Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Tensor.LowPrecision
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
linye
Tensor.LowPrecision
Commits
daf4765a
Commit
daf4765a
authored
Jul 12, 2019
by
linye
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update hardtanh
parent
fe868e5c
显示空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
98 行增加
和
35 行删除
+98
-35
source/tensor/function/HardTanH.cu
+21
-10
source/tensor/function/Loss.cu
+75
-23
source/tensor/test/Test.cpp
+2
-2
没有找到文件。
source/tensor/function/HardTanH.cu
查看文件 @
daf4765a
...
@@ -17,7 +17,7 @@
...
@@ -17,7 +17,7 @@
/*
/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-25
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-25
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-
04
float16 added
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-
12
float16 added
*/
*/
#include "HardTanH.h"
#include "HardTanH.h"
...
@@ -105,14 +105,15 @@ dy/dx = 1 if -1 <= x <= 1
...
@@ -105,14 +105,15 @@ dy/dx = 1 if -1 <= x <= 1
>> x - x of the function
>> x - x of the function
>> size - size of y/x
>> size - size of y/x
*/
*/
template <class T>
__global__
__global__
void KernelHardtanhBackward(
DTYPE * dedy, DTYPE * dedx, DTYPE * gold, DTYPE * y, DTYPE
* x, int size)
void KernelHardtanhBackward(
T * dedy, T * dedx, T * gold, T * y, T
* x, int size)
{
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < size){
if (i < size){
DTYPE
s = x[i];
T
s = x[i];
if(s > (
DTYPE)1.0 || s < (DTYPE
)-1.0)
if(s > (
T)1.0 || s < (T
)-1.0)
dedx[i] = 0;
dedx[i] = 0;
else
else
dedx[i] = dedy[i];
dedx[i] = dedy[i];
...
@@ -142,12 +143,14 @@ void _CudaHardTanHBackward(XTensor * gold, XTensor * y, XTensor * x,
...
@@ -142,12 +143,14 @@ void _CudaHardTanHBackward(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx,
XTensor * dedy, XTensor * dedx,
LOSS_FUNCTION_NAME lossName)
LOSS_FUNCTION_NAME lossName)
{
{
if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){
CheckNTErrors(((x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE) ||
(x->dataType == X_FLOAT16 && y->dataType == X_FLOAT16)),
"Input vectors are not in default type.");
/* calculate dE/dy */
/* calculate dE/dy */
if
(lossName == CROSSENTROPY)
if
(lossName == CROSSENTROPY)
_CudaCrossEntropyBackward(dedy, y, gold);
_CudaCrossEntropyBackward(dedy, y, gold);
else if
(lossName != NOLOSS)
else if
(lossName != NOLOSS)
_CudaLossBackward(dedy, gold, y, lossName);
_CudaLossBackward(dedy, gold, y, lossName);
int gridSize[3], blockSize[3];
int gridSize[3], blockSize[3];
...
@@ -157,6 +160,7 @@ void _CudaHardTanHBackward(XTensor * gold, XTensor * y, XTensor * x,
...
@@ -157,6 +160,7 @@ void _CudaHardTanHBackward(XTensor * gold, XTensor * y, XTensor * x,
int devIDBackup;
int devIDBackup;
ProtectCudaDev(x->devID, devIDBackup);
ProtectCudaDev(x->devID, devIDBackup);
if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){
/* dE/dx = dE/dy * dy/dx */
/* dE/dx = dE/dy * dy/dx */
KernelHardtanhBackward<<<dim3(gridSize[0]),dim3(blockSize[0])>>>
KernelHardtanhBackward<<<dim3(gridSize[0]),dim3(blockSize[0])>>>
((DTYPE*)dedy->data,
((DTYPE*)dedy->data,
...
@@ -164,11 +168,18 @@ void _CudaHardTanHBackward(XTensor * gold, XTensor * y, XTensor * x,
...
