Commit 03a9836e by xuchen

1. add some base functions 2.better implementation for t2t

parent 52c0e35a
...@@ -49,7 +49,7 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient) ...@@ -49,7 +49,7 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient)
else if(operID == FUNC_LOGSOFTMAX){ else if(operID == FUNC_LOGSOFTMAX){
int leadDim = income.GetParamInt(0); int leadDim = income.GetParamInt(0);
CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in logsoftmax!"); CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in logsoftmax!");
_LogSoftmaxBackward(NULL, output, input, output->grad, input->grad, leadDim, NOLOSS); _LogSoftmaxBackward(NULL, output, input, output->grad, input->grad, NULL, leadDim, NOLOSS);
} }
else if(operID == FUNC_RECTIFY) else if(operID == FUNC_RECTIFY)
_RectifyBackward(NULL, output, input, output->grad, input->grad, NOLOSS); _RectifyBackward(NULL, output, input, output->grad, input->grad, NOLOSS);
...@@ -58,7 +58,7 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient) ...@@ -58,7 +58,7 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient)
else if(operID == FUNC_SOFTMAX){ else if(operID == FUNC_SOFTMAX){
int leadDim = income.GetParamInt(0); int leadDim = income.GetParamInt(0);
CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in softmax!"); CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in softmax!");
_SoftmaxBackward(NULL, output, input, output->grad, input->grad, leadDim, NOLOSS); _SoftmaxBackward(NULL, output, input, output->grad, input->grad, NULL, leadDim, NOLOSS);
} }
else{ else{
ShowNTErrors("Wrong activation function type!"); ShowNTErrors("Wrong activation function type!");
......
...@@ -42,7 +42,7 @@ compute dE/dx for a given function y = f(x) ...@@ -42,7 +42,7 @@ compute dE/dx for a given function y = f(x)
>> lossName - name of the loss, e.g., cross entropy >> lossName - name of the loss, e.g., cross entropy
*/ */
void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x, void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx, XTensor * padding,
int funcID, void * params, int funcID, void * params,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
...@@ -58,7 +58,7 @@ void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x, ...@@ -58,7 +58,7 @@ void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x,
} }
else if(funcID == FUNC_LOGSOFTMAX){ else if(funcID == FUNC_LOGSOFTMAX){
int leadDim = *(int*)params; int leadDim = *(int*)params;
_LogSoftmaxBackward(gold, y, x, dedy, dedx, leadDim, lossName); _LogSoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
} }
else if(funcID == FUNC_RECTIFY){ else if(funcID == FUNC_RECTIFY){
_RectifyBackward(gold, y, x, dedy, dedx, lossName); _RectifyBackward(gold, y, x, dedy, dedx, lossName);
...@@ -67,7 +67,7 @@ void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x, ...@@ -67,7 +67,7 @@ void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x,
_SigmoidBackward(gold, y, x, dedy, dedx, lossName); _SigmoidBackward(gold, y, x, dedy, dedx, lossName);
}else if(funcID == FUNC_SOFTMAX){ }else if(funcID == FUNC_SOFTMAX){
int leadDim = *(int*)params; int leadDim = *(int*)params;
_SoftmaxBackward(gold, y, x, dedy, dedx, leadDim, lossName); _SoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
} }
else{ else{
ShowNTErrors("wrong function found when call the backward process!"); ShowNTErrors("wrong function found when call the backward process!");
...@@ -83,10 +83,12 @@ compute dE/dy for variable y and error(loss) function E ...@@ -83,10 +83,12 @@ compute dE/dy for variable y and error(loss) function E
>> lossName - name of the loss, e.g., cross entropy >> lossName - name of the loss, e.g., cross entropy
*/ */
void XLossGrad::Compute(XTensor * gold, XTensor * y, void XLossGrad::Compute(XTensor * gold, XTensor * y,
XTensor * dedy, XTensor * dedy, XTensor * padding,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
_LossBackward(dedy, gold, y, lossName); //_LossBackward(dedy, gold, y, lossName);
if(lossName == CROSSENTROPY)
_CrossEntropyBackward(dedy, y, gold, NULL, padding);
} }
} }
\ No newline at end of file
...@@ -36,13 +36,13 @@ class XLossGrad ...@@ -36,13 +36,13 @@ class XLossGrad
public: public:
/* compute dE/dx for a given function y = f(x) */ /* compute dE/dx for a given function y = f(x) */
void Compute(XTensor * gold, XTensor * y, XTensor * x, void Compute(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx, XTensor * padding,
int funcID, void * params, int funcID, void * params,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
/* compute dE/dy for variable y and error(loss) function E */ /* compute dE/dy for variable y and error(loss) function E */
void Compute(XTensor * gold, XTensor * y, void Compute(XTensor * gold, XTensor * y,
XTensor * dedy, XTensor * dedy, XTensor * padding,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
}; };
......
...@@ -469,8 +469,6 @@ void XShapeGrad::GradTranspose(XTensor * node, bool isEfficient) ...@@ -469,8 +469,6 @@ void XShapeGrad::GradTranspose(XTensor * node, bool isEfficient)
DelTensorBuf(b); DelTensorBuf(b);
node->visitMark = NODE_FINISHED; node->visitMark = NODE_FINISHED;
delete b;
} }
/* /*
......
...@@ -55,7 +55,7 @@ void XNetClearAll() ...@@ -55,7 +55,7 @@ void XNetClearAll()
XNet::XNet() XNet::XNet()
{ {
nodes.Clear(); nodes.Clear();
isGradEfficient = true; isGradEfficient = false;
} }
/* de-constructor */ /* de-constructor */
...@@ -86,7 +86,31 @@ void XNet::Backward(XTensor &root, XTensor &gold, LOSS_FUNCTION_NAME loss) ...@@ -86,7 +86,31 @@ void XNet::Backward(XTensor &root, XTensor &gold, LOSS_FUNCTION_NAME loss)
XList golds(1); XList golds(1);
golds.Add(&gold); golds.Add(&gold);
Backward(roots, golds, loss); XList paddings(1);
paddings.Add(NULL);
Backward(roots, golds, paddings, loss);
}
/*
backward propagation to obtain gradient wrt. the loss/error function
>> root - root node (output) of the network
>> gold - gold standard for the output
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> loss - name of loss function
*/
void XNet::Backward(XTensor &root, XTensor &gold, XTensor &padding, LOSS_FUNCTION_NAME loss)
{
XList roots(1);
roots.Add(&root);
XList golds(1);
golds.Add(&gold);
XList paddings(1);
paddings.Add(&padding);
Backward(roots, golds, paddings, loss);
} }
/* /*
...@@ -102,7 +126,10 @@ void XNet::Backward(XTensor &root, LOSS_FUNCTION_NAME loss) ...@@ -102,7 +126,10 @@ void XNet::Backward(XTensor &root, LOSS_FUNCTION_NAME loss)
XList golds(1); XList golds(1);
golds.Add(NULL); golds.Add(NULL);
Backward(roots, golds, loss); XList paddings(1);
paddings.Add(NULL);
Backward(roots, golds, paddings, loss);
} }
/* /*
...@@ -110,9 +137,10 @@ backward propagation to obtain gradient wrt. the loss/error function ...@@ -110,9 +137,10 @@ backward propagation to obtain gradient wrt. the loss/error function
with a number of root nodes with a number of root nodes
>> root - a list of root nodes (output) of the network >> root - a list of root nodes (output) of the network
>> gold - a list of gold standard for the output >> gold - a list of gold standard for the output
>> padding - specify a target value that is ignored
>> loss - name of loss function >> loss - name of loss function
*/ */
void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss) void XNet::Backward(XList &roots, XList &golds, XList &paddings, LOSS_FUNCTION_NAME loss)
{ {
Traverse(roots); Traverse(roots);
...@@ -131,6 +159,7 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss) ...@@ -131,6 +159,7 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss)
for(int i = 0; i < roots.count; i++){ for(int i = 0; i < roots.count; i++){
XTensor * root = (XTensor*)roots.Get(i); XTensor * root = (XTensor*)roots.Get(i);
XTensor * gold = (XTensor*)golds.Get(i); XTensor * gold = (XTensor*)golds.Get(i);
XTensor * padding = (XTensor*)paddings.Get(i);
XLink &income = root->income; XLink &income = root->income;
int funcID = income.typeID; int funcID = income.typeID;
void * params = income.params; void * params = income.params;
...@@ -139,15 +168,21 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss) ...@@ -139,15 +168,21 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss)
Note that we do not need to obtain dE/dy here because it is no use in the Note that we do not need to obtain dE/dy here because it is no use in the
folloing process of back-propagation */ folloing process of back-propagation */
if(gold != NULL && income.tailNum == 1 && (funcID & FUNCTION_BASE)){ if(gold != NULL && income.tailNum == 1 && (funcID & FUNCTION_BASE)){
if(funcID == FUNC_LOGSOFTMAX || funcID == FUNC_SOFTMAX) {
XTensor * x = income.tails[0]; XTensor * x = income.tails[0];
XNoder::MakeGrad(x); XNoder::MakeGrad(x);
lossGrad.Compute(gold, root, x, NULL, x->grad, funcID, params, loss); lossGrad.Compute(gold, root, x, NULL, x->grad, padding, funcID, params, loss);
root->visitMark = NODE_FINISHED; root->visitMark = NODE_FINISHED;
} }
else {
XNoder::MakeGrad(root);
lossGrad.Compute(gold, root, root->grad, padding, loss);
}
}
/* we compuate dE/dy (y is the output) if no predefined activation function is used */ /* we compuate dE/dy (y is the output) if no predefined activation function is used */
else{ else{
XNoder::MakeGrad(root); XNoder::MakeGrad(root);
lossGrad.Compute(gold, root, root->grad, loss); lossGrad.Compute(gold, root, root->grad, NULL, loss);
} }
} }
...@@ -178,16 +213,35 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss) ...@@ -178,16 +213,35 @@ void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss)
/* /*
backward propagation to obtain gradient backward propagation to obtain gradient
with a number of root nodes with a number of root nodes
>> root - a list of root nodes (output) of the network >> roots - a list of root nodes (output) of the network
>> loss - name of loss function >> loss - name of loss function
*/ */
void XNet::Backward(XList &roots, LOSS_FUNCTION_NAME loss) void XNet::Backward(XList &roots, LOSS_FUNCTION_NAME loss)
{ {
XList golds(roots.count); XList golds(roots.count);
for(int i = 0; i < roots.count; i++) XList paddings(roots.count);
for(int i = 0; i < roots.count; i++) {
golds.Add(NULL); golds.Add(NULL);
paddings.Add(NULL);
}
Backward(roots, golds, paddings, loss);
}
/*
backward propagation to obtain gradient
with a number of root nodes
>> roots - a list of root nodes (output) of the network
>> golds - a list of gold standard for the output
>> loss - name of loss function
*/
void XNet::Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss)
{
XList paddings(roots.count);
for(int i = 0; i < roots.count; i++)
paddings.Add(NULL);
Backward(roots, golds, loss); Backward(roots, golds, paddings, loss);
} }
/* /*
......
