Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Tensor.LowPrecision
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
linye
Tensor.LowPrecision
Commits
fe868e5c
Commit
fe868e5c
authored
Jul 12, 2019
by
linye
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update
parent
6a3d713a
显示空白字符变更
内嵌
并排
正在显示
11 个修改的文件
包含
1084 行增加
和
44 行删除
+1084
-44
source/tensor/core/arithmetic/MultiplyDim.cu
+1
-1
source/tensor/core/arithmetic/Negate.cu
+0
-20
source/tensor/core/arithmetic/Negate.cuh
+2
-5
source/tensor/core/arithmetic/XTensorBLAS.cu
+1
-1
source/tensor/function/LogSoftmax.cu
+8
-8
source/tensor/test/TClip.cpp
+277
-0
source/tensor/test/TLogSoftmax.cpp
+206
-8
source/tensor/test/TMultiplyDim.cpp
+219
-0
source/tensor/test/TNegate.cpp
+92
-0
source/tensor/test/TScaleAndShift.cpp
+277
-0
source/tensor/test/Test.cpp
+1
-1
没有找到文件。
source/tensor/core/arithmetic/MultiplyDim.cu
查看文件 @
fe868e5c
...
...
@@ -169,7 +169,7 @@ void _CudaMultiplyDim(const XTensor * a, const XTensor * b, XTensor * c, int n,
ShowNTErrors("Something is wrong!");
}
}
if (a->dataType == X_FLOAT16) {
else
if (a->dataType == X_FLOAT16) {
unsigned short temp = FloatToFloat16(alpha);
half alpha1 = *((half *)&temp);
if (stride > 1) {
...
...
source/tensor/core/arithmetic/Negate.cu
查看文件 @
fe868e5c
...
...
@@ -43,26 +43,6 @@ void KernelNegate(T * a, T * b, int size)
b[i] = -a[i];
}
///*
//set each entry to its negtive value (CUDA Kernel)
//This is for float16 computation
//>> a - pointer to the input data array
//>> b - pointer to the output data array
//>> size - size of the data array
//*/
//__global__
//void KernelNegate(__half * a, __half * b, int size)
//{
// int i = blockDim.x * blockIdx.x + threadIdx.x;
//
//#if __CUDA_ARCH__ >= 530 || !defined(__CUDA_ARCH__)
// if (i < size)
// b[i] = __hsub(__float2half(0), a[i]);
//#else
// if (i < size)
// b[i] = __float2half(-__half2float(a[i]));
//#endif
//}
/*
set each entry to its negtive value
...
...
source/tensor/core/arithmetic/Negate.cuh
查看文件 @
fe868e5c
...
...
@@ -29,12 +29,9 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
#ifdef USE_CUDA
/* set each entry to its negtive value (CUDA Kernel) */
template <class T>
__global__
void KernelNegate(DTYPE * a, DTYPE * b, int size);
/* set each entry to its negtive value (CUDA Kernel) with float16 data type*/
__global__
void KernelNegate(__half * a, __half * b, int size);
void KernelNegate(T * a, T * b, int size);
/* set each entry to its negtive value */
void _CudaNegate(const XTensor * a, XTensor * b);
...
...
source/tensor/core/arithmetic/XTensorBLAS.cu
查看文件 @
fe868e5c
...
...
@@ -17,7 +17,7 @@
/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-06 float16 added
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-06 float16
/int8
added
*/
#include "../../XUtility.h"
...
...
source/tensor/function/LogSoftmax.cu
查看文件 @
fe868e5c
...
...
@@ -83,7 +83,7 @@ void KernelLogSoftmaxComputeByRow(T * x, T * max, T * sum, T * y, int rowNum, in
int key = i * colNum + j;
if (dataType == X_FLOAT) {
DTYPE r = log((DTYPE)exp(
x[key] - inputMax[threadIdx.x]
) / (DTYPE)inputSum[threadIdx.x]);
DTYPE r = log((DTYPE)exp(
(DTYPE)(x[key] - inputMax[threadIdx.x])
) / (DTYPE)inputSum[threadIdx.x]);
if (isnan(r))
r = LOGPROB_MIN;
...
...
@@ -137,7 +137,7 @@ void KernelLogSoftmaxComputeByCol(T * x, T * max, T * sum, T * y, int rowNum, in
if (i < rowNum && j < colNum) {
int key = i * colNum + j;
if (dataType == X_FLOAT) {
DTYPE r = log((DTYPE)exp(
x[key] - inputMax[threadIdx.y]
) / (DTYPE)inputSum[threadIdx.y]);
DTYPE r = log((DTYPE)exp(
(DTYPE)(x[key] - inputMax[threadIdx.y])
) / (DTYPE)inputSum[threadIdx.y]);
if (isnan(r))
r = LOGPROB_MIN;
...