@@ -164,11 +168,18 @@ void _CudaHardTanHBackward(XTensor * gold, XTensor * y, XTensor * x,
gold == NULL ? NULL : (DTYPE*)gold->data,
gold == NULL ? NULL : (DTYPE*)gold->data,
(DTYPE*)y->data, (DTYPE*)x->data,
(DTYPE*)y->data, (DTYPE*)x->data,
x->unitNum);
x->unitNum);
}
else if (x->dataType == X_FLOAT16 && y->dataType == X_FLOAT16) {
/* dE/dx = dE/dy * dy/dx */
KernelHardtanhBackward<<<dim3(gridSize[0]), dim3(blockSize[0])>>>
((half*)dedy->data,
(half*)dedx->data,
gold == NULL ? NULL : (half*)gold->data,
(half*)y->data, (half*)x->data,
x->unitNum);
}
BacktoCudaDev(x->devID, devIDBackup);
BacktoCudaDev(x->devID, devIDBackup);
}
else
ShowNTErrors("TODO!");
}
}
#endif
#endif
...
...
source/tensor/function/Loss.cu
查看文件 @
daf4765a
...
@@ -222,8 +222,9 @@ backward compuation for squared error (Cuda kernel)
...
@@ -222,8 +222,9 @@ backward compuation for squared error (Cuda kernel)
>> y - model output (in vector)
>> y - model output (in vector)
>> size - size of the vector (dedy)
>> size - size of the vector (dedy)
*/
*/
template <class T>
__global__
__global__
void KernelLossBackwardSquaredError(
DTYPE * dedy, DTYPE * t, DTYPE
* y, int size)
void KernelLossBackwardSquaredError(
T * dedy, T * t, T
* y, int size)
{
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
...
@@ -242,8 +243,9 @@ backward compuation of blocks for squared error (Cuda kernel)
...
@@ -242,8 +243,9 @@ backward compuation of blocks for squared error (Cuda kernel)
>> lenInBlock - number of items in a block for computation
>> lenInBlock - number of items in a block for computation
>> size - size of the vector (dedy)
>> size - size of the vector (dedy)
*/
*/
template <class T>
__global__
__global__
void KernelLossBackwardSquaredErrorBlock(
DTYPE * dedy, DTYPE * t, DTYPE * y,
void KernelLossBackwardSquaredErrorBlock(
T * dedy, T * t, T * y,
int blockSize, int begInBlock, int lenInBlock, int size)
int blockSize, int begInBlock, int lenInBlock, int size)
{
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
...
@@ -265,8 +267,9 @@ backward compuation for cross entropy (Cuda kernel)
...
@@ -265,8 +267,9 @@ backward compuation for cross entropy (Cuda kernel)
>> y - model output (in vector)
>> y - model output (in vector)
>> size - size of the vector (dedy)
>> size - size of the vector (dedy)
*/
*/
template <class T>
__global__
__global__
void KernelLossBackwardCrossEntropy(
DTYPE * dedy, DTYPE * t, DTYPE
* y, int tBeg, int tLen, int yBeg, int blockNum, int stride, int dimensionSize)
void KernelLossBackwardCrossEntropy(
T * dedy, T * t, T
* y, int tBeg, int tLen, int yBeg, int blockNum, int stride, int dimensionSize)
{
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i > stride * dimensionSize * blockNum)
if (i > stride * dimensionSize * blockNum)
...
@@ -297,8 +300,9 @@ backward compuation for cross entropy (Cuda kernel)
...
@@ -297,8 +300,9 @@ backward compuation for cross entropy (Cuda kernel)
>> lenInBlock - number of items in a block for computation
>> lenInBlock - number of items in a block for computation
>> size - size of the vector (dedy)
>> size - size of the vector (dedy)
*/
*/
template <class T>
__global__
__global__
void KernelLossBackwardCrossEntropyBlock(
DTYPE * dedy, DTYPE * t, DTYPE * y,
void KernelLossBackwardCrossEntropyBlock(
T * dedy, T * t, T * y,
int blockSize, int begInBlock, int lenInBlock, int size)
int blockSize, int begInBlock, int lenInBlock, int size)
{
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
...
@@ -337,14 +341,8 @@ void _CudaLossBackward(XTensor * dedy, XTensor * t, XTensor * y,
...