...@@ -62,17 +62,24 @@ struct XNet ...@@ -62,17 +62,24 @@ struct XNet
/* backward propagation to obtain gradient wrt. the loss/error function */ /* backward propagation to obtain gradient wrt. the loss/error function */
void Backward(XTensor &root, XTensor &gold, LOSS_FUNCTION_NAME loss = NOLOSS); void Backward(XTensor &root, XTensor &gold, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient wrt. the loss/error function */
void Backward(XTensor &root, XTensor &gold, XTensor &padding, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient */ /* backward propagation to obtain gradient */
void Backward(XTensor &root, LOSS_FUNCTION_NAME loss = NOLOSS); void Backward(XTensor &root, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient wrt. the loss/error function /* backward propagation to obtain gradient wrt. the loss/error function
with a number of root nodes */ with a number of root nodes */
void Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss = NOLOSS); void Backward(XList &roots, XList &golds, XList &paddings, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient /* backward propagation to obtain gradient
with a number of root nodes */ with a number of root nodes */
void Backward(XList &roots, LOSS_FUNCTION_NAME loss = NOLOSS); void Backward(XList &roots, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient
with a number of root nodes */
void Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward computation for a given node */ /* backward computation for a given node */
void BackwardNode(XTensor * node, bool isEfficent = false); void BackwardNode(XTensor * node, bool isEfficent = false);
......
...@@ -514,6 +514,8 @@ void Train(const char * train, bool isShuffled, FNNModel &model) ...@@ -514,6 +514,8 @@ void Train(const char * train, bool isShuffled, FNNModel &model)
if(isEnd) if(isEnd)
break; break;
Test(testFN, outputFN, model);
} }
double elapsed = GetClockSec() - startT; double elapsed = GetClockSec() - startT;
...@@ -890,7 +892,7 @@ void Backward(XTensor inputs[], XTensor &output, XTensor &gold, LOSS_FUNCTION_NA ...@@ -890,7 +892,7 @@ void Backward(XTensor inputs[], XTensor &output, XTensor &gold, LOSS_FUNCTION_NA
/* for y = softmax(s), we get dE/ds /* for y = softmax(s), we get dE/ds
where E is the error function (define by loss) */ where E is the error function (define by loss) */
_LogSoftmaxBackward(&gold, &y, &s, NULL, &deds, 1, loss); _LogSoftmaxBackward(&gold, &y, &s, NULL, &deds, NULL, 1, loss);
/* for s = x * w, we get /* for s = x * w, we get
dE/w_{i,j} = dE/ds_j * ds/dw_{i,j} dE/w_{i,j} = dE/ds_j * ds/dw_{i,j}
......
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2018, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2018-10-09
*/
#include <math.h>
#include "T2TDecoder.h"
#include "../../tensor/core/CHeader.h"
namespace transformer
{
/* constructor */
AttDecoder::AttDecoder()
{
attentionsEnde = NULL;
attEndeLayerNorms = NULL;
}
/* de-constructor */
AttDecoder::~AttDecoder()
{
delete[] attentionsEnde;
delete[] attEndeLayerNorms;
}
/*
initialize the model
>> argc - number of arguments
>> argv - list of pointers to the arguments
>> myIsMasked - indicates whether the masked attention is employed
>> myIgnored - number of positions ignored in attention (from the start)
>> myDevID - device id
>> myMem - the memory pool
*/
void AttDecoder::InitModel(int argc, char ** argv,
bool myIsMasked, int myIgnored,
int myDevID, XMem * myMem)
{
AttEncoder::InitModel(argc, argv, myIsMasked, myIgnored, myDevID, myMem);
attentionsEnde = new T2TAttention[nlayer];
attEndeLayerNorms = new T2TLN[nlayer];
/* initialize the stacked layers */
for(int i = 0; i < nlayer; i++){
attentionsEnde[i].InitModel(argc, argv, false, myIgnored, myDevID, myMem);
attEndeLayerNorms[i].InitModel(argc, argv, myDevID, myMem);
}
}
/*
make the decoding network
>> inputDec - the input tensor of the decoder
>> outputEnc - the output tensor of the encoder
>> mask - the mask that indicate each position is valid
>> isTraining - indicates whether the model is used for training
<< return - the output tensor of the encoder
*/
XTensor AttDecoder::Make(XTensor &inputDec, XTensor &outputEnc, XTensor &mask, bool isTraining)
{
XTensor x;
x = embedder.Make(inputDec);
/* dropout */
if(isTraining && dropoutP > 0)
x = Dropout(x, dropoutP);
for(int i = 0; i < nlayer; i++){
XTensor att;
XTensor ende;
XTensor ln;
XTensor fnn;
XTensor res;
XTensor nothing;
/******************/
/* self attention */
att = attentions[i].Make(x, x, x, mask, isTraining);
/* dropout */
if(isTraining && dropoutP > 0)
att = Dropout(att, dropoutP);
/* residual connection */
res = Sum(att, x);
/* layer normalization */
x = attLayerNorms[i].Make(res);
/*****************************/
/* encoder-decoder attention */
ende = attentionsEnde[i].Make(outputEnc, x, outputEnc, nothing, isTraining);
/* dropout */
if(isTraining && dropoutP > 0)
ende = Dropout(ende, dropoutP);
/* residual connection */
res = Sum(ende, x);
/* layer normalization */
x = attEndeLayerNorms[i].Make(res);
/*******/
/* fnn */
fnn = fnns[i].Make(x, isTraining);
/* dropout */
if(isTraining && dropoutP > 0)
fnn = Dropout(fnn, dropoutP);
/* residual connection */
res = Sum(fnn, x);
/* layer normalization */
x = fnnLayerNorms[i].Make(res);
}
return x;
}
}
...@@ -22,19 +22,33 @@ ...@@ -22,19 +22,33 @@
#ifndef __T2TDECODER_H__ #ifndef __T2TDECODER_H__
#define __T2TDECODER_H__ #define __T2TDECODER_H__
#include "T2TEncoder.h"
namespace transformer namespace transformer
{ {
class T2TDecoder class AttDecoder : public AttEncoder
{ {
public:
/* encoder-decoder attention model of each layer */
T2TAttention * attentionsEnde;
}; /* layer normalization for encoder-decoder attention */
T2TLN * attEndeLayerNorms;
class AttDecoder : T2TDecoder
{
public: public:
/* constructor */
AttDecoder();
/* deconstructor */
~AttDecoder();
/* initialize the model */ /* initialize the model */
void InitModel(int argc, char ** argv); void InitModel(int argc, char ** argv,
bool myIsMasked, int myIgnored,
int myDevID = -1, XMem * myMem = NULL);
/* make the decoding network */
XTensor Make(XTensor &inputDec, XTensor &outputEnc, XTensor &mask, bool isTraining);
}; };
} }
......
...@@ -61,16 +61,17 @@ void T2TEmbedder::InitModel(int argc, char ** argv, int myDevID, XMem * myMem) ...@@ -61,16 +61,17 @@ void T2TEmbedder::InitModel(int argc, char ** argv, int myDevID, XMem * myMem)
InitTensor2D(&w, vSize, eSize, X_FLOAT, devID, mem); InitTensor2D(&w, vSize, eSize, X_FLOAT, devID, mem);
DTYPE v = 1.0F/(float)sqrt((float)eSize); DTYPE v = 1.0F/(float)sqrt((float)eSize);
w.SetDataRand(-v, v); w.SetDataRandn(0, v);
/* create the positional embedding matrix */ /* create the positional embedding matrix */
MakePosEmbedding(eSize, d, maxLength); MakePosEmbedding(eSize, d, maxLength);
} }
/* /*
make positional embeddings (of size eSize * length make positional embeddings (of size eSize * length)
eSize - embedding size >> eSize - embedding size
length - length of the sequenc >> d - dimension size of the hidden layers
>> length - length of the sequence
*/ */
void T2TEmbedder::MakePosEmbedding(int eSize, int d, int length) void T2TEmbedder::MakePosEmbedding(int eSize, int d, int length)
{ {
...@@ -114,15 +115,15 @@ make the network ...@@ -114,15 +115,15 @@ make the network
*/ */
XTensor T2TEmbedder::Make(XTensor &input) XTensor T2TEmbedder::Make(XTensor &input)
{ {
CheckNTErrors(input.GetDim(-1) == vSize, "Wrong vocabulary size!"); //CheckNTErrors(input.GetDim(-1) == vSize, "Wrong vocabulary size!");
CheckNTErrors(input.order > 1, "Wrong input tensor size!"); CheckNTErrors(input.order > 1, "Wrong input tensor size!");
CheckNTErrors(input.dimSize[input.order - 2] < maxLength, "The sequence is too long!"); CheckNTErrors(input.dimSize[input.order - 1] < maxLength, "The sequence is too long!");
CheckNTErrors(vSize > 0, "set vocabulary size by \"-vsize\""); CheckNTErrors(vSize > 0, "set vocabulary size by \"-vsize\"");
CheckNTErrors(eSize > 0, "set embedding size by \"-esize\""); CheckNTErrors(eSize > 0, "set embedding size by \"-esize\"");
int dims[MAX_TENSOR_DIM_NUM]; int dims[MAX_TENSOR_DIM_NUM];
memcpy(dims, input.dimSize, input.order * sizeof(int)); memcpy(dims, input.dimSize, input.order * sizeof(int));
dims[input.order - 1] = eSize; dims[input.order] = eSize;
XTensor wordEmbedding; XTensor wordEmbedding;
XTensor posEmbedding; XTensor posEmbedding;
...@@ -138,7 +139,8 @@ XTensor T2TEmbedder::Make(XTensor &input) ...@@ -138,7 +139,8 @@ XTensor T2TEmbedder::Make(XTensor &input)
/* we make positional embeddings first */ /* we make positional embeddings first */
//if(!match){ //if(!match){
if(true){ if(true){
InitTensor(&posEmbedding, input.order, dims, X_FLOAT, 1.0F, devID, mem); InitTensor(&posEmbedding, input.order + 1, dims, X_FLOAT, 1.0F, devID, mem);
XTensor * posTMP = NewTensorBuf(2, dims + 1, X_FLOAT, 1.0F, devID, mem); XTensor * posTMP = NewTensorBuf(2, dims + 1, X_FLOAT, 1.0F, devID, mem);
_CopyValues(&posEmbeddingBase, 0, posTMP->unitNum, posTMP, 0); _CopyValues(&posEmbeddingBase, 0, posTMP->unitNum, posTMP, 0);
...@@ -148,7 +150,9 @@ XTensor T2TEmbedder::Make(XTensor &input) ...@@ -148,7 +150,9 @@ XTensor T2TEmbedder::Make(XTensor &input)
} }
/* then we make word embeddings */ /* then we make word embeddings */
wordEmbedding = Linear(MMul(input, w), (float)sqrt((float)eSize)); //wordEmbedding = Linear(MMul(input, w), (float)sqrt((float)eSize));
wordEmbedding = Gather(w, input);
wordEmbedding = Linear(wordEmbedding, (float)sqrt((float)eSize));
/* we sum over the two embeddings */ /* we sum over the two embeddings */
return wordEmbedding + posEmbedding; return wordEmbedding + posEmbedding;
......
