Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
S
S2T
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
xuchen
S2T
Commits
aed36ae4
Commit
aed36ae4
authored
Mar 16, 2024
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
optimize the implementation of lang tag
parent
a64cdfcc
显示空白字符变更
内嵌
并排
正在显示
4 个修改的文件
包含
179 行增加
和
49 行删除
+179
-49
fairseq/criterions/ctc.py
+2
-0
fairseq/criterions/label_smoothed_cross_entropy_with_ctc.py
+3
-0
fairseq/data/audio/speech_to_text_dataset.py
+153
-29
fairseq/models/speech_to_text/s2t_transformer.py
+21
-20
没有找到文件。
fairseq/criterions/ctc.py
查看文件 @
aed36ae4
...
...
@@ -367,9 +367,11 @@ class CtcCriterion(FairseqCriterion):
src_tokens
=
sample
[
"net_input"
][
"src_tokens"
]
src_lengths
=
sample
[
"net_input"
][
"src_lengths"
]
src_lang_idx
=
sample
[
"net_input"
]
.
get
(
"src_lang_idx"
,
None
)
tgt_lang_idx
=
sample
[
"net_input"
]
.
get
(
"tgt_lang_idx"
,
None
)
with
torch
.
no_grad
():
encoder_out
=
model
.
encoder
(
src_tokens
,
src_lengths
,
src_lang_idx
=
src_lang_idx
,
tgt_lang_idx
=
tgt_lang_idx
)
ctc_logit
=
None
...
...
fairseq/criterions/label_smoothed_cross_entropy_with_ctc.py
查看文件 @
aed36ae4
...
...
@@ -82,6 +82,7 @@ class LabelSmoothedCrossEntropyCriterionWithCTC(
src_tokens
=
sample
[
"net_input"
][
"src_tokens"
]
src_lengths
=
sample
[
"net_input"
][
"src_lengths"
]
prev_output_tokens
=
sample
[
"net_input"
][
"prev_output_tokens"
]
src_lang_idx
=
sample
[
"net_input"
]
.
get
(
"src_lang_idx"
,
None
)
tgt_lang_idx
=
sample
[
"net_input"
]
.
get
(
"tgt_lang_idx"
,
None
)
train_enc_only
=
False
...
...
@@ -105,10 +106,12 @@ class LabelSmoothedCrossEntropyCriterionWithCTC(
ctc_alignment_oracle
=
self
.
ctc_criterion
.
get_ground_truth_alignment
(
model
,
sample
)
encoder_out
=
model
.
encoder
(
src_tokens
,
src_lengths
,
ctc_alignment_oracle
=
ctc_alignment_oracle
,
src_lang_idx
=
src_lang_idx
,
tgt_lang_idx
=
tgt_lang_idx
)
else
:
encoder_out
=
model
.
encoder
(
src_tokens
=
src_tokens
,
src_lengths
=
src_lengths
,
src_lang_idx
=
src_lang_idx
,
tgt_lang_idx
=
tgt_lang_idx
)
net_output
=
model
.
decoder
(
...
...
fairseq/data/audio/speech_to_text_dataset.py
查看文件 @
aed36ae4
...
...
@@ -104,6 +104,13 @@ class S2TDataConfig(object):
return
self
.
config
.
get
(
"prepend_tgt_lang_tag_to_enc"
,
False
)
@property
def
prepend_src_lang_tag
(
self
)
->
bool
:
"""Prepend source lang ID token as the source BOS (e.g. for to-many
multilingual setting). During inference, this requires `--prefix-size 1`
to force BOS to be lang ID token."""
return
self
.
config
.
get
(
"prepend_src_lang_tag"
,
False
)
@property
def
input_feat_per_channel
(
self
):
"""The dimension of input features (per audio channel)"""
return
self
.
config
.
get
(
"input_feat_per_channel"
,
80
)
...
...
