config
.
get
(
"input_feat_per_channel"
,
80
)
...
...
@@ -347,6 +354,7 @@ class SpeechToTextDataset(FairseqDataset):
self
.
__class__
.
__name__
+
f
'(split="{self.split}", n_samples={self.n_samples}, '
f
"prepend_tgt_lang_tag={self.data_cfg.prepend_tgt_lang_tag}, "
f
"prepend_tgt_lang_tag_to_enc={self.data_cfg.prepend_tgt_lang_tag_to_enc}, "
f
"shuffle={self.shuffle}, transforms={self.feature_transforms})"
)
...
...
@@ -356,12 +364,12 @@ class SpeechToTextDataset(FairseqDataset):
return
re
.
match
(
pattern
,
token
)
def
check_tgt_lang_tag
(
self
):
if
self
.
data_cfg
.
prepend_tgt_lang_tag
:
if
self
.
data_cfg
.
prepend_tgt_lang_tag
or
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
assert
self
.
tgt_langs
is
not
None
and
self
.
tgt_dict
is
not
None
tgt_lang_tags
=
[
self
.
LANG_TAG_TEMPLATE
.
format
(
t
)
for
t
in
set
(
self
.
tgt_langs
)
]
assert
all
(
t
in
self
.
tgt_dict
for
t
in
tgt_lang_tags
)
assert
all
(
t
in
self
.
tgt_dict
for
t
in
tgt_lang_tags
)
,
tgt_lang_tags
def
tokenize_text
(
self
,
text
:
str
,
is_src
=
False
):
if
self
.
pre_tokenizer
is
not
None
:
...
...
@@ -391,7 +399,7 @@ class SpeechToTextDataset(FairseqDataset):
target
=
self
.
tgt_dict
.
encode_line
(
tokenized
,
add_if_not_exist
=
False
,
append_eos
=
True
)
.
long
()
if
self
.
data_cfg
.
prepend_tgt_lang_tag
:
if
self
.
data_cfg
.
prepend_tgt_lang_tag
or
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
lang_tag
=
self
.
LANG_TAG_TEMPLATE
.
format
(
self
.
tgt_langs
[
index
])
lang_tag_idx
=
self
.
tgt_dict
.
index
(
lang_tag
)
target
=
torch
.
cat
((
torch
.
LongTensor
([
lang_tag_idx
]),
target
),
0
)
...
...
@@ -424,6 +432,7 @@ class SpeechToTextDataset(FairseqDataset):
target
,
target_lengths
=
None
,
None
prev_output_tokens
=
None
ntokens
=
None
tgt_lang_idx
=
None
if
self
.
tgt_texts
is
not
None
:
target
=
fairseq_data_utils
.
collate_tokens
(
[
t
for
_
,
_
,
t
,
_
in
samples
],
...
...
@@ -433,6 +442,12 @@ class SpeechToTextDataset(FairseqDataset):
move_eos_to_beginning
=
False
,
)
target
=
target
.
index_select
(
0
,
order
)
if
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
tgt_lang_idx
=
target
[:,
0
]
if
not
self
.
data_cfg
.
prepend_tgt_lang_tag
:
target
=
target
[:,
1
:]
target_lengths
=
torch
.
tensor
(
[
t
.
size
(
0
)
for
_
,
_
,
t
,
_
in
samples
],
dtype
=
torch
.
long
)
.
index_select
(
0
,
order
)
...
...
@@ -445,6 +460,9 @@ class SpeechToTextDataset(FairseqDataset):
)
prev_output_tokens
=
prev_output_tokens
.
index_select
(
0
,
order
)
ntokens
=
sum
(
t
.
size
(
0
)
for
_
,
_
,
t
,
_
in
samples
)
if
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
and
not
self
.
data_cfg
.
prepend_tgt_lang_tag
:
prev_output_tokens
=
torch
.
cat
((
prev_output_tokens
[:,
0
],
prev_output_tokens
[:,
2
:]),
dim
=
1
)
ntokens
-=
1
if
self
.
src_dict
is
not
None
and
self
.
src_texts
is
not
None
:
transcript
=
fairseq_data_utils
.
collate_tokens
(
...
...
@@ -470,6 +488,7 @@ class SpeechToTextDataset(FairseqDataset):
"src_tokens"
:
frames
,
"src_lengths"
:
n_frames
,
"prev_output_tokens"
:
prev_output_tokens
,
"tgt_lang_idx"
:
tgt_lang_idx
,
},
"transcript"
:
{
"tokens"
:
transcript
,
...
...
@@ -611,6 +630,7 @@ class SpeechToTextDatasetCreator(object):
tsv_path
=
op
.
join
(
root
,
f
"{split}.tsv"
)
if
not
op
.
isfile
(
tsv_path
):
raise
FileNotFoundError
(
f
"Dataset not found: {tsv_path}"
)
logger
.
info
(
"Start loading dataset {}."
.
format
(
tsv_path
))
with
open
(
tsv_path
)
as
f
:
reader
=
csv
.
DictReader
(
f
,
...
...
fairseq/tasks/speech_to_text.py
查看文件 @
4f452308
...
...
@@ -487,8 +487,8 @@ class SpeechToTextTask(LegacyFairseqTask):
bleu
=
comp_bleu
(
correct
=
meters
[
"_bleu_counts"
]
.
sum
,
total
=
meters
[
"_bleu_totals"
]
.
sum
,
sys_len
=
meters
[
"_bleu_sys_len"
]
.
sum
,
ref_len
=
meters
[
"_bleu_ref_len"
]
.
sum
,
sys_len
=
int
(
meters
[
"_bleu_sys_len"
]
.
sum
)
,
ref_len
=
int
(
meters
[
"_bleu_ref_len"
]
.
sum
)
,
**
smooth
)
return
round
(
bleu
.
score
,
2
)
...
...
@@ -515,6 +515,7 @@ class SpeechToTextTask(LegacyFairseqTask):
'Please set "--prefix-size 1" since '
"target language ID token is prepended as BOS."
)
self
.
prefix_size
=
getattr
(
args
,
"prefix_size"
,
0
)
lang_token_ids
=
{
i
for
s
,
i
in
self
.
tgt_dict
.
indices
.
items
()
...
...
@@ -567,7 +568,12 @@ class SpeechToTextTask(LegacyFairseqTask):
s
=
self
.
tokenizer
.
decode
(
s
)
return
s
gen_out
=
self
.
inference_step
(
generator
,
[
model
],
sample
,
prefix_tokens
=
None
)
if
self
.
data_cfg
.
prepend_tgt_lang_tag
and
self
.
prefix_size
>
0
:
prefix_tokens
=
sample
[
"target"
][:,
:
self
.
prefix_size
]
else
:
prefix_tokens
=
None
gen_out
=
self
.
inference_step
(
generator
,
[
model
],
sample
,
prefix_tokens
=
prefix_tokens
)
hyps
,
refs
=
[],
[]
for
i
in
range
(
len
(
gen_out
)):
hyps
.
append
(
decode
(
gen_out
[
i
][
0
][
"tokens"
]))
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论