...@@ -31,6 +31,10 @@ namespace transformer ...@@ -31,6 +31,10 @@ namespace transformer
/* constructor */ /* constructor */
AttEncoder::AttEncoder() AttEncoder::AttEncoder()
{ {
attentions = NULL;
fnns = NULL;
attLayerNorms = NULL;
fnnLayerNorms = NULL;
} }
/* de-constructor */ /* de-constructor */
......
...@@ -59,10 +59,7 @@ void T2TLN::InitModel(int argc, char ** argv, int myDevID, XMem * myMem) ...@@ -59,10 +59,7 @@ void T2TLN::InitModel(int argc, char ** argv, int myDevID, XMem * myMem)
InitTensor1D(&w, d, X_FLOAT, devID, mem); InitTensor1D(&w, d, X_FLOAT, devID, mem);
InitTensor1D(&b, d, X_FLOAT, devID, mem); InitTensor1D(&b, d, X_FLOAT, devID, mem);
float scale = 1.0F; w.SetDataRand(1.0F, 1.0F);
float finfout = (float)sqrt(6.0F * scale / d);
w.SetDataRand(-finfout, finfout);
b.SetZeroAll(); b.SetZeroAll();
} }
......
...@@ -57,8 +57,8 @@ void T2TModel::InitModel(int argc, char ** argv) ...@@ -57,8 +57,8 @@ void T2TModel::InitModel(int argc, char ** argv)
LoadParamInt(argc, argv, "dev", &devID, -1); LoadParamInt(argc, argv, "dev", &devID, -1);
LoadParamBool(argc, argv, "mem", &useMem, useMem); LoadParamBool(argc, argv, "mem", &useMem, useMem);
LoadParamInt(argc, argv, "memsize", &memSize, 1024); LoadParamInt(argc, argv, "memsize", &memSize, 1024);
LoadParamBool(argc, argv, "lm", &isLM, true);
LoadParamBool(argc, argv, "mt", &isMT, false); LoadParamBool(argc, argv, "mt", &isMT, false);
LoadParamBool(argc, argv, "lm", &isLM, !isMT);
LoadParamInt(argc, argv, "nhead", &nhead, 8); LoadParamInt(argc, argv, "nhead", &nhead, 8);
LoadParamBool(argc, argv, "freeotf", &isMemFreeOTF, false); LoadParamBool(argc, argv, "freeotf", &isMemFreeOTF, false);
...@@ -71,6 +71,9 @@ void T2TModel::InitModel(int argc, char ** argv) ...@@ -71,6 +71,9 @@ void T2TModel::InitModel(int argc, char ** argv)
encoder.InitModel(argc, argv, isLM, 0, devID, mem); encoder.InitModel(argc, argv, isLM, 0, devID, mem);
outputLayer.InitModel(argc, argv, devID, mem); outputLayer.InitModel(argc, argv, devID, mem);
if(isMT)
decoder.InitModel(argc, argv, true, 0, devID, mem);
XList params(10); XList params(10);
GetParams(params); GetParams(params);
...@@ -87,31 +90,52 @@ make the encoding network ...@@ -87,31 +90,52 @@ make the encoding network
>> isTraining - indicates whether we are training the model >> isTraining - indicates whether we are training the model
<< return - encoding result << return - encoding result
*/ */
XTensor T2TModel::MakeEncoding(XTensor &input, XTensor &mask, bool isTraining) XTensor T2TModel::MakeEncoder(XTensor &input, XTensor &mask, bool isTraining)
{ {
return encoder.Make(input, mask, isTraining); return encoder.Make(input, mask, isTraining);
} }
/* /*
make the entire network (with the output softmax layer) make the decoding network
>> inputDec - input tensor of the decoder
>> outputEnc - output tensor of the encoder
>> output - output tensor (distribution)
>> mask - the mask for positions that are/not involved in computation
>> isTraining - indicates whether we are training the model
<< return - encoding result
*/
XTensor T2TModel::MakeDecoder(XTensor &inputDec, XTensor &outputEnc, XTensor &mask, bool isTraining)
{
return decoder.Make(inputDec, outputEnc, mask, isTraining);
}
/*
make the network for language modeling (with the output softmax layer)
>> input - input tensor >> input - input tensor
>> output - output tensor (distribution) >> output - output tensor (distribution)
>> padding - padding of the sequences >> padding - padding of the sequences
>> isTraining - indicates whether the model is for training >> isTraining - indicates whether the model is for training
*/ */
void T2TModel::Make(XTensor &input, XTensor &output, XTensor &padding, bool isTraining) void T2TModel::MakeLM(XTensor &input, XTensor &output, XTensor &padding, bool isTraining)
{ {
XTensor encoding; XTensor encoding;
if(isLM){
/* generate mask to see "previous" words only */ /* generate mask to see "previous" words only */
int len = input.GetDim(input.order - 2); //int len = input.GetDim(input.order - 2);
int * dims = new int[input.order + 1]; //int * dims = new int[input.order + 1];
//for(int i = 0; i < input.order; i++)
// dims[i + 1] = input.GetDim(i);
//dims[0] = nhead;
//dims[input.order] = len;
//XTensor mask(input.order + 1, dims, X_FLOAT, 1.0F, input.devID, input.mem);
int len = input.GetDim(input.order - 1);
int * dims = new int[input.order + 2];
for(int i = 0; i < input.order; i++) for(int i = 0; i < input.order; i++)
dims[i + 1] = input.GetDim(i); dims[i + 1] = input.GetDim(i);
dims[0] = nhead; dims[0] = nhead;
dims[input.order] = len; dims[input.order + 1] = len;
XTensor mask(input.order + 1, dims, X_FLOAT, 1.0F, input.devID, input.mem); XTensor mask(input.order + 2, dims, X_FLOAT, 1.0F, padding.devID, padding.mem);
/* a upper triangular matrix where the cells of the upper triangular are set to -1e-9. /* a upper triangular matrix where the cells of the upper triangular are set to -1e-9.
this matrix can be used to prevent the attention to current or following words in this matrix can be used to prevent the attention to current or following words in
...@@ -132,29 +156,95 @@ void T2TModel::Make(XTensor &input, XTensor &output, XTensor &padding, bool isTr ...@@ -132,29 +156,95 @@ void T2TModel::Make(XTensor &input, XTensor &output, XTensor &padding, bool isTr
dimsPadding[i + 1] = padding2->GetDim(i); dimsPadding[i + 1] = padding2->GetDim(i);
dimsPadding[0] = nhead; dimsPadding[0] = nhead;
XTensor * padding3 = NewTensorBuf(padding.order + 2, dimsPadding, padding.dataType, //XTensor * padding3 = NewTensorBuf(padding.order + 2, dimsPadding, padding.dataType,
padding.denseRatio, padding.devID, padding.mem); // padding.denseRatio, padding.devID, padding.mem);
//
///* mask of the padding */
//_Unsqueeze(&padding, padding2, padding.order - 1, padding.GetDim(-1));
//_Unsqueeze(padding2, padding3, 0, nhead);
//
//_ScaleAndShiftMe(padding3, 1e9F, -1e9F);
//
////_Sum(&mask, padding3, &mask);
encoding = MakeEncoder(input, mask, isTraining);
outputLayer.Make(encoding, output);
delete[] dims;
delete[] dimsPadding;
//DelTensorBuf(padding3);
DelTensorBuf(padding2);
}
/*
make the network for machine translation (with the output softmax layer)
>> inputEnc - input tensor of the encoder
>> inputDec - input tensor of the decoder
>> output - output tensor (distribution)
>> paddingEnc - padding of the sequences (on the encoder side)
>> isTraining - indicates whether the model is for training
*/
void T2TModel::MakeMT(XTensor &inputEnc, XTensor &inputDec, XTensor &output, XTensor &paddingEnc, bool isTraining)
{
XTensor encoding;
XTensor decoding;
XTensor maskEnc;
XTensor maskDec;
/* generate mask to see "previous" words on the decoder side */
int len = inputDec.GetDim(inputDec.order - 2);
int * dims = new int[inputDec.order + 1];
for(int i = 0; i < inputDec.order; i++)
dims[i + 1] = inputDec.GetDim(i);
dims[0] = nhead;
dims[inputDec.order] = len;
InitTensor(&maskDec, inputDec.order + 1, dims, X_FLOAT, 1.0F, inputDec.devID, inputDec.mem);
/* a upper triangular matrix where the cells of the upper triangular are set to -1e-9.
this matrix can be used to prevent the attention to current or following words in
a given sequence. */
_SetDataLowTri(&maskDec, 1e9F, 0);
_ScaleAndShiftMe(&maskDec, 1.0F, -1e9F);
/* padding on the source side */
int * dimsPadding = new int[paddingEnc.order + 2];
for (int i = 0; i < paddingEnc.order - 1; i++)
dimsPadding[i] = paddingEnc.GetDim(i);
dimsPadding[paddingEnc.order - 1] = paddingEnc.GetDim(-1);
dimsPadding[paddingEnc.order] = paddingEnc.GetDim(-1);
XTensor * padding2 = NewTensorBuf(paddingEnc.order + 1, dimsPadding, paddingEnc.dataType,
paddingEnc.denseRatio, paddingEnc.devID, paddingEnc.mem);
for (int i = 0; i < padding2->order; i++)
dimsPadding[i + 1] = padding2->GetDim(i);
dimsPadding[0] = nhead;
XTensor * padding3 = NewTensorBuf(paddingEnc.order + 2, dimsPadding, paddingEnc.dataType,
paddingEnc.denseRatio, paddingEnc.devID, paddingEnc.mem);
/* mask of the padding */ /* mask of the padding */
_Unsqueeze(&padding, padding2, padding.order - 1, padding.GetDim(-1)); _Unsqueeze(&paddingEnc, padding2, paddingEnc.order - 1, paddingEnc.GetDim(-1));
_Unsqueeze(padding2, padding3, 0, nhead); _Unsqueeze(padding2, padding3, 0, nhead);
_ScaleAndShiftMe(padding3, 1e9F, -1e9F); _ScaleAndShiftMe(padding3, 1e9F, -1e9F);
_Sum(&mask, padding3, &mask); InitTensor(&maskEnc, padding3);
maskEnc.SetZeroAll();
encoding = MakeEncoding(input, mask, isTraining); /* generate the mask on the source language side (for padding) */
outputLayer.Make(encoding, output); _Sum(&maskEnc, padding3, &maskEnc);
encoding = MakeEncoder(inputEnc, maskEnc, isTraining);
decoding = MakeDecoder(inputDec, encoding, maskDec, isTraining);
outputLayer.Make(decoding, output);
delete[] dims; delete[] dims;
delete[] dimsPadding; delete[] dimsPadding;
DelTensorBuf(padding2);
DelTensorBuf(padding3); DelTensorBuf(padding3);
} DelTensorBuf(padding2);
else{
ShowNTErrors("TODO!");
}
} }
/* /*
...@@ -182,6 +272,31 @@ void T2TModel::GetParams(XList &list) ...@@ -182,6 +272,31 @@ void T2TModel::GetParams(XList &list)
} }
list.Add(&encoder.embedder.w); list.Add(&encoder.embedder.w);
if(isMT){
for(int i = 0; i < decoder.nlayer; i++){
list.Add(&decoder.fnns[i].w1);
list.Add(&decoder.fnns[i].b1);
list.Add(&decoder.fnns[i].w2);
list.Add(&decoder.fnns[i].b2);
list.Add(&decoder.attentionsEnde[i].wk);
list.Add(&decoder.attentionsEnde[i].wq);
list.Add(&decoder.attentionsEnde[i].wv);
list.Add(&decoder.attentionsEnde[i].wa);
list.Add(&decoder.attEndeLayerNorms[i].w);
list.Add(&decoder.attEndeLayerNorms[i].b);
list.Add(&decoder.attentions[i].wk);
list.Add(&decoder.attentions[i].wq);
list.Add(&decoder.attentions[i].wv);
list.Add(&decoder.attentions[i].wa);
list.Add(&decoder.fnnLayerNorms[i].w);
list.Add(&decoder.fnnLayerNorms[i].b);
list.Add(&decoder.attLayerNorms[i].w);
list.Add(&decoder.attLayerNorms[i].b);
}
list.Add(&decoder.embedder.w);
}
} }
/* /*
......