@@ -312,7 +319,8 @@ class SpeechToTextDataset(FairseqDataset):
tgt_dict
:
Optional
[
Dictionary
]
=
None
,
pre_tokenizer
=
None
,
bpe_tokenizer
=
None
,
src_bpe_tokenizer
=
None
src_bpe_tokenizer
=
None
,
kwargs
=
None
,
):
self
.
split
,
self
.
is_train_split
=
split
,
is_train_split
self
.
data_cfg
=
data_cfg
...
...
@@ -321,6 +329,7 @@ class SpeechToTextDataset(FairseqDataset):
self
.
n_samples
=
len
(
audio_paths
)
if
data_cfg
.
share_src_and_tgt
:
src_texts
=
tgt_texts
assert
len
(
n_frames
)
==
self
.
n_samples
>
0
assert
src_texts
is
None
or
len
(
src_texts
)
==
self
.
n_samples
assert
tgt_texts
is
None
or
len
(
tgt_texts
)
==
self
.
n_samples
...
...
@@ -347,12 +356,22 @@ class SpeechToTextDataset(FairseqDataset):
self
.
bpe_tokenizer
=
bpe_tokenizer
self
.
src_bpe_tokenizer
=
src_bpe_tokenizer
if
"aligned_tgt_texts"
in
kwargs
:
aligned_tgt_texts
=
kwargs
[
"aligned_tgt_texts"
]
assert
aligned_tgt_texts
is
None
or
len
(
aligned_tgt_texts
)
==
self
.
n_samples
self
.
aligned_tgt_texts
=
aligned_tgt_texts
if
"ctc_tgt_texts"
in
kwargs
:
ctc_tgt_texts
=
kwargs
[
"ctc_tgt_texts"
]
assert
ctc_tgt_texts
is
None
or
len
(
ctc_tgt_texts
)
==
self
.
n_samples
self
.
ctc_tgt_texts
=
ctc_tgt_texts
logger
.
info
(
self
.
__repr__
())
def
__repr__
(
self
):
return
(
self
.
__class__
.
__name__
+
f
'(split="{self.split}", n_samples={self.n_samples}, '
f
"prepend_src_lang_tag={self.data_cfg.prepend_src_lang_tag}, "
f
"prepend_tgt_lang_tag={self.data_cfg.prepend_tgt_lang_tag}, "
f
"prepend_tgt_lang_tag_to_enc={self.data_cfg.prepend_tgt_lang_tag_to_enc}, "
f
"shuffle={self.shuffle}, transforms={self.feature_transforms})"
...
...
@@ -369,7 +388,14 @@ class SpeechToTextDataset(FairseqDataset):
tgt_lang_tags
=
[
self
.
LANG_TAG_TEMPLATE
.
format
(
t
)
for
t
in
set
(
self
.
tgt_langs
)
]
assert
all
(
t
in
self
.
tgt_dict
for
t
in
tgt_lang_tags
),
tgt_lang_tags
assert
all
(
t
in
self
.
tgt_dict
for
t
in
tgt_lang_tags
)
if
self
.
data_cfg
.
prepend_src_lang_tag
:
assert
self
.
src_langs
is
not
None
and
self
.
src_dict
is
not
None
src_lang_tags
=
[
self
.
LANG_TAG_TEMPLATE
.
format
(
t
)
for
t
in
set
(
self
.
src_langs
)
]
assert
all
(
t
in
self
.
src_dict
for
t
in
src_lang_tags
)
def
tokenize_text
(
self
,
text
:
str
,
is_src
=
False
):
if
self
.
pre_tokenizer
is
not
None
:
...
...
@@ -380,7 +406,10 @@ class SpeechToTextDataset(FairseqDataset):
def
__getitem__
(
self
,
index
:
int
)
->
Tuple
[
int
,
torch
.
Tensor
,
Optional
[
torch
.
Tensor
],
Optional
[
torch
.
Tensor
]]:
)
->
Dict
:
sample
=
dict
()
sample
[
"indice"
]
=
index
source
=
get_features_or_waveform
(
self
.
audio_paths
[
index
],
need_waveform
=
self
.
data_cfg
.
use_audio_input
or
(
self
.
is_train_split
and
self
.
speed_perturb
)
...