...
@@ -247,10 +247,10 @@ void KernelExpLoss(T * dedy, T * dedx, T * y, int size, LOSS_FUNCTION_NAME lossN
if (i < size) {
/* dE/dx_j = exp(y_j) */
if (lossName == CROSSENTROPY)
dedx[i] = exp(
y[i]
);
dedx[i] = exp(
((DTYPE)y[i])
);
/* dE/dx_j = exp(y_j) */
else if (lossName == SQUAREDERROR)
dedx[i] = exp(
y[i]
);
dedx[i] = exp(
((DTYPE)y[i])
);
else if (lossName == ONEHOTERROR)
dedx[i] = 0;
else
...
...
@@ -283,13 +283,13 @@ void KernelLogSoftmaxBackwardDEDS(T * dedy, T * dedx, T * gold, T * y, T * x,
DTYPE r = 0;
/* dE/ds_j = exp(y_j) */
if (lossName == CROSSENTROPY)
r = -(DTYPE)gold[i] + (DTYPE)exp(
y[i]
);
r = -(DTYPE)gold[i] + (DTYPE)exp(
((DTYPE)y[i])
);
/* dE/ds_j = exp(y_j) */
else if (lossName == SQUAREDERROR)
r = -(DTYPE)gold[i] + (DTYPE)exp(
y[i]
);
r = -(DTYPE)gold[i] + (DTYPE)exp(
((DTYPE)y[i])
);
else if (lossName == ONEHOTERROR) {
if ((DTYPE)gold[i] == 1.0)
r = -(DTYPE)gold[i] + (DTYPE)exp(
y[i]
);
r = -(DTYPE)gold[i] + (DTYPE)exp(
((DTYPE)y[i])
);
else
r = 0;
}
...
...
@@ -366,7 +366,7 @@ void KernelLogSoftmaxBackwardDEDSSparseByRow(T * dedy, T * dedx, void * gold, T
else if (lossName == ONEHOTERROR) {
int offset = colNum * ni + mi;
if (value == 1.0F)
dedx[offset] += (-value + exp(
y[offset]
));
dedx[offset] += (-value + exp(
((DTYPE)y[offset])
));
//dedx[offset] += -value * 0.005;
}
}
...
...
source/tensor/test/TClip.cpp
查看文件 @
fe868e5c
...
...
@@ -17,11 +17,13 @@
/*
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-08-03
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-12 float16/int/int8 added
*/
#include "../XTensor.h"
#include "../core/math/Clip.h"
#include "TClip.h"
#include "../core/getandset/ConvertDataType.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
...
...
@@ -116,6 +118,251 @@ bool TestClip1()
#endif // USE_CUDA
}
/*
case 2: float16 test Clip function.
Set every entry to its clip value.
*/
bool
TestClip2
()
{
/* a tensor of size (3, 2) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
3
;
aDimSize
[
1
]
=
2
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
DTYPE
aData
[
3
][
2
]
=
{
{
1.0
F
,
-
2.0
F
},
{
0.0
F
,
4.0
F
},
{
5.0
F
,
-
6.0
F
}
};
DTYPE
answer
[
3
][
2
]
=
{
{
1.0
F
,
-
1.0
F
},
{
0.0
F
,
1.0
F
},
{
1.0
F
,
-
1.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
aMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
bUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
aMeHalfGPU
;
XTensor
bUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
aMeGPU
->
SetData
(
aData
,
aUnitNum
);
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
aMeHalfGPU
=
ConvertDataType
(
*
aMeGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
/* call clip function */
_Clip
(
&
aHalfGPU
,
&
bHalfGPU
,
-
1.0
,
1.0
);
_ClipMe
(
&
aMeHalfGPU
,
-
1.0
,
1.0
);
bUserHalfGPU
=
Clip
(
aHalfGPU
,
-
1.0
,
1.0
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
bHalfGPU
,
bGPU
);
_ConvertDataType
(
&
aMeHalfGPU
,
aMeGPU
);
bUserGPU
=
ConvertDataType
(
bUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
bGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
aMeGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
bUserGPU
.
CheckData
(
answer
,
aUnitNum
,
1e-4
F
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
aMeGPU
;
delete
[]
aDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 3: int32 test Clip function.
Set every entry to its clip value.