@@ -337,14 +341,8 @@ void _CudaLossBackward(XTensor * dedy, XTensor * t, XTensor * y,
CheckNTErrors(((dedy->devID == t->devID) && (dedy->devID == y->devID)),
CheckNTErrors(((dedy->devID == t->devID) && (dedy->devID == y->devID)),
"Tensor must be on the same device!");
"Tensor must be on the same device!");
CheckNTErrors((t->order > leadDim), "Illegal leading dimension!");
CheckNTErrors((t->order > leadDim), "Illegal leading dimension!");
CheckNTErrors((t->dataType == DEFAULT_DTYPE &&
y->dataType == DEFAULT_DTYPE &&
dedy->dataType == DEFAULT_DTYPE),
"Input vectors are not in default type.");
CheckNTErrors((dedy->devID >= 0 && t->devID >= 0 && y->devID >= 0),
CheckNTErrors((dedy->devID >= 0 && t->devID >= 0 && y->devID >= 0),
"The backward compuation must be performed on GPUs.");
"The backward compuation must be performed on GPUs.");
CheckNTErrors((dedy->devID == t->devID && dedy->devID == y->devID),
CheckNTErrors((dedy->devID == t->devID && dedy->devID == y->devID),
"The vectors must be on the same GPU.");
"The vectors must be on the same GPU.");
CheckNTErrors((tBeg == yBeg), "TODO!");
CheckNTErrors((tBeg == yBeg), "TODO!");
...
@@ -376,6 +374,10 @@ void _CudaLossBackward(XTensor * dedy, XTensor * t, XTensor * y,
...
@@ -376,6 +374,10 @@ void _CudaLossBackward(XTensor * dedy, XTensor * t, XTensor * y,
dim3 blocks(cudaGridSize[0]);
dim3 blocks(cudaGridSize[0]);
dim3 threads(cudaBlockSize[0]);
dim3 threads(cudaBlockSize[0]);
if (t->dataType == DEFAULT_DTYPE &&
y->dataType == DEFAULT_DTYPE &&
dedy->dataType == DEFAULT_DTYPE) {
DTYPE * tp = (DTYPE*)t->data;
DTYPE * tp = (DTYPE*)t->data;
DTYPE * yp = (DTYPE*)y->data;
DTYPE * yp = (DTYPE*)y->data;
DTYPE * dedyp = (DTYPE*)dedy->data;
DTYPE * dedyp = (DTYPE*)dedy->data;
...
@@ -388,15 +390,15 @@ void _CudaLossBackward(XTensor * dedy, XTensor * t, XTensor * y,
...
@@ -388,15 +390,15 @@ void _CudaLossBackward(XTensor * dedy, XTensor * t, XTensor * y,
loss = sum_{i} 0.5*(t_i - y_i)^2, where t_i is the gold standard and y_i is the model output
loss = sum_{i} 0.5*(t_i - y_i)^2, where t_i is the gold standard and y_i is the model output
dloss/dy_i = y_i - t_i
dloss/dy_i = y_i - t_i
*/
*/
if(LFName == SQUAREDERROR)
{
if (LFName == SQUAREDERROR)
{
if(t->isSparse)
{
if (t->isSparse)
{
ShowNTErrors("TODO!");
ShowNTErrors("TODO!");
}
}
else if(size == y->unitNum)
{
else if (size == y->unitNum)
{
KernelLossBackwardSquaredError<<<blocks, threads>>
>(dedyp, tp, yp, y->unitNum);
KernelLossBackwardSquaredError << <blocks, threads >>
>(dedyp, tp, yp, y->unitNum);
}
}
else
{
else
{
KernelLossBackwardSquaredErrorBlock<<<blocks, threads>>
>(dedyp, tp, yp, blockSize, tBeg * stride, tLen * stride, y->unitNum);
KernelLossBackwardSquaredErrorBlock << <blocks, threads >>
>(dedyp, tp, yp, blockSize, tBeg * stride, tLen * stride, y->unitNum);
}
}
}
}
...
@@ -405,22 +407,72 @@ void _CudaLossBackward(XTensor * dedy, XTensor * t, XTensor * y,
...