...
@@ -392,6 +421,17 @@ class SpeechToTextDataset(FairseqDataset):
assert
not
self
.
data_cfg
.
use_audio_input
source
=
self
.
feature_transforms
(
source
)
source
=
torch
.
from_numpy
(
source
)
.
float
()
sample
[
"source"
]
=
source
if
self
.
data_cfg
.
prepend_tgt_lang_tag
or
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
tgt_lang_tag
=
self
.
LANG_TAG_TEMPLATE
.
format
(
self
.
tgt_langs
[
index
])
tgt_lang_tag_idx
=
self
.
tgt_dict
.
index
(
tgt_lang_tag
)
sample
[
"tgt_lang_tag_idx"
]
=
tgt_lang_tag_idx
if
self
.
data_cfg
.
prepend_src_lang_tag
:
src_lang_tag
=
self
.
LANG_TAG_TEMPLATE
.
format
(
self
.
src_langs
[
index
])
src_lang_tag_idx
=
self
.
src_dict
.
index
(
src_lang_tag
)
sample
[
"src_lang_tag_idx"
]
=
src_lang_tag_idx
target
=
None
if
self
.
tgt_texts
is
not
None
:
...
...
@@ -403,28 +443,54 @@ class SpeechToTextDataset(FairseqDataset):
lang_tag
=
self
.
LANG_TAG_TEMPLATE
.
format
(
self
.
tgt_langs
[
index
])
lang_tag_idx
=
self
.
tgt_dict
.
index
(
lang_tag
)
target
=
torch
.
cat
((
torch
.
LongTensor
([
lang_tag_idx
]),
target
),
0
)
sample
[
"target"
]
=
target
transcript
=
None
aligned_target
=
None
if
hasattr
(
self
,
"aligned_tgt_texts"
):
tokenized
=
self
.
tokenize_text
(
self
.
aligned_tgt_texts
[
index
])
aligned_target
=
self
.
tgt_dict
.
encode_line
(
tokenized
,
add_if_not_exist
=
False
,
append_eos
=
True
)
.
long
()
if
self
.
data_cfg
.
prepend_tgt_lang_tag
:
aligned_target
=
torch
.
cat
((
torch
.
LongTensor
([
tgt_lang_tag_idx
]),
aligned_target
),
0
)
sample
[
"aligned_target"
]
=
aligned_target
ctc_target
=
None
if
hasattr
(
self
,
"ctc_tgt_texts"
):
tokenized
=
self
.
tokenize_text
(
self
.
ctc_tgt_texts
[
index
])
ctc_target
=
self
.
tgt_dict
.
encode_line
(
tokenized
,
add_if_not_exist
=
False
,
append_eos
=
True
)
.
long
()
if
self
.
data_cfg
.
prepend_tgt_lang_tag
:
ctc_target
=
torch
.
cat
((
torch
.
LongTensor
([
tgt_lang_tag_idx
]),
ctc_target
),
0
)
sample
[
"ctc_target"
]
=
ctc_target
transcript
=
None
if
self
.
src_dict
is
not
None
and
self
.
src_texts
is
not
None
and
self
.
src_bpe_tokenizer
is
not
None
:
tokenized
=
self
.
tokenize_text
(
self
.
src_texts
[
index
],
True
)
transcript
=
self
.
src_dict
.
encode_line
(
tokenized
,
add_if_not_exist
=
False
,
append_eos
=
True
)
.
long
()
return
index
,
source
,
target
,
transcript
if
self
.
data_cfg
.
prepend_src_lang_tag
:
transcript
=
torch
.
cat
((
torch
.
LongTensor
([
src_lang_tag_idx
]),
transcript
),
0
)
sample
[
"transcript"
]
=
transcript
return
sample
def
__len__
(
self
):
return
self
.
n_samples
def
collater
(
self
,
samples
:
List
[
Tuple
[
int
,
torch
.