*/
bool
TestClip3
()
{
/* a tensor of size (3, 2) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
3
;
aDimSize
[
1
]
=
2
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
DTYPE
aData
[
3
][
2
]
=
{
{
1.0
F
,
-
2.0
F
},
{
0.0
F
,
4.0
F
},
{
5.0
F
,
-
6.0
F
}
};
DTYPE
answer
[
3
][
2
]
=
{
{
1.0
F
,
-
1.0
F
},
{
0.0
F
,
1.0
F
},
{
1.0
F
,
-
1.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
aMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
bUserGPU
;
/* create int32 tensor */
XTensor
aInt32GPU
;
XTensor
bInt32GPU
;
XTensor
aMeInt32GPU
;
XTensor
bUserInt32GPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
aMeGPU
->
SetData
(
aData
,
aUnitNum
);
/* convert data type from float to int32 */
aInt32GPU
=
ConvertDataType
(
*
aGPU
,
X_INT
);
aMeInt32GPU
=
ConvertDataType
(
*
aMeGPU
,
X_INT
);
bInt32GPU
=
ConvertDataType
(
*
bGPU
,
X_INT
);
/* call clip function */
_Clip
(
&
aInt32GPU
,
&
bInt32GPU
,
-
1.0
,
1.0
);
_ClipMe
(
&
aMeInt32GPU
,
-
1.0
,
1.0
);
bUserInt32GPU
=
Clip
(
aInt32GPU
,
-
1.0
,
1.0
);
/* convert data type from int32 to float */
_ConvertDataType
(
&
bInt32GPU
,
bGPU
);
_ConvertDataType
(
&
aMeInt32GPU
,
aMeGPU
);
bUserGPU
=
ConvertDataType
(
bUserInt32GPU
,
X_FLOAT
);
/* check results */
gpuTest
=
bGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
aMeGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
bUserGPU
.
CheckData
(
answer
,
aUnitNum
,
1e-4
F
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
aMeGPU
;
delete
[]
aDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 4: int8 test Clip function.
Set every entry to its clip value.
*/
bool
TestClip4
()
{
/* a tensor of size (3, 2) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
3
;
aDimSize
[
1
]
=
2
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
DTYPE
aData
[
3
][
2
]
=
{
{
1.0
F
,
-
2.0
F
},
{
0.0
F
,
4.0
F
},
{
5.0
F
,
-
6.0
F
}
};
DTYPE
answer
[
3
][
2
]
=
{
{
1.0
F
,
-
1.0
F
},
{
0.0
F
,
1.0
F
},
{
1.0
F
,
-
1.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
aMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
bUserGPU
;
/* create int8 tensor */
XTensor
aInt8GPU
;
XTensor
bInt8GPU
;
XTensor
aMeInt8GPU
;
XTensor
bUserInt8GPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
aMeGPU
->
SetData
(
aData
,
aUnitNum
);
/* convert data type from float to int8 */
aInt8GPU
=
ConvertDataType
(
*
aGPU
,
X_INT8
);
aMeInt8GPU
=
ConvertDataType
(
*
aMeGPU
,
X_INT8
);
bInt8GPU
=
ConvertDataType
(
*
bGPU
,
X_INT8
);
/* call clip function */
_Clip
(
&
aInt8GPU
,
&
bInt8GPU
,
-
1.0
,
1.0
);
_ClipMe
(
&
aMeInt8GPU
,
-
1.0
,
1.0
);
bUserInt8GPU
=
Clip
(
aInt8GPU
,
-
1.0
,
1.0
);
/* convert data type from int8 to float */
_ConvertDataType
(
&
bInt8GPU
,
bGPU
);
_ConvertDataType
(
&
aMeInt8GPU
,
aMeGPU
);
bUserGPU
=
ConvertDataType
(
bUserInt8GPU
,
X_FLOAT
);
/* check results */
gpuTest
=
bGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
aMeGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
bUserGPU
.
CheckData
(
answer
,
aUnitNum
,
1e-4
F
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
aMeGPU
;
delete
[]
aDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* other cases */
/*
TODO!!
...
...
@@ -137,6 +384,36 @@ bool TestClip()
else
XPRINT
(
0
,
stdout
,
">> case 1 passed!
\n
"
);
/* case 2 test */
caseFlag
=
TestClip2
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 2 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
/* case 3 test */
caseFlag
=
TestClip3
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 3 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 3 passed!
\n
"
);
/* case 4 test */
caseFlag
=
TestClip4
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 4 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 4 passed!
\n
"
);
/* other cases test */
/*
TODO!!
...
...
source/tensor/test/TLogSoftmax.cpp
查看文件 @
fe868e5c
...
...
@@ -17,7 +17,7 @@
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-07-02
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-
06
float16 added
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-
12
float16 added
*/
#include "../XUtility.h"
...
...
@@ -313,11 +313,6 @@ bool TestLogSoftmax3()
#endif // USE_CUDA
}
/* other cases */
/*
TODO!!
*/
/*
case 4: float16 test LogSoftmax function.
LogSoftmax function: y = log(e^x / \sum_{i} e^{x_i})
...
...
