/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-13 */ #include "../XList.h" #include "TUnsqueeze.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: insert a dimension by copying the blocks for x times (where x is the size of the inerted dimension) In this case, (2, 3) -> (2, 2, 3), dim=1, dSize=2 (2, 3) -> (2, 3, 2), dim=2, dSize=2 */ bool TestUnsqueeze1() { /* a source tensor of size (2, 3) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 3; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; /* a target tensor of size (2, 2, 3) */ int tOrder1 = 3; int * tDimSize1 = new int[tOrder1]; tDimSize1[0] = 2; tDimSize1[1] = 2; tDimSize1[2] = 3; int tUnitNum1 = 1; for (int i = 0; i < tOrder1; i++) tUnitNum1 *= tDimSize1[i]; /* a target tensor of size (2, 3, 2) */ int tOrder2 = 3; int * tDimSize2 = new int[tOrder2]; tDimSize2[0] = 2; tDimSize2[1] = 3; tDimSize2[2] = 2; int tUnitNum2 = 1; for (int i = 0; i < tOrder2; i++) tUnitNum2 *= tDimSize2[i]; DTYPE sData[2][3] = { {0.0F, 1.0F, 2.0F}, {3.0F, 4.0F, 5.0F} }; DTYPE answer1[2][2][3] = { { {0.0F, 1.0F, 2.0F}, {0.0F, 1.0F, 2.0F} }, { {3.0F, 4.0F, 5.0F}, {3.0F, 4.0F, 5.0F} } }; DTYPE answer2[2][3][2] = { { {0.0F, 0.0F}, {1.0F, 1.0F}, {2.0F, 2.0F} }, { {3.0F, 3.0F}, {4.0F, 4.0F}, {5.0F, 5.0F} } }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s = NewTensor(sOrder, sDimSize); XTensor * t1 = NewTensor(tOrder1, tDimSize1); XTensor * t2 = NewTensor(tOrder2, tDimSize2); XTensor tUser1; XTensor tUser2; /* initialize variables */ s->SetData(sData, sUnitNum); t1->SetZeroAll(); t2->SetZeroAll(); /* call Unsqueeze function */ _Unsqueeze(s, t1, 1, 2); _Unsqueeze(s, t2, 2, 2); tUser1 = Unsqueeze(*s, 1, 2); tUser2 = Unsqueeze(*s, 2, 2); /* check results */ cpuTest = t1->CheckData(answer1, tUnitNum1) && tUser1.CheckData(answer1, tUnitNum1) && t2->CheckData(answer2, tUnitNum2) && tUser2.CheckData(answer2, tUnitNum2); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU1 = NewTensor(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0); XTensor * tGPU2 = NewTensor(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0); XTensor tUserGPU1; XTensor tUserGPU2; /* Initialize variables */ sGPU->SetData(sData, sUnitNum); tGPU1->SetZeroAll(); tGPU2->SetZeroAll(); /* call Unsqueeze function */ _Unsqueeze(sGPU, tGPU1, 1, 2); _Unsqueeze(sGPU, tGPU2, 2, 2); tUserGPU1 = Unsqueeze(*sGPU, 1, 2); tUserGPU2 = Unsqueeze(*sGPU, 2, 2); /* check results */ gpuTest = tGPU1->CheckData(answer1, tUnitNum1) && tUserGPU1.CheckData(answer1, tUnitNum1) && tGPU2->CheckData(answer2, tUnitNum2) && tUserGPU2.CheckData(answer2, tUnitNum2); /* destroy variables */ delete s; delete t1; delete t2; delete sGPU; delete tGPU1; delete tGPU2; delete[] sDimSize; delete[] tDimSize1; delete[] tDimSize2; return cpuTest && gpuTest; #else /* destroy variables */ delete s; delete t1; delete t2; delete[] sDimSize; delete[] tDimSize1; delete[] tDimSize2; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for Unsqueeze Function */ bool TestUnsqueeze() { XPRINT(0, stdout, "[TEST Unsqueeze] insert a dimension by copying the blocks for x times\n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestUnsqueeze1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)