Tensor
,
torch
.
Tensor
,
torch
.
Tensor
]]
)
->
Dict
:
def
collater
(
self
,
samples
)
->
Dict
:
if
len
(
samples
)
==
0
:
return
{}
indices
=
torch
.
tensor
([
i
for
i
,
_
,
_
,
_
in
samples
],
dtype
=
torch
.
long
)
indices
=
torch
.
tensor
([
sample
[
"indice"
]
for
sample
in
samples
],
dtype
=
torch
.
long
)
frames
=
_collate_frames
(
[
s
for
_
,
s
,
_
,
_
in
samples
],
self
.
data_cfg
.
use_audio_input
[
s
ample
[
"source"
]
for
sample
in
samples
],
self
.
data_cfg
.
use_audio_input
)
# sort samples by descending number of frames
n_frames
=
torch
.
tensor
([
s
.
size
(
0
)
for
_
,
s
,
_
,
_
in
samples
],
dtype
=
torch
.
long
)
n_frames
=
torch
.
tensor
([
s
ample
[
"source"
]
.
size
(
0
)
for
sample
in
samples
],
dtype
=
torch
.
long
)
n_frames
,
order
=
n_frames
.
sort
(
descending
=
True
)
indices
=
indices
.
index_select
(
0
,
order
)
frames
=
frames
.
index_select
(
0
,
order
)
...
...
@@ -432,10 +498,15 @@ class SpeechToTextDataset(FairseqDataset):
target
,
target_lengths
=
None
,
None
prev_output_tokens
=
None
ntokens
=
None
transcript
=
None
transcript_lengths
=
None
transcript_ntokens
=
None
src_lang_idx
=
None
tgt_lang_idx
=
None
if
self
.
tgt_texts
is
not
None
:
target
=
fairseq_data_utils
.
collate_tokens
(
[
t
for
_
,
_
,
t
,
_
in
samples
],
[
sample
[
"target"
]
for
sample
in
samples
],
self
.
tgt_dict
.
pad
(),
self
.
tgt_dict
.
eos
(),
left_pad
=
False
,
...
...
@@ -443,30 +514,60 @@ class SpeechToTextDataset(FairseqDataset):
)
target
=
target
.
index_select
(
0
,
order
)
if
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
:
tgt_lang_idx
=
target
[:,
0
]
if
not
self
.
data_cfg
.
prepend_tgt_lang_tag
:
target
=
target
[:,
1
:]
target_lengths
=
torch
.
tensor
(
[
t
.
size
(
0
)
for
_
,
_
,
t
,
_
in
samples
],
dtype
=
torch
.
long
[
sample
[
"target"
]
.
size
(
0
)
for
sample
in
samples
],
dtype
=
torch
.
long
)
.
index_select
(
0
,
order
)
prev_output_tokens
=
fairseq_data_utils
.
collate_tokens
(
[
t
for
_
,
_
,
t
,
_
in
samples
],
[
sample
[
"target"
]
for
sample
in
samples
],
self
.
tgt_dict
.
pad
(),
self
.
tgt_dict
.
eos
(),
left_pad
=
False
,
move_eos_to_beginning
=
True
,
)
prev_output_tokens
=
prev_output_tokens
.
index_select
(
0
,
order
)
ntokens
=
sum
(
t
.
size
(
0
)
for
_
,
_
,
t
,
_
in
samples
)
if
self
.
data_cfg
.
prepend_tgt_lang_tag_to_enc
and
not
self
.
data_cfg
.
prepend_tgt_lang_tag
:
prev_output_tokens
=
torch
.
cat
((
prev_output_tokens
[:,
0
],
prev_output_tokens
[:,
2
:]),
dim
=
1
)
ntokens
-=
1
ntokens
=
sum
(
sample
[
"target"
]
.
size
(
0
)
for
sample
in
samples
)
if
"tgt_lang_tag_idx"
in
samples
[
0
]:
tgt_lang_idx
=
torch
.