@@ -370,10 +365,11 @@ bool TestLogSoftmax4()
/* convert data type from float16 to float */
_ConvertDataType
(
&
yHalfGPU
,
yGPU
);
yUserGPU
=
ConvertDataType
(
yHalfGPU
,
X_FLOAT
);
yUserGPU
=
ConvertDataType
(
y
User
HalfGPU
,
X_FLOAT
);
/* check result */
gpuTest
=
yGPU
->
CheckData
(
answer
,
unitNum
,
1e-1
F
)
&&
yUserGPU
.
CheckData
(
answer
,
unitNum
,
1e-1
F
);
gpuTest
=
yGPU
->
CheckData
(
answer
,
unitNum
,
1e-2
F
)
&&
yUserGPU
.
CheckData
(
answer
,
unitNum
,
1e-2
F
);
/* destroy variables */
delete
xGPU
;
...
...
@@ -389,6 +385,188 @@ bool TestLogSoftmax4()
#endif // USE_CUDA
}
/*
case 5: float16 test LogSoftmaxBackward function.
dE/dx = dE/dy * dy/dx
log softmax: y_i = log(e^{x_i} / \sum_{k} e^{x_k})
In this case, LossName=CROSSENTROPY.
*/
bool
TestLogSoftmax5
()
{
/* a tensor of size (1, 3) */
int
order
=
2
;
int
*
dimSize
=
new
int
[
order
];
dimSize
[
0
]
=
1
;
dimSize
[
1
]
=
3
;
int
unitNum
=
1
;
for
(
int
i
=
0
;
i
<
order
;
i
++
)
unitNum
*=
dimSize
[
i
];
DTYPE
xData
[
1
][
3
]
=
{
0.0
F
,
1.0
F
,
2.0
F
};
DTYPE
gData
[
1
][
3
]
=
{
0.5
F
,
0.8
F
,
1.5
F
};
DTYPE
yAnswer
[
1
][
3
]
=
{
-
2.4076
F
,
-
1.4076
F
,
-
0.4076
F
};
DTYPE
dedxAnswer
[
1
][
3
]
=
{
-
0.4100
F
,
-
0.5553
F
,
-
0.8348
F
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensors */
XTensor
*
xGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
yGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
gGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
dedyGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
dedxGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
/* create float16 tensors */
XTensor
xHalfGPU
;
XTensor
yHalfGPU
;
XTensor
gHalfGPU
;
XTensor
dedyHalfGPU
;
XTensor
dedxHalfGPU
;
/* initialize variables */
xGPU
->
SetData
(
xData
,
unitNum
);
gGPU
->
SetData
(
gData
,
unitNum
);
yGPU
->
SetZeroAll
();
dedxGPU
->
SetZeroAll
();
dedyGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
xHalfGPU
=
ConvertDataType
(
*
xGPU
,
X_FLOAT16
);
yHalfGPU
=
ConvertDataType
(
*
yGPU
,
X_FLOAT16
);
gHalfGPU
=
ConvertDataType
(
*
gGPU
,
X_FLOAT16
);
dedyHalfGPU
=
ConvertDataType
(
*
dedyGPU
,
X_FLOAT16
);
dedxHalfGPU
=
ConvertDataType
(
*
dedxGPU
,
X_FLOAT16
);
/* call logsoftmax function */
_LogSoftmax
(
&
xHalfGPU
,
&
yHalfGPU
,
1
);
/* call logsoftmaxbackward function */
_LogSoftmaxBackward
(
&
gHalfGPU
,
&
yHalfGPU
,
&
xHalfGPU
,
&
dedyHalfGPU
,
&
dedxHalfGPU
,
NULL
,
1
,
CROSSENTROPY
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
yHalfGPU
,
yGPU
);
_ConvertDataType
(
&
dedxHalfGPU
,
dedxGPU
);
/* check result */
gpuTest
=
yGPU
->
CheckData
(
yAnswer
,
unitNum
,
1e-2
F
)
&&
dedxGPU
->
CheckData
(
dedxAnswer
,
unitNum
,
1e-2
F
);
/* destroy variables */
delete
xGPU
;
delete
yGPU
;
delete
gGPU
;
delete
dedxGPU
;
delete
dedyGPU
;
delete
[]
dimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
dimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 6: float16 test LogSoftmaxBackward function.