...@@ -69,10 +69,16 @@ public: ...@@ -69,10 +69,16 @@ public:
void InitModel(int argc, char ** argv); void InitModel(int argc, char ** argv);
/* make the encoding network */ /* make the encoding network */
XTensor MakeEncoding(XTensor &input, XTensor &mask, bool isTraining); XTensor MakeEncoder(XTensor &input, XTensor &mask, bool isTraining);
/* make the entire network (with the output softmax layer) */ /* make the encoding network */
void Make(XTensor &input, XTensor &output, XTensor &padding, bool isTraining); XTensor MakeDecoder(XTensor &inputEnc, XTensor &inputDec, XTensor &mask, bool isTraining);
/* make the network for langauge modeling (with the output softmax layer) */
void MakeLM(XTensor &input, XTensor &output, XTensor &padding, bool isTraining);
/* make the network for machine translation (with the output softmax layer) */
void MakeMT(XTensor &inputEnc, XTensor &inputDec, XTensor &output, XTensor &paddingEnc, bool isTraining);
/* get parameter matrics */ /* get parameter matrics */
void GetParams(XList &list); void GetParams(XList &list);
......
...@@ -66,6 +66,9 @@ void T2TOutput::InitModel(int argc, char ** argv, int myDevID, XMem * myMem) ...@@ -66,6 +66,9 @@ void T2TOutput::InitModel(int argc, char ** argv, int myDevID, XMem * myMem)
float scale = 1.0F; float scale = 1.0F;
float finfout = (float)sqrt(6.0F * scale/(hSize + vSize)); float finfout = (float)sqrt(6.0F * scale/(hSize + vSize));
w.SetDataRand(-finfout, finfout); w.SetDataRand(-finfout, finfout);
DTYPE v = 1.0F/(float)sqrt((float)hSize);
w.SetDataRandn(0, v);
} }
/* /*
...@@ -90,7 +93,8 @@ void T2TOutput::Make(XTensor &input, XTensor &output) ...@@ -90,7 +93,8 @@ void T2TOutput::Make(XTensor &input, XTensor &output)
{ {
XTensor &x = input; XTensor &x = input;
output = LogSoftmax(MMul(x, w), -1); //output = LogSoftmax(MMul(x, w), -1);
output = Softmax(MMul(x, w), -1);
} }
} }
...@@ -79,6 +79,9 @@ public: ...@@ -79,6 +79,9 @@ public:
/* vocabulary size of the source side */ /* vocabulary size of the source side */
int vSize; int vSize;
/* vocabulary size of the target side */
int vSizeTgt;
/* learning rate */ /* learning rate */
float lrate; float lrate;
...@@ -100,6 +103,10 @@ public: ...@@ -100,6 +103,10 @@ public:
/* indicates whether we use adam */ /* indicates whether we use adam */
bool useAdam; bool useAdam;
int validStep;
int curEpoch;
/* hyper parameters of adam*/ /* hyper parameters of adam*/
float adamBeta1; float adamBeta1;
float adamBeta2; float adamBeta2;
...@@ -128,9 +135,14 @@ public: ...@@ -128,9 +135,14 @@ public:
/* number of batches on which we do model update */ /* number of batches on which we do model update */
int updateStep; int updateStep;
/* indicates whether we double the </s> symble for the output of lms */ /* indicates whether we double the </s> symbol for the output of lms */
bool isDoubledEnd; bool isDoubledEnd;
/* indicates whether we use batchsize = max * sc
rather rather than batchsize = word-number, where max is the maximum
length and sc is the sentence number */
bool isSmallBatch;
public: public:
/* constructor */ /* constructor */
T2TTrainer(); T2TTrainer();
...@@ -142,7 +154,7 @@ public: ...@@ -142,7 +154,7 @@ public:
void Init(int argc, char ** argv); void Init(int argc, char ** argv);
/* train the model */ /* train the model */
void Train(const char * fn, const char * validFN, const char * modelFN, T2TModel * model); bool Train(const char * fn, const char * validFN, const char * modelFN, T2TModel * model);
/* test the model */ /* test the model */
void Test(const char * fn, const char * ofn, T2TModel * model); void Test(const char * fn, const char * ofn, T2TModel * model);
...@@ -158,11 +170,34 @@ public: ...@@ -158,11 +170,34 @@ public:
/* load a batch of sequences */ /* load a batch of sequences */
int LoadBatch(FILE * file, bool isLM, int LoadBatch(FILE * file, bool isLM,
XTensor * batch, XTensor * padding, XTensor * output, XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold,
int * seqs, int * seqs,
int step, int vs, int sBatch, int wBatch, int vsEnc, int vsDec, int sBatch, int wBatch,
bool isSorted, int &wCount,
int devID, XMem * mem,
bool isTraining);
/* load a batch of sequences (for language modeling) */
int LoadBatchLM(FILE * file,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold,
int * seqs, int vs, int sBatch, int wBatch,
bool isSorted, int &wCount,
int devID, XMem * mem,
bool isTraining);
/* load a batch of sequences (for machine translation) */
int LoadBatchMT(FILE * file,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold,
int * seqs, int vsEnc, int vsDec, int sBatch, int wBatch,
bool isSorted, int &wCount, bool isSorted, int &wCount,
int devID, XMem * mem); int devID, XMem * mem,
bool isTraining);
/* shuffle the data file */ /* shuffle the data file */
void Shuffle(const char * srcFile, const char * tgtFile); void Shuffle(const char * srcFile, const char * tgtFile);
......
...@@ -25,6 +25,8 @@ ...@@ -25,6 +25,8 @@
#include "T2TUtility.h" #include "T2TUtility.h"
#include "T2TTrainer.h" #include "T2TTrainer.h"
#include "../../tensor/XDevice.h" #include "../../tensor/XDevice.h"
#include "../../tensor/XUtility.h"
#include "../../tensor/XGlobal.h"
namespace transformer namespace transformer
{ {
...@@ -56,20 +58,74 @@ int TransformerMain(int argc, const char ** argv) ...@@ -56,20 +58,74 @@ int TransformerMain(int argc, const char ** argv)
LoadParamString(argc, args, "test", testFN, ""); LoadParamString(argc, args, "test", testFN, "");
LoadParamString(argc, args, "output", outputFN, ""); LoadParamString(argc, args, "output", outputFN, "");
/* learn model parameters */
if(strcmp(trainFN, "")) {
double startT = GetClockSec();
T2TTrainer trainer; T2TTrainer trainer;
trainer.Init(argc, args); trainer.Init(argc, args);
char * fn = new char[MAX_LINE_LENGTH];
char * fn1 = new char[MAX_LINE_LENGTH];
char * fn2 = new char[MAX_LINE_LENGTH];
modelFN = strcmp(modelFN, "") ? modelFN : (char *)"checkpoint.model";
int epoch;
bool isTrain;
for(epoch = 1; epoch <= trainer.nepoch; epoch++) {
sprintf(fn, "%s.%s.%03d", modelFN, "epoch", epoch - 1);
sprintf(fn1, "%s.%s.%03d", modelFN, "epoch", epoch);
sprintf(fn2, "%s.%s.%03d.output", modelFN, "epoch", epoch);
if(epoch == 1) {
T2TModel model; T2TModel model;
model.InitModel(argc, args);
isTrain = trainer.Train(trainFN, testFN, modelFN, &model);
model.Dump(fn1);
}
else {
T2TModel model;
model.InitModel(argc, args); model.InitModel(argc, args);
model.Read(fn);
/* learn model parameters */ isTrain = trainer.Train(trainFN, testFN, modelFN, &model);
if(strcmp(trainFN, "")) model.Dump(fn1);
trainer.Train(trainFN, testFN, strcmp(modelFN, "") ? modelFN : "checkpoint.model", &model); }
if(trainer.useEpochCheckpoint && strcmp(testFN, "")) {
T2TTrainer tester;
tester.Init(argc, args);
T2TModel model;
model.InitModel(argc, args);
model.Read(fn1);
tester.Test(testFN, fn2, &model);
}
if(!isTrain)
break;
}
double elapsed = GetClockSec() - startT;
epoch = MIN(epoch, trainer.nepoch);
XPRINT2(0, stderr, "[INFO] training finished (took %.1fs and epoch=%d)\n", elapsed, epoch);
delete[] fn;
delete[] fn1;
delete[] fn2;
}
/* don't dump the final model */
/* save the final model */ /* save the final model */
if(strcmp(modelFN, "") && strcmp(trainFN, "")) //if(strcmp(modelFN, "") && strcmp(trainFN, ""))
model.Dump(modelFN); // model.Dump(modelFN);
T2TModel model;
model.InitModel(argc, args);
/* load the model if neccessary */ /* load the model if neccessary */
if(strcmp(modelFN, "")) if(strcmp(modelFN, ""))
......