tensor
([
sample
[
"tgt_lang_tag_idx"
]
for
sample
in
samples
],
dtype
=
torch
.
long
)
tgt_lang_idx
=
tgt_lang_idx
[
order
]
if
"src_lang_tag_idx"
in
samples
[
0
]:
src_lang_idx
=
torch
.
tensor
([
sample
[
"src_lang_tag_idx"
]
for
sample
in
samples
],
dtype
=
torch
.
long
)
src_lang_idx
=
src_lang_idx
[
order
]
aligned_target
=
None
aligned_target_lengths
=
None
if
hasattr
(
self
,
"aligned_tgt_texts"
):
aligned_target
=
fairseq_data_utils
.
collate_tokens
(
[
sample
[
"aligned_target"
]
for
sample
in
samples
],
self
.
tgt_dict
.
pad
(),
self
.
tgt_dict
.
eos
(),
left_pad
=
False
,
move_eos_to_beginning
=
False
,
)
aligned_target
=
aligned_target
.
index_select
(
0
,
order
)
aligned_target_lengths
=
torch
.
tensor
(
[
sample
[
"aligned_target"
]
.
size
(
0
)
for
sample
in
samples
],
dtype
=
torch
.
long
)
.
index_select
(
0
,
order
)
ctc_target
=
None
ctc_target_lengths
=
None
if
hasattr
(
self
,
"ctc_tgt_texts"
):
ctc_target
=
fairseq_data_utils
.
collate_tokens
(
[
sample
[
"ctc_target"
]
for
sample
in
samples
],
self
.
tgt_dict
.
pad
(),
self
.
tgt_dict
.
eos
(),
left_pad
=
False
,
move_eos_to_beginning
=
False
,
)
ctc_target
=
ctc_target
.
index_select
(
0
,
order
)
ctc_target_lengths
=
torch
.
tensor
(
[
sample
[
"ctc_target"
]
.
size
(
0
)
for
sample
in
samples
],
dtype
=
torch
.
long
)
.
index_select
(
0
,
order
)
if
self
.
src_dict
is
not
None
and
self
.
src_texts
is
not
None
:
transcript_list
=
[
sample
[
"transcript"
]
for
sample
in
samples
]
transcript
=
fairseq_data_utils
.
collate_tokens
(
[
t
for
_
,
_
,
_
,
t
in
samples
]
,
transcript_list
,
self
.
src_dict
.
pad
(),
self
.
src_dict
.
eos
(),
left_pad
=
False
,
...
...
@@ -474,13 +575,9 @@ class SpeechToTextDataset(FairseqDataset):
)
transcript
=
transcript
.
index_select
(
0
,
order
)
transcript_lengths
=
torch
.
tensor
(
[
t
.
size
(
0
)
for
_
,
_
,
_
,
t
in
samples
],
dtype
=
torch
.
long
[
item
.
size
(
0
)
for
item
in
transcript_list
],
dtype
=
torch
.
long
)
.
index_select
(
0
,
order
)
transcript_ntokens
=
sum
(
t
.
size
(
0
)
for
_
,
_
,
_
,
t
in
samples
)
else
:
transcript
=
None
transcript_lengths
=
None
transcript_ntokens
=
None
transcript_ntokens
=
sum
(
item
.
size
(
0
)
for
item
in
transcript_list
)
out
=
{
"id"
:
indices
,
...
...
@@ -488,6 +585,7 @@ class SpeechToTextDataset(FairseqDataset):
"src_tokens"
:
frames
,
"src_lengths"
:
n_frames
,
"prev_output_tokens"
:
prev_output_tokens
,
"src_lang_idx"
:
src_lang_idx
,
"tgt_lang_idx"
:
tgt_lang_idx
,
},
"transcript"
:
{
...
...