dE/dx = dE/dy * dy/dx
log softmax: y_i = log(e^{x_i} / \sum_{k} e^{x_k})
In this case, LossName=SQUAREDERROR
*/
bool
TestLogSoftmax6
()
{
/* a tensor of size (1, 3) */
int
order
=
2
;
int
*
dimSize
=
new
int
[
order
];
dimSize
[
0
]
=
1
;
dimSize
[
1
]
=
3
;
int
unitNum
=
1
;
for
(
int
i
=
0
;
i
<
order
;
i
++
)
unitNum
*=
dimSize
[
i
];
DTYPE
xData
[
1
][
3
]
=
{
0.0
F
,
1.0
F
,
2.0
F
};
DTYPE
gData
[
1
][
3
]
=
{
0.5
F
,
0.8
F
,
1.5
F
};
DTYPE
yAnswer
[
1
][
3
]
=
{
-
2.4076
F
,
-
1.4076
F
,
-
0.4076
F
};
DTYPE
dedxAnswer
[
1
][
3
]
=
{
-
0.4100
F
,
-
0.5553
F
,
-
0.8348
F
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensors */
XTensor
*
xGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
yGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
gGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
dedyGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
dedxGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
/* create float16 tensors */
XTensor
xHalfGPU
;
XTensor
yHalfGPU
;
XTensor
gHalfGPU
;
XTensor
dedyHalfGPU
;
XTensor
dedxHalfGPU
;
/* initialize variables */
xGPU
->
SetData
(
xData
,
unitNum
);
gGPU
->
SetData
(
gData
,
unitNum
);
yGPU
->
SetZeroAll
();
dedxGPU
->
SetZeroAll
();
dedyGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
xHalfGPU
=
ConvertDataType
(
*
xGPU
,
X_FLOAT16
);
yHalfGPU
=
ConvertDataType
(
*
yGPU
,
X_FLOAT16
);
gHalfGPU
=
ConvertDataType
(
*
gGPU
,
X_FLOAT16
);
dedyHalfGPU
=
ConvertDataType
(
*
dedyGPU
,
X_FLOAT16
);
dedxHalfGPU
=
ConvertDataType
(
*
dedxGPU
,
X_FLOAT16
);
/* call logsoftmax function */
_LogSoftmax
(
&
xHalfGPU
,
&
yHalfGPU
,
1
);
/* call logsoftmaxbackward function */
_LogSoftmaxBackward
(
&
gHalfGPU
,
&
yHalfGPU
,
&
xHalfGPU
,
&
dedyHalfGPU
,
&
dedxHalfGPU
,
NULL
,
1
,
SQUAREDERROR
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
yHalfGPU
,
yGPU
);
_ConvertDataType
(
&
dedxHalfGPU
,
dedxGPU
);
/* check result */
gpuTest
=
yGPU
->
CheckData
(
yAnswer
,
unitNum
,
1e-2
F
)
&&
dedxGPU
->
CheckData
(
dedxAnswer
,
unitNum
,
1e-2
F
);
/* destroy variables */
delete
xGPU
;
delete
yGPU
;
delete
gGPU
;
delete
dedxGPU
;
delete
dedyGPU
;
delete
[]
dimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
dimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* other cases */
/*
TODO!!
*/
/* test for LogSoftmax Function */
bool
TestLogSoftmax
()
...
...
@@ -436,6 +614,26 @@ bool TestLogSoftmax()
else
XPRINT
(
0
,
stdout
,
">> case 4 passed!
\n
"
);
/* case 5 test */
caseFlag
=
TestLogSoftmax5
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 5 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 5 passed!
\n
"
);
/* case 6 test */
caseFlag
=
TestLogSoftmax6
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 6 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 6 passed!
\n
"
);
/* other cases test */
/*
TODO!!
...
...
source/tensor/test/TMultiplyDim.cpp
查看文件 @
fe868e5c
...
...
@@ -17,11 +17,13 @@
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-07-30
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-12 float16/int/int8 added
*/
#include "TMultiplyDim.h"
#include "../core/arithmetic/MultiplyDim.h"
#include "../XTensor.h"
#include "../core/getandset/ConvertDataType.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
/*
...
...
@@ -248,6 +250,205 @@ bool TestMultiplyDim2()
#endif // USE_CUDA
}
/*
case 3: float16 tensor multiplication c = a * b + \alpha * c
where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting
In this case, (2, 4) * (2) = (2, 4), n = 0.
*/
bool
TestMultiplyDim3
()
{
/* a tensor of size (2, 4) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
2
;
aDimSize
[
1
]
=
4
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
/* a tensor of size (2) */
int
bOrder
=
1
;
int
*
bDimSize
=
new
int
[
bOrder
];
bDimSize
[
0
]
=
2
;
int
bUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
bOrder
;
i
++
)
bUnitNum
*=
bDimSize
[
i
];
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
2
]
=
{
1.0
F
,
-
1.0
F
};
DTYPE
answer
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
-
4.0
F
,
-
5.0
F
,
-
6.0
F
,
-
7.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
bOrder
,
bDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
cMeGPU
->
SetData
(
aData
,
aUnitNum
);
bGPU
->
SetData
(
bData
,
bUnitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call multiplydim function */
_MultiplyDim
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
0
);
_MultiplyDimMe
(
&
cMeHalfGPU
,
&
bHalfGPU
,
0
);
cUserHalfGPU
=
MultiplyDim
(
aHalfGPU
,
bHalfGPU
,
0
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cMeGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cUserGPU
.