...@@ -292,7 +292,8 @@ void XMem::SetComputationMode(bool myIsForComputation) ...@@ -292,7 +292,8 @@ void XMem::SetComputationMode(bool myIsForComputation)
if(!myIsForComputation && devID >= 0 && cublasHandle != NULL) if(!myIsForComputation && devID >= 0 && cublasHandle != NULL)
cublasDestroy(cublasHandle); cublasDestroy(cublasHandle);
if(myIsForComputation) if(myIsForComputation)
CheckNTErrors(cublasCreate(&cublasHandle) == CURAND_STATUS_SUCCESS, "Cannot create the cublas handle."); CheckNTErrors((enum curandStatus)cublasCreate(&cublasHandle) == CURAND_STATUS_SUCCESS,
"Cannot create the cublas handle.");
SetDevice(devIDBackup); SetDevice(devIDBackup);
#endif #endif
...@@ -1392,7 +1393,7 @@ void XMem::CreateBLASHandle() ...@@ -1392,7 +1393,7 @@ void XMem::CreateBLASHandle()
"Cannot destroy the cublas handle."); "Cannot destroy the cublas handle.");
} }
CheckNTErrors(cublasCreate(&cublasHandle) == CURAND_STATUS_SUCCESS, CheckNTErrors((enum curandStatus)cublasCreate(&cublasHandle) == CURAND_STATUS_SUCCESS,
"Cannot create the cublas handle."); "Cannot create the cublas handle.");
#endif #endif
} }
......
...@@ -1057,9 +1057,9 @@ int XTensor::GetKeyInSparse(int i) ...@@ -1057,9 +1057,9 @@ int XTensor::GetKeyInSparse(int i)
/* /*
set the value of a cell set the value of a cell
>> value - value to assign to the cell >> value - value we tend to set
>> index - index of the cell for each dimension >> index - index of the cell for each dimension
>> >> size - size of the index
*/ */
bool XTensor::Set(DTYPE value, int index[], int size) bool XTensor::Set(DTYPE value, int index[], int size)
{ {
...@@ -1070,8 +1070,9 @@ bool XTensor::Set(DTYPE value, int index[], int size) ...@@ -1070,8 +1070,9 @@ bool XTensor::Set(DTYPE value, int index[], int size)
/* /*
set the value of a cell in a 1d tensor set the value of a cell in a 1d tensor
>> value - value to assign to the cell >> value - value we tend to set
>> i - item offset >> i - item offset
<< return - succeeded or not
*/ */
bool XTensor::Set1D(DTYPE value, int i) bool XTensor::Set1D(DTYPE value, int i)
{ {
...@@ -1124,6 +1125,78 @@ bool XTensor::Set3D(DTYPE value, int d0, int d1, int d2) ...@@ -1124,6 +1125,78 @@ bool XTensor::Set3D(DTYPE value, int d0, int d1, int d2)
return SetToDevice(devID, GetCell(dims, 3), value); return SetToDevice(devID, GetCell(dims, 3), value);
} }
/*
set the integer value of a cell
>> value - value we tend to set
>> index - index of the cell for each dimension
>> size - size of the index
<< return - succeeded or not
*/
bool XTensor::SetInt(int value, int index[], int size)
{
CheckNTErrors((dataType == X_INT), "The tensor is not in integer type.");
return SetToDeviceInt(devID, GetCell(index, size), value);
}
/*
set the integer value of a cell in a 1d tensor
>> value - value we tend to set
>> i - item offset
<< return - succeeded or not
*/
bool XTensor::Set1DInt(int value, int i)
{
CheckNTErrors((order == 1), "Cannot get a 2d cell for a tensor whose order is not 2!");
CheckNTErrors((i >= 0 && i < dimSize[0]), "dimension 0 is out of range!");
CheckNTErrors((dataType == X_INT), "The tensor is not in integer type.");
int dims[1] = {i};
return SetToDeviceInt(devID, GetCell(dims, 1), value);
}
/*
set the integer value of a cell in a 2d tensor in default type
>> value - value we tend to set
>> ni - row index
>> mi - column index
<< return - succeeded or not
*/
bool XTensor::Set2DInt(int value, int ni, int mi)
{
CheckNTErrors((order == 2), "Cannot get a 2d cell for a tensor whose order is not 2!");
CheckNTErrors((ni >= 0 && ni < dimSize[0]), "dimension 0 is out of range!");
CheckNTErrors((mi >= 0 && mi < dimSize[1]), "dimension 1 is out of range!");
CheckNTErrors((dataType == X_INT), "The tensor is not in integer type.");
int dims[2] = {ni, mi};
return SetToDeviceInt(devID, GetCell(dims, 2), value);
}
/*
set the integer value of a cell in a 3d tensor in default type
>> value - value we tend to set
>> d0 - index of demension 0
>> d1 - index of demension 1
>> d2 - index of demension 2
<< return - succeeded or not
*/
bool XTensor::Set3DInt(int value, int d0, int d1, int d2)
{
CheckNTErrors(order == 3, "Cannot get a 2d cell for a tensor whose order is not 2!");
CheckNTErrors(d0 >= 0 && d0 < dimSize[0], "dimension 0 is out of range!");
CheckNTErrors(d1 >= 0 && d1 < dimSize[1], "dimension 1 is out of range!");
CheckNTErrors(d2 >= 0 && d2 < dimSize[2], "dimension 2 is out of range!");
CheckNTErrors((dataType == X_INT), "The tensor is not in integer type.");
int dims[3] = {d0, d1, d2};
return SetToDeviceInt(devID, GetCell(dims, 3), value);
}
/* /*
increase the value of a cell in a 2d tensor increase the value of a cell in a 2d tensor
>> value - value we tend to set >> value - value we tend to set
...@@ -1986,6 +2059,9 @@ XTensor * NewTensorBuf(const int myOrder, const int * myDimSize, ...@@ -1986,6 +2059,9 @@ XTensor * NewTensorBuf(const int myOrder, const int * myDimSize,
XTensor * tensor = NewTensor(myOrder, dims, myDataType, myDenseRatio, devID, myMem); XTensor * tensor = NewTensor(myOrder, dims, myDataType, myDenseRatio, devID, myMem);
if (tensor->unitNum * tensor->unitSize == 176657664) {
tensor->Dump(stderr, "", 200);
}
if(myMem != NULL) if(myMem != NULL)
tensor->data = myMem->AllocBuf(myMem->devID, tensor->unitNum * tensor->unitSize); tensor->data = myMem->AllocBuf(myMem->devID, tensor->unitNum * tensor->unitSize);
else else
......
...@@ -327,6 +327,18 @@ public: ...@@ -327,6 +327,18 @@ public:
/* set the value of a cell in a 3d tensor */ /* set the value of a cell in a 3d tensor */
bool Set3D(DTYPE value, int d0, int d1, int d2); bool Set3D(DTYPE value, int d0, int d1, int d2);
/* set the integer value of a cell */
bool SetInt(int value, int index[], int size = -1);
/* set the integer value of a cell in a 1d tensor */
bool Set1DInt(int value, int i);
/* set the integer value of a cell in a 2d tensor */
bool Set2DInt(int value, int ni, int mi);
/* set the integer value of a cell in a 3d tensor */
bool Set3DInt(int value, int d0, int d1, int d2);
/* increase the value of a cell in a 2d */ /* increase the value of a cell in a 2d */
bool Add2D(DTYPE value, int ni, int mi); bool Add2D(DTYPE value, int ni, int mi);
......
...@@ -491,6 +491,21 @@ bool SetToDevice(int devID, void * p, DTYPE value) ...@@ -491,6 +491,21 @@ bool SetToDevice(int devID, void * p, DTYPE value)
return true; return true;
} }
/* assign a integer number to a variable that is kept on a specified device */
bool SetToDeviceInt(int devID, void * p, int value)
{
if(p == NULL)
return false;
if(devID < 0)
*(int*)p = value;
else{
XMemCopy(p, devID, &value, -1, sizeof(int));
}
return true;
}
/* get the next number with power of 2 */ /* get the next number with power of 2 */
unsigned int GetNextPower2(unsigned int n) unsigned int GetNextPower2(unsigned int n)
{ {
......
...@@ -50,6 +50,7 @@ extern void XMemFreeOnDev(int devID, void * p); ...@@ -50,6 +50,7 @@ extern void XMemFreeOnDev(int devID, void * p);
extern DTYPE ToCPU(int devID, void * value); extern DTYPE ToCPU(int devID, void * value);
extern int ToCPUInt(int devID, void * value); extern int ToCPUInt(int devID, void * value);
extern bool SetToDevice(int devID, void * p, DTYPE value); extern bool SetToDevice(int devID, void * p, DTYPE value);
extern bool SetToDeviceInt(int devID, void * p, int value);
extern unsigned int GetNextPower2(unsigned int n); extern unsigned int GetNextPower2(unsigned int n);
extern void XSleep(int sleepTime); extern void XSleep(int sleepTime);
extern double GetClock(); extern double GetClock();
......
...@@ -70,9 +70,9 @@ void _SetDataFanInOut(XTensor * tensor, DTYPE gain) ...@@ -70,9 +70,9 @@ void _SetDataFanInOut(XTensor * tensor, DTYPE gain)
fanOut = numOutputFmaps * receptiveFieldSize; fanOut = numOutputFmaps * receptiveFieldSize;
} }
DTYPE std = gain * (float)sqrt(2.0/(fanIn + fanOut)); DTYPE finfout = gain * (float)sqrt(6.0F/(fanIn + fanOut));
DTYPE a = (DTYPE)sqrt(3.0) * std; tensor->SetDataRand(-finfout, finfout);
_SetDataRand(tensor, -a, a); //_SetDataRand(tensor, -finfout, finfout);
} }
/* /*
...@@ -393,7 +393,7 @@ void _SetDataRand(XTensor * tensor, DTYPE lower, DTYPE upper) ...@@ -393,7 +393,7 @@ void _SetDataRand(XTensor * tensor, DTYPE lower, DTYPE upper)
if(tensor == NULL) if(tensor == NULL)
return; return;
/* GPU code */ /* CPU code */
if(tensor->devID < 0){ if(tensor->devID < 0){
DTYPE variance = upper - lower; DTYPE variance = upper - lower;
......