@@ -500,6 +598,16 @@ class SpeechToTextDataset(FairseqDataset):
"ntokens"
:
ntokens
,
"nsentences"
:
len
(
samples
),
}
if
aligned_target
is
not
None
:
out
[
"aligned_target"
]
=
{
"tokens"
:
aligned_target
,
"lengths"
:
aligned_target_lengths
,
}
if
ctc_target
is
not
None
:
out
[
"ctc_target"
]
=
{
"tokens"
:
ctc_target
,
"lengths"
:
ctc_target_lengths
,
}
return
out
...
...
@@ -538,6 +646,8 @@ class SpeechToTextDatasetCreator(object):
# mandatory columns
KEY_ID
,
KEY_AUDIO
,
KEY_N_FRAMES
=
"id"
,
"audio"
,
"n_frames"
KEY_TGT_TEXT
=
"tgt_text"
KEY_ALIGNED_TGT_TEXT
=
"aligned_tgt_text"
KEY_CTC_TGT_TEXT
=
"ctc_tgt_text"
# optional columns
KEY_SPEAKER
,
KEY_SRC_TEXT
=
"speaker"
,
"src_text"
KEY_SRC_LANG
,
KEY_TGT_LANG
=
"src_lang"
,
"tgt_lang"
...
...
@@ -558,6 +668,7 @@ class SpeechToTextDatasetCreator(object):
src_bpe_tokenizer
=
None
)
->
SpeechToTextDataset
:
audio_paths
,
n_frames
,
src_texts
,
tgt_texts
,
ids
=
[],
[],
[],
[],
[]
aligned_tgt_texts
,
ctc_tgt_texts
=
[],
[]
speakers
,
src_langs
,
tgt_langs
=
[],
[],
[]
for
s
in
samples
:
ids
.
extend
([
ss
[
cls
.
KEY_ID
]
for
ss
in
s
])
...
...
@@ -572,6 +683,18 @@ class SpeechToTextDatasetCreator(object):
speakers
.
extend
([
ss
.
get
(
cls
.
KEY_SPEAKER
,
cls
.
DEFAULT_SPEAKER
)
for
ss
in
s
])
src_langs
.
extend
([
ss
.
get
(
cls
.
KEY_SRC_LANG
,
cls
.
DEFAULT_LANG
)
for
ss
in
s
])
tgt_langs
.
extend
([
ss
.
get
(
cls
.
KEY_TGT_LANG
,
cls
.
DEFAULT_LANG
)
for
ss
in
s
])
kwargs
=
dict
()
if
len
(
s
)
>
0
and
cls
.
KEY_ALIGNED_TGT_TEXT
not
in
s
[
0
]:
aligned_tgt_texts
=
None
else
:
aligned_tgt_texts
.
extend
([
ss
[
cls
.
KEY_ALIGNED_TGT_TEXT
]
for
ss
in
s
])
kwargs
[
"aligned_tgt_texts"
]
=
aligned_tgt_texts
if
len
(
s
)
>
0
and
cls
.
KEY_CTC_TGT_TEXT
not
in
s
[
0
]:
ctc_tgt_texts
=
None
else
:
ctc_tgt_texts
.
extend
([
ss
[
cls
.
KEY_CTC_TGT_TEXT
]
for
ss
in
s
])
kwargs
[
"ctc_tgt_texts"
]
=
ctc_tgt_texts
return
SpeechToTextDataset
(
split_name
,
is_train_split
,
...
...
@@ -588,7 +711,8 @@ class SpeechToTextDatasetCreator(object):
tgt_dict
,
pre_tokenizer
,
bpe_tokenizer
,
src_bpe_tokenizer
src_bpe_tokenizer
,
kwargs
)
@classmethod
...
...
fairseq/models/speech_to_text/s2t_transformer.py
查看文件 @
aed36ae4
...
...
@@ -1364,6 +1364,8 @@ class S2TTransformerEncoder(FairseqEncoder):
self
.
compression_stat
=
False
self
.
log_flag_dict
=
dict
()
# gather cosine similarity
self
.
gather_cos_sim
=
getattr
(
args
,
"gather_cos_sim"
,
False
)
self
.
gather_cos_sim_dis
=
2
...