CheckData
(
answer
,
aUnitNum
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 4: flaot16 tensor multiplication c = a*b + \alpha * c
where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting.
In this case, (2, 4) * (4) = (2, 4), n = 1.
*/
bool
TestMultiplyDim4
()
{
/* a tensor of size (2, 4) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
2
;
aDimSize
[
1
]
=
4
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
/* a tensor of size (4) */
int
bOrder
=
1
;
int
*
bDimSize
=
new
int
[
bOrder
];
bDimSize
[
0
]
=
4
;
int
bUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
bOrder
;
i
++
)
bUnitNum
*=
bDimSize
[
i
];
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
4
]
=
{
1.0
F
,
-
1.0
F
,
1.0
F
,
-
1.0
F
};
DTYPE
answer
[
2
][
4
]
=
{
{
0.0
F
,
-
1.0
F
,
2.0
F
,
-
3.0
F
},
{
4.0
F
,
-
5.0
F
,
6.0
F
,
-
7.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
bOrder
,
bDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
cMeGPU
->
SetData
(
aData
,
aUnitNum
);
bGPU
->
SetData
(
bData
,
bUnitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call multiplydim function */
_MultiplyDim
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
1
);
_MultiplyDimMe
(
&
cMeHalfGPU
,
&
bHalfGPU
,
1
);
cUserHalfGPU
=
MultiplyDim
(
aHalfGPU
,
bHalfGPU
,
1
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cMeGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cUserGPU
.
CheckData
(
answer
,
aUnitNum
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* test for MultiplyDim Function */
bool
TestMultiplyDim
()
{
...
...
@@ -272,6 +473,24 @@ bool TestMultiplyDim()
else
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
/* case 3 test */
caseFlag
=
TestMultiplyDim3
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 3 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 3 passed!
\n
"
);
/* case 4 test */
caseFlag
=
TestMultiplyDim4
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 4 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 4 passed!
\n
"
);
/* other cases test */
/*
TODO!!
...
...
source/tensor/test/TNegate.cpp
查看文件 @
fe868e5c
...
...
@@ -17,9 +17,11 @@
/*
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-06-14
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-12 float16/int/int8 added
*/
#include "TNegate.h"
#include "../core/getandset/ConvertDataType.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
...
...
@@ -191,6 +193,86 @@ bool TestNegate2()
#endif // USE_CUDA
}
/* case 3: float16 set every entry to its minus value */
bool
TestNegate3
()
{
/* a tensor of size (3, 2) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
3
;
aDimSize
[
1
]
=
2
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
DTYPE
aData
[
3
][
2
]
=
{
{
1.0
F
,
-
2.0
F
},
{
-
3.0
F
,
4.0
F
},
{
5.0
F
,
-
6.0
F
}
};
DTYPE
answer
[
3
][
2
]
=
{
{
-
1.0
F
,
2.0
F
},
{
3.0
F
,
-
4.0
F
},
{
-
5.0
F
,
6.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
aMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
bUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
aMeHalfGPU
;
XTensor
bUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
aMeGPU
->
SetData
(
aData
,
aUnitNum
);
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
aMeHalfGPU
=
ConvertDataType
(
*
aMeGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
/* call negate function */
_Negate
(
&
aHalfGPU
,
&
bHalfGPU
);
_NegateMe
(
&
aMeHalfGPU
);
bUserHalfGPU
=
Negate
(
aHalfGPU
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
bHalfGPU
,
bGPU
);
_ConvertDataType
(
&
aMeHalfGPU
,
aMeGPU
);
bUserGPU
=
ConvertDataType
(
bUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
bGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
aMeGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
bUserGPU
.
CheckData
(
answer
,
aUnitNum
,
1e-4
F
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
aMeGPU
;
delete
[]
aDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
/* other cases */
/*
TODO!!
...
...
@@ -222,6 +304,16 @@ bool TestNegate()
else
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
/* case 3 test */
caseFlag
=
TestNegate3
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 3 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 3 passed!
\n
"
);
/* other cases test */
/*
TODO!!
...
...
source/tensor/test/TScaleAndShift.cpp
查看文件 @
fe868e5c
...
...
@@ -17,9 +17,11 @@
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-27
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-12 float16/int/int8 added
*/
#include "TScaleAndShift.h"
#include "../core/getandset/ConvertDataType.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
...
...