@@ -405,22 +407,72 @@ void _CudaLossBackward(XTensor * dedy, XTensor * t, XTensor * y,
loss = sum_{i} (-t_i * log(y_i)), where t and y are distributions
loss = sum_{i} (-t_i * log(y_i)), where t and y are distributions
dloss/dy_i = -t_i / y_i
dloss/dy_i = -t_i / y_i
*/
*/
else if(LFName == CROSSENTROPY)
{
else if (LFName == CROSSENTROPY)
{
if(t->isSparse)
{
if (t->isSparse)
{
ShowNTErrors("TODO!");
ShowNTErrors("TODO!");
}
}
else if(size == y->unitNum)
{
else if (size == y->unitNum)
{
KernelLossBackwardCrossEntropy<<<blocks, threads>>
>(dedyp, tp, yp, tBeg, tLen, yBeg, blockNum, stride, dimensionSize);
KernelLossBackwardCrossEntropy << <blocks, threads >>
>(dedyp, tp, yp, tBeg, tLen, yBeg, blockNum, stride, dimensionSize);
}
}
else{
else {
KernelLossBackwardCrossEntropyBlock<<<blocks, threads>>>(dedyp, tp, yp, blockSize, tBeg * stride, tLen * stride, y->unitNum);
KernelLossBackwardCrossEntropyBlock << <blocks, threads >> >(dedyp, tp, yp, blockSize, tBeg * stride, tLen * stride, y->unitNum);
}
}
BacktoCudaDev(y->devID, devIDBackup);
}
else if (t->dataType == X_FLOAT16 &&
y->dataType == X_FLOAT16 &&
dedy->dataType == X_FLOAT16) {
half * tp = (half*)t->data;
half * yp = (half*)y->data;
half * dedyp = (half*)dedy->data;
int devIDBackup;
ProtectCudaDev(y->devID, devIDBackup);
/*
squared error
loss = sum_{i} 0.5*(t_i - y_i)^2, where t_i is the gold standard and y_i is the model output
dloss/dy_i = y_i - t_i
*/
if (LFName == SQUAREDERROR) {
if (t->isSparse) {
ShowNTErrors("TODO!");
}
}
else if (size == y->unitNum) {
KernelLossBackwardSquaredError << <blocks, threads >> >(dedyp, tp, yp, y->unitNum);
}
else {
KernelLossBackwardSquaredErrorBlock << <blocks, threads >> >(dedyp, tp, yp, blockSize, tBeg * stride, tLen * stride, y->unitNum);
}
}
/*
cross entropy
loss = sum_{i} (-t_i * log(y_i)), where t and y are distributions
dloss/dy_i = -t_i / y_i
*/
else if (LFName == CROSSENTROPY) {
if (t->isSparse) {
ShowNTErrors("TODO!");
}
else if (size == y->unitNum) {
KernelLossBackwardCrossEntropy << <blocks, threads >> >(dedyp, tp, yp, tBeg, tLen, yBeg, blockNum, stride, dimensionSize);
}
else {
KernelLossBackwardCrossEntropyBlock << <blocks, threads >> >(dedyp, tp, yp, blockSize, tBeg * stride, tLen * stride, y->unitNum);
}
}
BacktoCudaDev(y->devID, devIDBackup);
}
}
else{
else{
ShowNTErrors("TODO");
ShowNTErrors("TODO");
}
}
BacktoCudaDev(y->devID, devIDBackup);
}
}
#endif
#endif
...
...
source/tensor/test/Test.cpp
查看文件 @
daf4765a
...
@@ -82,9 +82,9 @@ bool Test()
...
@@ -82,9 +82,9 @@ bool Test()
//wrong = !TestCrossEntropy() || wrong;
//wrong = !TestCrossEntropy() || wrong;
//wrong = !TestDropout() || wrong;
//wrong = !TestDropout() || wrong;
//
wrong = !TestHardTanH() || wrong;
wrong
=
!
TestHardTanH
()
||
wrong
;
//wrong = !TestIdentity() || wrong;
//wrong = !TestIdentity() || wrong;
wrong
=
!
TestLogSoftmax
()
||
wrong
;
//
wrong = !TestLogSoftmax() || wrong;
//wrong = !TestLoss() || wrong;
//wrong = !TestLoss() || wrong;
//wrong = !TestRectify() || wrong;
//wrong = !TestRectify() || wrong;
//wrong = !TestSigmoid() || wrong;
//wrong = !TestSigmoid() || wrong;
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论