...@@ -21,6 +21,8 @@ ...@@ -21,6 +21,8 @@
#include "Gather.h" #include "Gather.h"
#include "CopyIndexed.h" #include "CopyIndexed.h"
#include "../../XUtility.h"
#include "../shape/Reshape.h"
namespace nts{ // namespace nts(NiuTrans.Tensor) namespace nts{ // namespace nts(NiuTrans.Tensor)
...@@ -75,4 +77,50 @@ XTensor Gather(const XTensor &s, int dim, int * srcIndex, int indexSize) ...@@ -75,4 +77,50 @@ XTensor Gather(const XTensor &s, int dim, int * srcIndex, int indexSize)
return result; return result;
} }
/*
gather indexed sub-tensors (return a XTensor structure)
make a new tensor to keep the result and return it
>> s - the source tensor(2D)
>> index - the index tensor
<< return - the result of copying indexed sub-tensors
*/
XTensor Gather(const XTensor &s, const XTensor &index)
{
int indexSize = index.unitNum;
CheckNTErrors(s.order == 2, "The order of the input tensor must be 2!");
int * srcIndex = new int[index.unitNum];
if(index.dataType == X_INT) {
XMemCopy(srcIndex, -1, index.data, index.devID, indexSize * index.unitSize);
}
else if(index.dataType == X_FLOAT || index.dataType == X_DOUBLE) {
DTYPE * tmp = new DTYPE[indexSize];
XMemCopy(tmp, -1, index.data, index.devID, indexSize * index.unitSize);
for(int i = 0; i < indexSize; i++)
srcIndex[i] = (int)tmp[i];
delete[] tmp;
}
XTensor tensor;
tensor = Gather(s, 0, srcIndex, indexSize);
delete[] srcIndex;
if(index.order > 1) {
int * dims = new int[index.order + 1];
memcpy(dims, index.dimSize, index.order * sizeof(int));
dims[index.order] = tensor.GetDim(-1);
XTensor t;
t = Reshape(tensor, index.order + 1, dims);
delete[] dims;
return t;
}
else {
return tensor;
}
}
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
\ No newline at end of file
...@@ -33,6 +33,10 @@ void _Gather(const XTensor * s, XTensor * t, int dim, int * srcIndex, int indexS ...@@ -33,6 +33,10 @@ void _Gather(const XTensor * s, XTensor * t, int dim, int * srcIndex, int indexS
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Gather(const XTensor &s, int dim, int * srcIndex, int indexSize); XTensor Gather(const XTensor &s, int dim, int * srcIndex, int indexSize);
/* gather selected sub-tensors (return a XTensor structure)
make a new tensor to keep the result and return it */
XTensor Gather(const XTensor &s, const XTensor &index);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
#endif // __GATHER_H__ #endif // __GATHER_H__
\ No newline at end of file
...@@ -16,8 +16,8 @@ ...@@ -16,8 +16,8 @@
*/ */
/* /*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24 * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/ */
#include <math.h> #include <math.h>
#include "ReduceSum.h" #include "ReduceSum.h"
......
...@@ -44,23 +44,24 @@ sum all the items of the tensor (It should be optimized!) ...@@ -44,23 +44,24 @@ sum all the items of the tensor (It should be optimized!)
>> source - the inpute tensor >> source - the inpute tensor
<< return - the total summation << return - the total summation
*/ */
DTYPE _ReduceSumAll(XTensor * source) DTYPE _ReduceSumAll(const XTensor * source)
{ {
int order = source->order; int order = source->order;
DTYPE summation; DTYPE summation;
XTensor * big = NewTensor(source); XTensor * big = NewTensor(source);
_CopyValues(source, big); _CopyValues(source, big);
for(int i = 0; i < order; i++) { for(int i = order - 1; i >= 0; i--) {
if(i == 0)
if(i == order - 1) big->Reshape(1, big->unitNum);
big->Reshape(big->unitNum, 1);
int leadingDim = big->order - 1;
int * dimSize; int * dimSize;
dimSize = getDimSize(big, 0); dimSize = getDimSize(big, leadingDim);
XTensor * little = NewTensor(big->order - 1, dimSize, source->dataType, source->denseRatio, source->devID, source->mem); XTensor * little = NewTensor(big->order - 1, dimSize, source->dataType, source->denseRatio,
source->devID, source->mem);
_ReduceSum(big, little, 0); _ReduceSum(big, little, leadingDim);
delete big; delete big;
delete dimSize; delete dimSize;
...@@ -81,7 +82,7 @@ sum all the items of the tensor ...@@ -81,7 +82,7 @@ sum all the items of the tensor
>> source - the inpute tensor >> source - the inpute tensor
<< return - the total summation << return - the total summation
*/ */
DTYPE ReduceSumAll(XTensor & source) DTYPE ReduceSumAll(const XTensor & source)
{ {
return _ReduceSumAll(&source); return _ReduceSumAll(&source);
} }
......
...@@ -28,10 +28,10 @@ ...@@ -28,10 +28,10 @@
namespace nts{ // namespace nts(NiuTrans.Tensor) namespace nts{ // namespace nts(NiuTrans.Tensor)
/* sum all the items of the tensor */ /* sum all the items of the tensor */
DTYPE _ReduceSumAll(XTensor * source); DTYPE _ReduceSumAll(const XTensor * source);
/* sum all the items of the tensor */ /* sum all the items of the tensor */
DTYPE ReduceSumAll(XTensor & source); DTYPE ReduceSumAll(const XTensor & source);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -40,7 +40,7 @@ DTYPE _CudaCrossEntropyFast(const XTensor * output, const XTensor * gold, ...@@ -40,7 +40,7 @@ DTYPE _CudaCrossEntropyFast(const XTensor * output, const XTensor * gold,
/* backward computation of cross entropy function */ /* backward computation of cross entropy function */
void _CudaCrossEntropyBackward(XTensor * dedy, const XTensor * output, void _CudaCrossEntropyBackward(XTensor * dedy, const XTensor * output,
const XTensor * gold, const XTensor * weight = NULL, const XTensor * gold, const XTensor * weight = NULL,
const XTensor * padding = NULL, int leadingDim = -1); XTensor * padding = NULL, int leadingDim = -1);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -52,9 +52,9 @@ DTYPE _CrossEntropyFast(const XTensor * output, const XTensor * gold, ...@@ -52,9 +52,9 @@ DTYPE _CrossEntropyFast(const XTensor * output, const XTensor * gold,
const XTensor * padding = NULL, int leadingDim = -1); const XTensor * padding = NULL, int leadingDim = -1);
/* backward computation of cross entropy function */ /* backward computation of cross entropy function */
void _CrossEntropyBackward(XTensor * dedy, const XTensor * output, const XTensor * gold, void _CrossEntropyBackward(XTensor * dedy, const XTensor * output,
const XTensor * weight = NULL, const XTensor * padding = NULL, const XTensor * gold, const XTensor * weight = NULL,
int leadingDim = -1); XTensor * padding = NULL, int leadingDim = -1);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -280,7 +280,7 @@ better numerical stability. ...@@ -280,7 +280,7 @@ better numerical stability.
*/ */
void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
CheckNTErrors((!dedx->isSparse), "The gradient matrix must be dense!"); CheckNTErrors((!dedx->isSparse), "The gradient matrix must be dense!");
...@@ -292,7 +292,7 @@ void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, ...@@ -292,7 +292,7 @@ void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
int leadDimRDI = y->order - leadDim - 1; int leadDimRDI = y->order - leadDim - 1;
#ifdef USE_CUDA #ifdef USE_CUDA
if (gold->devID >= 0) { if (gold->devID >= 0) {
_CudaLogSoftmaxBackward(gold, y, x, dedy, dedx, leadDim, lossName); _CudaLogSoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
return; return;
} }
#endif #endif
......
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include "LogSoftmax.h" #include "LogSoftmax.h"
#include "LogSoftmax.cuh" #include "LogSoftmax.cuh"
#include "Loss.cuh" #include "Loss.cuh"
#include "../core/arithmetic/MultiplyDim.h"
#include "../core/reduce/ReduceSum.cuh" #include "../core/reduce/ReduceSum.cuh"
#include "../core/reduce/ReduceMax.cuh" #include "../core/reduce/ReduceMax.cuh"
#include "../XDevice.h" #include "../XDevice.h"
...@@ -232,7 +233,8 @@ dE/dx = dE/dy * dy/dx ...@@ -232,7 +233,8 @@ dE/dx = dE/dy * dy/dx
>> lossName - name of the loss function >> lossName - name of the loss function
*/ */
__global__ __global__
void KernelLogSoftmaxBackwardDEDS(DTYPE * dedy, DTYPE * dedx, DTYPE * gold, DTYPE * y, DTYPE * x, int size, LOSS_FUNCTION_NAME lossName) void KernelLogSoftmaxBackwardDEDS(DTYPE * dedy, DTYPE * dedx, DTYPE * gold, DTYPE * y, DTYPE * x,
int size, LOSS_FUNCTION_NAME lossName)
{ {
int i = blockDim.x * blockIdx.x + threadIdx.x; int i = blockDim.x * blockIdx.x + threadIdx.x;
...@@ -372,9 +374,11 @@ better numerical stability. ...@@ -372,9 +374,11 @@ better numerical stability.
*/ */
void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
leadDim = leadDim < 0 ? y->order - 1 : leadDim;
CheckNTErrors((x->devID >= 0), "Backward computation of log softmax must be run on GPUs."); CheckNTErrors((x->devID >= 0), "Backward computation of log softmax must be run on GPUs.");
CheckNTErrors((x->devID == y->devID && gold->devID == y->devID), CheckNTErrors((x->devID == y->devID && gold->devID == y->devID),
"Tensors used in log softmax are not on the same GPU."); "Tensors used in log softmax are not on the same GPU.");
...@@ -441,6 +445,26 @@ void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, ...@@ -441,6 +445,26 @@ void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
dimensionSize * stride, lossName); dimensionSize * stride, lossName);
} }
} }
if(padding != NULL) {
int n = leadDim;
int paddingOrder = padding->order;
int * paddingDims = new int[paddingOrder];
memcpy(paddingDims, padding->dimSize, padding->order * sizeof(int));
padding->Reshape(padding->unitNum);
int order = dedx->order;
int * dims = new int[order];
memcpy(dims, dedx->dimSize, dedx->order * sizeof(int));
dedx->Reshape(dedx->unitNum/dedx->GetDim(n), dedx->GetDim(n));
_MultiplyDimMe(dedx, padding, 0);
padding->Reshape(paddingOrder, paddingDims);
dedx->Reshape(order, dims);
delete[] paddingDims;
delete[] dims;
}
} }
else { else {
ShowNTErrors("TODO!"); ShowNTErrors("TODO!");
......
...@@ -38,7 +38,7 @@ void _CudaLogSoftmaxSumMax(XTensor * x, XTensor * y, int leadDim, XTensor * sum, ...@@ -38,7 +38,7 @@ void _CudaLogSoftmaxSumMax(XTensor * x, XTensor * y, int leadDim, XTensor * sum,
/* de/dx (Cuda version) */ /* de/dx (Cuda version) */
void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _CudaLogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
#endif // USE_CUDA #endif // USE_CUDA
......
...@@ -39,7 +39,7 @@ void LogSoftmax(const XTensor &x, XTensor &y, int leadDim); ...@@ -39,7 +39,7 @@ void LogSoftmax(const XTensor &x, XTensor &y, int leadDim);
/* de/dx */ /* de/dx */
void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -486,8 +486,9 @@ void _LossBackward(XTensor * dedy, XTensor * t, XTensor * y, ...@@ -486,8 +486,9 @@ void _LossBackward(XTensor * dedy, XTensor * t, XTensor * y,
for (int i = 0; i < blockNum; i++) { for (int i = 0; i < blockNum; i++) {
for (int j = 0; j < stride; j++) { for (int j = 0; j < stride; j++) {
for (int k = 0; k < tLen; k++) { for (int k = 0; k < tLen; k++) {
*(dedyp + i * stride * dimensionSize + j + stride * (yBeg + k)) = -(DTYPE)*(tp + i * stride * dimensionSize *(dedyp + i * stride * dimensionSize + j + stride * (yBeg + k)) =
+ j + stride * (tBeg + k)) / (DTYPE)*(yp + i * stride * dimensionSize + j + stride * (yBeg + k)); -(DTYPE)*(tp + i * stride * dimensionSize + j + stride * (tBeg + k)) /
(DTYPE)*(yp + i * stride * dimensionSize + j + stride * (yBeg + k));
} }
} }
} }
......