@@ -113,6 +115,254 @@ bool TestScaleAndShift1()
#endif // USE_CUDA
}
/*
case 2: flaot16 scale and shift all tensor entires.
p = p * scale + shift
*/
bool
TestScaleAndShift2
()
{
/* a input tensor of size (2, 4) */
int
sOrder
=
2
;
int
*
sDimSize
=
new
int
[
sOrder
];
sDimSize
[
0
]
=
2
;
sDimSize
[
1
]
=
4
;
int
sUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
sOrder
;
i
++
)
sUnitNum
*=
sDimSize
[
i
];
DTYPE
sData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
answer
[
2
][
4
]
=
{
{
0.5
F
,
2.5
F
,
4.5
F
,
6.5
F
},
{
8.5
F
,
10.5
F
,
12.5
F
,
14.5
F
}
};
DTYPE
scaleFactor
=
2.0
F
;
DTYPE
shiftFactor
=
0.5
F
;
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensors */
XTensor
*
sGPU
=
NewTensor
(
sOrder
,
sDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
tGPU
=
NewTensor
(
sOrder
,
sDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
tMeGPU
=
NewTensor
(
sOrder
,
sDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
tUserGPU
;
/* create float16 tensor */
XTensor
sHalfGPU
;
XTensor
tHalfGPU
;
XTensor
tMeHalfGPU
;
XTensor
tUserHalfGPU
;
/* initialize variables */
sGPU
->
SetData
(
sData
,
sUnitNum
);
tMeGPU
->
SetData
(
sData
,
sUnitNum
);
/* convert data type from float to float16 */
sHalfGPU
=
ConvertDataType
(
*
sGPU
,
X_FLOAT16
);
tMeHalfGPU
=
ConvertDataType
(
*
tMeGPU
,
X_FLOAT16
);
tHalfGPU
=
ConvertDataType
(
*
tGPU
,
X_FLOAT16
);
/* call scaleandshift function */
_ScaleAndShift
(
&
sHalfGPU
,
&
tHalfGPU
,
scaleFactor
,
shiftFactor
);
_ScaleAndShiftMe
(
&
tMeHalfGPU
,
scaleFactor
,
shiftFactor
);
tUserHalfGPU
=
ScaleAndShift
(
sHalfGPU
,
scaleFactor
,
shiftFactor
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
tHalfGPU
,
tGPU
);
_ConvertDataType
(
&
tMeHalfGPU
,
tMeGPU
);
tUserGPU
=
ConvertDataType
(
tUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
tGPU
->
CheckData
(
answer
,
sUnitNum
)
&&
tMeGPU
->
CheckData
(
answer
,
sUnitNum
)
&&
tUserGPU
.
CheckData
(
answer
,
sUnitNum
);
/* destroy variables */
delete
sGPU
;
delete
tGPU
;
delete
tMeGPU
;
delete
[]
sDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
sDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 3: int32 scale and shift all tensor entires.
p = p * scale + shift
*/
bool
TestScaleAndShift3
()
{
/* a input tensor of size (2, 4) */
int
sOrder
=
2
;
int
*
sDimSize
=
new
int
[
sOrder
];
sDimSize
[
0
]
=
2
;
sDimSize
[
1
]
=
4
;
int
sUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
sOrder
;
i
++
)
sUnitNum
*=
sDimSize
[
i
];
DTYPE
sData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
answer
[
2
][
4
]
=
{
{
1.0
F
,
3.0
F
,
5.0
F
,
7.0
F
},
{
9.0
F
,
11.0
F
,
13.0
F
,
15.0
F
}
};
DTYPE
scaleFactor
=
2.0
F
;
DTYPE
shiftFactor
=
1.8
F
;
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensors */
XTensor
*
sGPU
=
NewTensor
(
sOrder
,
sDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
tGPU
=
NewTensor
(
sOrder
,
sDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
tMeGPU
=
NewTensor
(
sOrder
,
sDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
tUserGPU
;
/* create int32 tensor */
XTensor
sInt32GPU
;
XTensor
tInt32GPU
;
XTensor
tMeInt32GPU
;
XTensor
tUserInt32GPU
;
/* initialize variables */
sGPU
->
SetData
(
sData
,
sUnitNum
);
tMeGPU
->
SetData
(
sData
,
sUnitNum
);
/* convert data type from float to int32 */
sInt32GPU
=
ConvertDataType
(
*
sGPU
,
X_INT
);
tMeInt32GPU
=
ConvertDataType
(
*
tMeGPU
,
X_INT
);
tInt32GPU
=
ConvertDataType
(
tGPU
,
X_INT
);
/* call scaleandshift function */
_ScaleAndShift
(
&
sInt32GPU
,
&
tInt32GPU
,
scaleFactor
,
shiftFactor
);
_ScaleAndShiftMe
(
&
tMeInt32GPU
,
scaleFactor
,
shiftFactor
);
tUserInt32GPU
=
ScaleAndShift
(
sInt32GPU
,
scaleFactor
,
shiftFactor
);
/* convert data type from int32 to float */
_ConvertDataType
(
&
tInt32GPU
,
tGPU
);
_ConvertDataType
(
&
tMeInt32GPU
,
tMeGPU
);
tUserGPU
=
ConvertDataType
(
tUserInt32GPU
,
X_FLOAT
);
/* check results */
gpuTest
=
tGPU
->
CheckData
(
answer
,
sUnitNum
)
&&
tMeGPU
->
CheckData
(
answer
,
sUnitNum
)
&&
tUserGPU
.
