\parinterval 假设我们使用2-gram和1-gram的插值模型预测下面句子中“[BLANK]”处的词:“I can’t see without my reading [BLANK]”,直觉上我们会猜测这个地方的词应该是glasses,但是在训练语料库中Francisco出现的频率非常高。如果在预测时仍然使用的是标准的1-gram模型,那么计算机会由于高概率选择Francisco填入句子的空白处,这结果明显是不合理的。当使用的是混合的插值模型时,如果reading Francisco这种二元语法并没有出现在语料中,就会导致1-gram对结果的影响变大,使得仍然会做出与标准1-gram模型相同的结果,犯下相同的错误。