...@@ -175,7 +175,7 @@ See more details in LogSoftmaxBackward(...) ...@@ -175,7 +175,7 @@ See more details in LogSoftmaxBackward(...)
*/ */
void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
CheckNTErrors(dedx->isSparse == false, "The gradient tensor must be dense!"); CheckNTErrors(dedx->isSparse == false, "The gradient tensor must be dense!");
...@@ -188,7 +188,7 @@ void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, ...@@ -188,7 +188,7 @@ void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
#ifdef USE_CUDA #ifdef USE_CUDA
if(y->devID >= 0){ if(y->devID >= 0){
_CudaSoftmaxBackward(gold, y, x, dedy, dedx, leadDim, lossName); _CudaSoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
return; return;
} }
#endif #endif
......
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
#include "Loss.cuh" #include "Loss.cuh"
#include "../core/reduce/ReduceSum.h" #include "../core/reduce/ReduceSum.h"
#include "../core/arithmetic/Multiply.h" #include "../core/arithmetic/Multiply.h"
#include "../core/arithmetic/MultiplyDim.h"
#include "../core/shape/Unsqueeze.h" #include "../core/shape/Unsqueeze.h"
#include "../core/arithmetic/Sum.h" #include "../core/arithmetic/Sum.h"
#include "../XDevice.h" #include "../XDevice.h"
...@@ -309,9 +310,11 @@ See more details in SoftmaxBackward ...@@ -309,9 +310,11 @@ See more details in SoftmaxBackward
*/ */
void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName) LOSS_FUNCTION_NAME lossName)
{ {
int n = leadDim < 0 ? y->order - 1 : leadDim;
CheckNTErrors((x->devID >= 0), "Backward computation of log softmax must be run on GPUs."); CheckNTErrors((x->devID >= 0), "Backward computation of log softmax must be run on GPUs.");
CheckNTErrors((x->devID == y->devID), "Matrices used in log softmax are not on the same GPU."); CheckNTErrors((x->devID == y->devID), "Matrices used in log softmax are not on the same GPU.");
CheckNTErrors((y->order >= 1), "Empty tensor!"); CheckNTErrors((y->order >= 1), "Empty tensor!");
...@@ -329,6 +332,24 @@ void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, ...@@ -329,6 +332,24 @@ void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
if(lossName == CROSSENTROPY || lossName == SQUAREDERROR){ if(lossName == CROSSENTROPY || lossName == SQUAREDERROR){
_Sum(y, gold, dedx, -1.0F); _Sum(y, gold, dedx, -1.0F);
if(padding != NULL) {
int paddingOrder = padding->order;
int * paddingDims = new int[paddingOrder];
memcpy(paddingDims, padding->dimSize, padding->order * sizeof(int));
padding->Reshape(padding->unitNum);
int order = dedx->order;
int * dims = new int[order];
memcpy(dims, dedx->dimSize, dedx->order * sizeof(int));
dedx->Reshape(dedx->unitNum/dedx->GetDim(n), dedx->GetDim(n));
_MultiplyDimMe(dedx, padding, 0);
padding->Reshape(paddingOrder, paddingDims);
dedx->Reshape(order, dims);
delete[] paddingDims;
delete[] dims;
}
} }
else if(lossName == ONEHOTERROR){ else if(lossName == ONEHOTERROR){
ShowNTErrors("TODO!"); ShowNTErrors("TODO!");
......
...@@ -38,7 +38,7 @@ void _CudaSoftmaxSumMax(const XTensor * x, XTensor * y, int leadDim, XTensor * s ...@@ -38,7 +38,7 @@ void _CudaSoftmaxSumMax(const XTensor * x, XTensor * y, int leadDim, XTensor * s
/* de/dx (Cuda version) */ /* de/dx (Cuda version) */
void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _CudaSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
#endif // USE_CUDA #endif // USE_CUDA
......
...@@ -36,7 +36,7 @@ XTensor Softmax(const XTensor &x, int leadDim); ...@@ -36,7 +36,7 @@ XTensor Softmax(const XTensor &x, int leadDim);
/* de/dx */ /* de/dx */
void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * dedy, XTensor * dedx,
int leadDim, XTensor * padding, int leadDim,
LOSS_FUNCTION_NAME lossName); LOSS_FUNCTION_NAME lossName);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -169,8 +169,8 @@ bool TestDropout2() ...@@ -169,8 +169,8 @@ bool TestDropout2()
_DropoutBackward(y, x, dedy, dedx, 1, dropProb); _DropoutBackward(y, x, dedy, dedx, 1, dropProb);
/* check result */ /* check result */
y->Dump(stderr, "y"); //y->Dump(stderr, "y");
dedx->Dump(stderr, "dedy"); //dedx->Dump(stderr, "dedy");
#ifdef USE_CUDA #ifdef USE_CUDA
/* GPU test */ /* GPU test */
...@@ -193,8 +193,8 @@ bool TestDropout2() ...@@ -193,8 +193,8 @@ bool TestDropout2()
_DropoutBackward(yGPU, xGPU, dedyGPU, dedxGPU, 1, dropProb); _DropoutBackward(yGPU, xGPU, dedyGPU, dedxGPU, 1, dropProb);
/* check result */ /* check result */
yGPU->Dump(stderr, "yGPU"); //yGPU->Dump(stderr, "yGPU");
dedxGPU->Dump(stderr, "dedyGPU"); //dedxGPU->Dump(stderr, "dedyGPU");
/* destroy variables */ /* destroy variables */
delete x; delete x;
......
...@@ -146,7 +146,7 @@ bool TestLogSoftmax2() ...@@ -146,7 +146,7 @@ bool TestLogSoftmax2()
_LogSoftmax(x, y, 1); _LogSoftmax(x, y, 1);
/* call LogSoftmaxBackward function */ /* call LogSoftmaxBackward function */
_LogSoftmaxBackward(g, y, x, dedy, dedx, 1, CROSSENTROPY); _LogSoftmaxBackward(g, y, x, dedy, dedx, NULL, 1, CROSSENTROPY);
/* check result */ /* check result */
cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F) cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F)
...@@ -174,7 +174,7 @@ bool TestLogSoftmax2() ...@@ -174,7 +174,7 @@ bool TestLogSoftmax2()
_LogSoftmax(xGPU, yGPU, 1); _LogSoftmax(xGPU, yGPU, 1);
/* call LogSoftmaxBackward function */ /* call LogSoftmaxBackward function */
_LogSoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, 1, CROSSENTROPY); _LogSoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, NULL, 1, CROSSENTROPY);
/* check result */ /* check result */
gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) && dedxGPU->CheckData(dedxAnswer, unitNum, 1e-4F); gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) && dedxGPU->CheckData(dedxAnswer, unitNum, 1e-4F);
...@@ -250,7 +250,7 @@ bool TestLogSoftmax3() ...@@ -250,7 +250,7 @@ bool TestLogSoftmax3()
_LogSoftmax(x, y, 1); _LogSoftmax(x, y, 1);
/* call LogSoftmaxBackward function */ /* call LogSoftmaxBackward function */
_LogSoftmaxBackward(g, y, x, dedy, dedx, 1, SQUAREDERROR); _LogSoftmaxBackward(g, y, x, dedy, dedx, NULL, 1, SQUAREDERROR);
/* check result */ /* check result */
cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F) cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F)
...@@ -278,7 +278,7 @@ bool TestLogSoftmax3() ...@@ -278,7 +278,7 @@ bool TestLogSoftmax3()
_LogSoftmax(xGPU, yGPU, 1); _LogSoftmax(xGPU, yGPU, 1);
/* call LogSoftmaxBackward function */ /* call LogSoftmaxBackward function */
_LogSoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, 1, SQUAREDERROR); _LogSoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, NULL, 1, SQUAREDERROR);
/* check result */ /* check result */
gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F)
......
...@@ -66,7 +66,9 @@ bool TestPower1() ...@@ -66,7 +66,9 @@ bool TestPower1()
bUser = Power(*a, 2.0F); bUser = Power(*a, 2.0F);
/* check results */ /* check results */
cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) && aMe->CheckData(answer, aUnitNum, 1e-4F) && bUser.CheckData(answer, aUnitNum, 1e-4F); cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) &&
aMe->CheckData(answer, aUnitNum, 1e-4F) &&
bUser.CheckData(answer, aUnitNum, 1e-4F);
#ifdef USE_CUDA #ifdef USE_CUDA
/* GPU test */ /* GPU test */
...@@ -88,7 +90,9 @@ bool TestPower1() ...@@ -88,7 +90,9 @@ bool TestPower1()
bUserGPU = Power(*aGPU, 2.0F); bUserGPU = Power(*aGPU, 2.0F);
/* check results */ /* check results */
gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) && aMeGPU->CheckData(answer, aUnitNum, 1e-4F) && bUserGPU.CheckData(answer, aUnitNum, 1e-4F); gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) &&
aMeGPU->CheckData(answer, aUnitNum, 1e-4F) &&
bUserGPU.CheckData(answer, aUnitNum, 1e-4F);
/* destroy variables */ /* destroy variables */
delete a; delete a;
...@@ -153,7 +157,9 @@ bool TestPower2() ...@@ -153,7 +157,9 @@ bool TestPower2()
bUser = Power(*a, 1.0F); bUser = Power(*a, 1.0F);
/* check results */ /* check results */
cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) && aMe->CheckData(answer, aUnitNum, 1e-4F) && bUser.CheckData(answer, aUnitNum, 1e-4F); cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) &&
aMe->CheckData(answer, aUnitNum, 1e-4F) &&
bUser.CheckData(answer, aUnitNum, 1e-4F);
#ifdef USE_CUDA #ifdef USE_CUDA
/* GPU test */ /* GPU test */
...@@ -175,7 +181,9 @@ bool TestPower2() ...@@ -175,7 +181,9 @@ bool TestPower2()
bUserGPU = Power(*aGPU, 1.0F); bUserGPU = Power(*aGPU, 1.0F);
/* check results */ /* check results */
gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) && aMeGPU->CheckData(answer, aUnitNum, 1e-4F) && bUserGPU.CheckData(answer, aUnitNum, 1e-4F); gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) &&
aMeGPU->CheckData(answer, aUnitNum, 1e-4F) &&
bUserGPU.CheckData(answer, aUnitNum, 1e-4F);
/* destroy variables */ /* destroy variables */
delete a; delete a;
...@@ -214,7 +222,7 @@ bool TestPower3() ...@@ -214,7 +222,7 @@ bool TestPower3()
for (int i = 0; i < aOrder; i++) for (int i = 0; i < aOrder; i++)
aUnitNum *= aDimSize[i]; aUnitNum *= aDimSize[i];
DTYPE aData[3][2] = { {0.0F, 1.0F}, DTYPE aData[3][2] = { {1.0F, 1.0F},
{2.0F, 3.0F}, {2.0F, 3.0F},
{4.0F, 5.0F} }; {4.0F, 5.0F} };
DTYPE answer[3][2] = { {1.0F, 1.0F}, DTYPE answer[3][2] = { {1.0F, 1.0F},
...@@ -240,7 +248,9 @@ bool TestPower3() ...@@ -240,7 +248,9 @@ bool TestPower3()
bUser = Power(*a, 0.0F); bUser = Power(*a, 0.0F);
/* check results */ /* check results */
cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) && aMe->CheckData(answer, aUnitNum, 1e-4F) && bUser.CheckData(answer, aUnitNum, 1e-4F); cpuTest = b->CheckData(answer, aUnitNum, 1e-4F) &&
aMe->CheckData(answer, aUnitNum, 1e-4F) &&
bUser.CheckData(answer, aUnitNum, 1e-4F);
#ifdef USE_CUDA #ifdef USE_CUDA
/* GPU test */ /* GPU test */
...@@ -262,7 +272,9 @@ bool TestPower3() ...@@ -262,7 +272,9 @@ bool TestPower3()
bUserGPU = Power(*aGPU, 0.0F); bUserGPU = Power(*aGPU, 0.0F);
/* check results */ /* check results */
gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) && aMeGPU->CheckData(answer, aUnitNum, 1e-4F) && bUserGPU.CheckData(answer, aUnitNum, 1e-4F); gpuTest = bGPU->CheckData(answer, aUnitNum, 1e-4F) &&
aMeGPU->CheckData(answer, aUnitNum, 1e-4F) &&
bUserGPU.CheckData(answer, aUnitNum, 1e-4F);
/* destroy variables */ /* destroy variables */
delete a; delete a;
......