...
@@ -1775,27 +1777,15 @@ class S2TTransformerEncoder(FairseqEncoder):
if
self
.
history
is
not
None
:
self
.
history
.
clean
()
src_lang_idx
=
kwargs
.
get
(
"src_lang_idx"
,
None
)
tgt_lang_idx
=
kwargs
.
get
(
"tgt_lang_idx"
,
None
)
has_add_lang_tag
=
False
# (B, T, D) -> (T, B, D)
x
=
src_tokens
.
transpose
(
0
,
1
)
input_lengths
=
src_lengths
org_bsz
=
x
.
size
(
1
)
if
(
self
.
mixup
and
layer_idx
==
mixup_layer
):
if
tgt_lang_idx
is
not
None
:
assert
self
.
embed_tokens
is
not
None
tgt_lang_embed
=
self
.
embed_tokens
(
tgt_lang_idx
)
.
unsqueeze
(
0
)
if
mixup
is
not
None
:
pass
x
=
torch
.
cat
((
tgt_lang_embed
,
x
),
0
)
input_lengths
+=
1
has_add_lang_tag
=
True
if
(
(
self
.
training
or
self
.
mixup_infer
)
and
self
.
mixup
and
layer_idx
==
mixup_layer
...
...
@@ -1815,15 +1805,26 @@ class S2TTransformerEncoder(FairseqEncoder):
x
,
input_lengths
=
self
.
subsample
(
x
,
input_lengths
)
self
.
show_debug
(
x
,
"x after subsampling"
)
#if tgt_lang_idx is not None and False:
if
tgt_lang_idx
is
not
None
and
not
has_add_lang_tag
:
if
src_lang_idx
is
not
None
:
assert
self
.
embed_tokens
is
not
None
src_lang_embed
=
self
.
embed_tokens
(
src_lang_idx
)
.
unsqueeze
(
0
)
x
=
torch
.
cat
((
src_lang_embed
,
x
),
0
)
input_lengths
+=
1
if
"prepend_src_lang"
not
in
self
.
log_flag_dict
:
self
.
log_flag_dict
[
"prepend_src_lang"
]
=
True
logger
.
info
(
"Prepend the source language tag into the encoder input."
)
if
tgt_lang_idx
is
not
None
:
assert
self
.
embed_tokens
is
not
None
tgt_lang_embed
=
self
.
embed_tokens
(
tgt_lang_idx
)
.
unsqueeze
(
0
)
if
mixup
is
not
None
:
pass
x
=
torch
.
cat
((
tgt_lang_embed
,
x
),
0
)
input_lengths
+=
1
if
"prepend_tgt_lang"
not
in
self
.
log_flag_dict
:
self
.
log_flag_dict
[
"prepend_tgt_lang"
]
=
True
logger
.
info
(
"Prepend the target language tag into the encoder input."
)
encoder_padding_mask
=
lengths_to_padding_mask
(
input_lengths
)
if
encoder_padding_mask
.
size
(
1
)
<
x
.
size
(
0
):
bsz
=
encoder_padding_mask
.
size
(
0
)
...
...
@@ -2248,12 +2249,12 @@ class S2TTransformerEncoder(FairseqEncoder):
)
if
self
.
use_ctc
and
ctc_logit
is
None
:
ctc_logit
=
self
.
ctc
(
x
,
encoder_padding_mask
,
"Encoder output"
,
is_top
=
True
)
ctc_logit
=
self
.
ctc
(
x
,
encoder_padding_mask
,
"Encoder
CTC
output"
,
is_top
=
True
)
self
.
show_debug
(
x
,
"x after ctc"
)
if
self
.
use_xctc
and
xctc_logit
is
None
:
xctc_logit
=
self
.
xctc
(
x
,
encoder_padding_mask
,
"Encoder output"
,
is_top
=
True
x
,
encoder_padding_mask
,
"Encoder
XCTC
output"
,
is_top
=
True
)
self
.
show_debug
(
x
,
"x after xctc"
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论