CheckData
(
answer
,
sUnitNum
);
/* destroy variables */
delete
sGPU
;
delete
tGPU
;
delete
tMeGPU
;
delete
[]
sDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
sDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 4: int8 scale and shift all tensor entires.
p = p * scale + shift
*/
bool
TestScaleAndShift4
()
{
/* a input tensor of size (2, 4) */
int
sOrder
=
2
;
int
*
sDimSize
=
new
int
[
sOrder
];
sDimSize
[
0
]
=
2
;
sDimSize
[
1
]
=
4
;
int
sUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
sOrder
;
i
++
)
sUnitNum
*=
sDimSize
[
i
];
DTYPE
sData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
answer
[
2
][
4
]
=
{
{
1.0
F
,
3.0
F
,
5.0
F
,
7.0
F
},
{
9.0
F
,
11.0
F
,
13.0
F
,
15.0
F
}
};
DTYPE
scaleFactor
=
2.0
F
;
DTYPE
shiftFactor
=
1.8
F
;
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensors */
XTensor
*
sGPU
=
NewTensor
(
sOrder
,
sDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
tGPU
=
NewTensor
(
sOrder
,
sDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
tMeGPU
=
NewTensor
(
sOrder
,
sDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
tUserGPU
;
/* create int8 tensor */
XTensor
sInt8GPU
;
XTensor
tInt8GPU
;
XTensor
tMeInt8GPU
;
XTensor
tUserInt8GPU
;
/* initialize variables */
sGPU
->
SetData
(
sData
,
sUnitNum
);
tMeGPU
->
SetData
(
sData
,
sUnitNum
);
/* convert data type from float to int8 */
sInt8GPU
=
ConvertDataType
(
*
sGPU
,
X_INT8
);
tMeInt8GPU
=
ConvertDataType
(
*
tMeGPU
,
X_INT8
);
tInt8GPU
=
ConvertDataType
(
*
tGPU
,
X_INT8
);
/* call scaleandshift function */
_ScaleAndShift
(
&
sInt8GPU
,
&
tInt8GPU
,
scaleFactor
,
shiftFactor
);
_ScaleAndShiftMe
(
&
tMeInt8GPU
,
scaleFactor
,
shiftFactor
);
tUserInt8GPU
=
ScaleAndShift
(
sInt8GPU
,
scaleFactor
,
shiftFactor
);
/* convert data type from int8 to float */
_ConvertDataType
(
&
tInt8GPU
,
tGPU
);
_ConvertDataType
(
&
tMeInt8GPU
,
tMeGPU
);
tUserGPU
=
ConvertDataType
(
tUserInt8GPU
,
X_FLOAT
);
/* check results */
gpuTest
=
tGPU
->
CheckData
(
answer
,
sUnitNum
)
&&
tMeGPU
->
CheckData
(
answer
,
sUnitNum
)
&&
tUserGPU
.
CheckData
(
answer
,
sUnitNum
);
/* destroy variables */
delete
sGPU
;
delete
tGPU
;
delete
tMeGPU
;
delete
[]
sDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
sDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* other cases */
/*
TODO!!
...
...
@@ -133,6 +383,33 @@ bool TestScaleAndShift()
else
XPRINT
(
0
,
stdout
,
">> case 1 passed!
\n
"
);
/* case 2 test */
caseFlag
=
TestScaleAndShift2
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 2 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
/* case 3 test */
caseFlag
=
TestScaleAndShift3
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 3 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 3 passed!
\n
"
);
/* case 4 test */
caseFlag
=
TestScaleAndShift4
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 4 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 4 passed!
\n
"
);
/* other cases test */
/*
TODO!!
...
...
source/tensor/test/Test.cpp
查看文件 @
fe868e5c
...
...
@@ -70,7 +70,7 @@ bool Test()
//wrong = !TestSplit() || wrong;
//wrong = !TestSpread() || wrong;
//wrong = !TestSub() || wrong;
wrong
=
!
TestSum
()
||
wrong
;
//
wrong = !TestSum() || wrong;
//wrong = !TestSumByColumnTV() || wrong;
//wrong = !TestSumByColumnVT() || wrong;
//wrong = !TestSumDim() || wrong;
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论