...@@ -146,7 +146,7 @@ bool TestSoftmax2() ...@@ -146,7 +146,7 @@ bool TestSoftmax2()
_Softmax(x, y, 1); _Softmax(x, y, 1);
/* call SoftmaxBackward function */ /* call SoftmaxBackward function */
_SoftmaxBackward(g, y, x, dedy, dedx, 1, CROSSENTROPY); _SoftmaxBackward(g, y, x, dedy, dedx, NULL, 1, CROSSENTROPY);
/* check result */ /* check result */
cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F) cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F)
...@@ -174,7 +174,7 @@ bool TestSoftmax2() ...@@ -174,7 +174,7 @@ bool TestSoftmax2()
_Softmax(xGPU, yGPU, 1); _Softmax(xGPU, yGPU, 1);
/* call SoftmaxBackward function */ /* call SoftmaxBackward function */
_SoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, 1, CROSSENTROPY); _SoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, NULL, 1, CROSSENTROPY);
/* check result */ /* check result */
gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F)
......
...@@ -20,8 +20,9 @@ ...@@ -20,8 +20,9 @@
*/ */
#include "TSumDim.h" #include "TSumDim.h"
#include "../core/arithmetic/SumDim.h"
#include "../XTensor.h" #include "../XTensor.h"
#include "../core/arithmetic/SumDim.h"
#include "../core/getandset/SetData.h"
namespace nts { // namespace nts(NiuTrans.Tensor) namespace nts { // namespace nts(NiuTrans.Tensor)
...@@ -251,6 +252,225 @@ bool TestSumDim2() ...@@ -251,6 +252,225 @@ bool TestSumDim2()
#endif // USE_CUDA #endif // USE_CUDA
} }
/*
case 3: tensor summation c = a + b * \beta
where the size of b is equal to the n-th dimension of a,
i.e., a is summed with b by broadcasting.
In this case,
(20, 40, 4000) + (40) = (20, 40, 4000), dim = 1.
*/
bool TestSumDim3()
{
/* a tensor of size (20, 40, 4000) */
int aOrder = 3;
int * aDimSize = new int[aOrder];
aDimSize[0] = 20;
aDimSize[1] = 40;
aDimSize[2] = 4000;
int aUnitNum = 1;
for (int i = 0; i < aOrder; i++)
aUnitNum *= aDimSize[i];
/* a tensor of size (40) */
int bOrder = 1;
int * bDimSize = new int[bOrder];
bDimSize[0] = 40;
int bUnitNum = 1;
for (int i = 0; i < bOrder; i++)
bUnitNum *= bDimSize[i];
/* CPU test */
bool cpuTest = true;
/* create tensors */
XTensor * a = NewTensor(aOrder, aDimSize);
XTensor * b = NewTensor(bOrder, bDimSize);
XTensor * c = NewTensor(aOrder, aDimSize);
XTensor * cMe = NewTensor(aOrder, aDimSize);
XTensor * answer = NewTensor(aOrder, aDimSize);
XTensor cUser;
/* initialize variables */
a->SetZeroAll();
cMe->SetZeroAll();
_SetDataFixedFloat(b, 1.0F);
_SetDataFixedFloat(answer, 1.0F);
/* call SumDim function */
_SumDim(a, b, c, 1);
_SumDim(cMe, b, 1);
cUser = SumDim(*a, *b, 1);
/* check results */
cpuTest = c->CheckData(answer->data, aUnitNum) &&
cMe->CheckData(answer->data, aUnitNum) &&
cUser.CheckData(answer->data, aUnitNum);
#ifdef USE_CUDA
/* GPU test */
bool gpuTest = true;
/* create tensor */
XTensor * aGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor * bGPU = NewTensor(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
XTensor * cGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor * cMeGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor cUserGPU;
/* Initialize variables */
aGPU->SetZeroAll();
cMe->SetZeroAll();
_SetDataFixedFloat(bGPU, 1.0F);
/* call sum function */
_SumDim(aGPU, bGPU, cGPU, 1);
_SumDim(cMeGPU, bGPU, 1);
cUserGPU = SumDim(*aGPU, *bGPU, 1);
/* check results */
gpuTest = cGPU->CheckData(answer->data, aUnitNum) &&
cMeGPU->CheckData(answer->data, aUnitNum) &&
cUserGPU.CheckData(answer->data, aUnitNum);
/* destroy variables */
delete a;
delete b;
delete c;
delete cMe;
delete answer;
delete aGPU;
delete bGPU;
delete cGPU;
delete cMeGPU;
delete[] aDimSize;
delete[] bDimSize;
return cpuTest && gpuTest;
#else
/* destroy variables */
delete a;
delete b;
delete c;
delete cMe;
delete answer;
delete[] aDimSize;
delete[] bDimSize;
return cpuTest;
#endif // USE_CUDA
}
/*
case 4: tensor summation c = a + b * \beta
where the size of b is equal to the n-th dimension of a,
i.e., a is summed with b by broadcasting.
In this case,
(200, 40, 4000) + (40) = (200, 40, 4000), dim = 1.
*/
bool TestSumDim4()
{
/* a tensor of size (200, 40, 4000) */
int aOrder = 2;
int * aDimSize = new int[aOrder];
aDimSize[0] = 1000000;
aDimSize[1] = 50;
int aUnitNum = 1;
for (int i = 0; i < aOrder; i++)
aUnitNum *= aDimSize[i];
/* a tensor of size (40) */
int bOrder = 1;
int * bDimSize = new int[bOrder];
bDimSize[0] = 50;
int bUnitNum = 1;
for (int i = 0; i < bOrder; i++)
bUnitNum *= bDimSize[i];
/* CPU test */
bool cpuTest = true;
/* create tensors */
XTensor * a = NewTensor(aOrder, aDimSize);
XTensor * b = NewTensor(bOrder, bDimSize);
XTensor * c = NewTensor(aOrder, aDimSize);
XTensor * cMe = NewTensor(aOrder, aDimSize);
XTensor * answer = NewTensor(aOrder, aDimSize);
XTensor cUser;
/* initialize variables */
a->SetZeroAll();
cMe->SetZeroAll();
_SetDataFixedFloat(b, 1.0F);
_SetDataFixedFloat(answer, 1.0F);
/* call SumDim function */
_SumDim(a, b, c, 1);
_SumDim(cMe, b, 1);
cUser = SumDim(*a, *b, 1);
/* check results */
cpuTest = c->CheckData(answer->data, aUnitNum) &&
cMe->CheckData(answer->data, aUnitNum) &&
cUser.CheckData(answer->data, aUnitNum);
#ifdef USE_CUDA
/* GPU test */
bool gpuTest = true;
/* create tensor */
XTensor * aGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor * bGPU = NewTensor(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
XTensor * cGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor * cMeGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
XTensor cUserGPU;
/* Initialize variables */
aGPU->SetZeroAll();
cMe->SetZeroAll();
_SetDataFixedFloat(bGPU, 1.0F);
/* call sum function */
_SumDim(aGPU, bGPU, cGPU, 1);
_SumDim(cMeGPU, bGPU, 1);
cUserGPU = SumDim(*aGPU, *bGPU, 1);
/* check results */
gpuTest = cGPU->CheckData(answer->data, aUnitNum) &&
cMeGPU->CheckData(answer->data, aUnitNum) &&
cUserGPU.CheckData(answer->data, aUnitNum);
/* destroy variables */
delete a;
delete b;
delete c;
delete cMe;
delete answer;
delete aGPU;
delete bGPU;
delete cGPU;
delete cMeGPU;
delete[] aDimSize;
delete[] bDimSize;
return cpuTest && gpuTest;
#else
/* destroy variables */
delete a;
delete b;
delete c;
delete cMe;
delete answer;
delete[] aDimSize;
delete[] bDimSize;
return cpuTest;
#endif // USE_CUDA
}
/* other cases */ /* other cases */
/* /*
TODO!! TODO!!
...@@ -280,6 +500,24 @@ bool TestSumDim() ...@@ -280,6 +500,24 @@ bool TestSumDim()
else else
XPRINT(0, stdout, ">> case 2 passed!\n"); XPRINT(0, stdout, ">> case 2 passed!\n");
/* case 3 test */
caseFlag = TestSumDim3();
if (!caseFlag) {
returnFlag = false;
XPRINT(0, stdout, ">> case 3 failed!\n");
}
else
XPRINT(0, stdout, ">> case 3 passed!\n");
///* case 4 test */
//caseFlag = TestSumDim4();
//if (!caseFlag) {
// returnFlag = false;
// XPRINT(0, stdout, ">> case 4 failed!\n");
//}
//else
// XPRINT(0, stdout, ">> case 4 passed!\n");
/* other cases test */ /* other cases test */
/* /*
TODO!! TODO!!
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论