Commit 9934acaf by xiaotong

updates

parent 12fe746f
......@@ -154,7 +154,7 @@
% 图1.7
\begin{figure}[htp]
\centering
\input{./Chapter1/Figures/figure-results-zh-to-en news-field-translation}
\input{./Chapter1/Figures/figure-results-zh-to-en-news-field-translation}
\caption{真实的结果-汉英新闻领域翻译}
\label{fig:results-zh-to-en news-field-translation}
\end{figure}
......@@ -511,9 +511,9 @@ His house is on the south bank of the river.
\vspace{0.5em}
\item Joshua:Joshua是另一种先进的开源SMT系统,是由约翰霍普金斯大学的语言和语音处理中心开发。由于Joshua是由Java语言开发,所以它在不同的平台上运行或开发时具有良好的可扩展性和可移植性。此外,Java 的使用提供了一种简单的方法(相对C/C++语言)来实验新的方法策略,以得到更好的效果。\url{http://joshua.sourceforge.net/Joshua/Welcome.html}
\vspace{0.5em}
\item SilkRoad:SilkRoad是由中国五个大学(CAS-ICT, CAS-IA, CAS-IS, XMU 和HIT)联合开发的,基于短语的SMT 系统。该系统是亚洲地区第一个开源的SMT系统,其主旨为支持中文-外文的翻译。它有几个有用的部分,比如分词模块(可使使用者更容易的搭建中文-外文的机器翻译系统)。此外,SilkRoad还支持多解码器和规则提取并为不同组合的子系统提供了不同的实验选择。\url{http://www.nlp.org.cn/project/project.php?projid=14}
\item SilkRoad:SilkRoad是由中国五个大学(CAS-ICT,CAS-IA,CAS-IS,XMU 和HIT)联合开发的,基于短语的SMT 系统。该系统是亚洲地区第一个开源的SMT系统,其主旨为支持中文-外文的翻译。它有几个有用的部分,比如分词模块(可使使用者更容易的搭建中文-外文的机器翻译系统)。此外,SilkRoad还支持多解码器和规则提取并为不同组合的子系统提供了不同的实验选择。\url{http://www.nlp.org.cn/project/project.php?projid=14}
\vspace{0.5em}
\item SAMT:SAMT是由卡内基梅隆大学MT小组开发的语法增强的SMT系统(syn\\tax-augmented SMT system)。SAMT在解码的时候使用目标树来生成翻译规则,而不严格遵守目标语言的语法。SAMT的一个亮点是它提供了简单但高效的方式来利用在SMT中句法信息,并且在一些任务中这样做有很好的结果甚至超过了基于层次短语的系统。由于SAMT在hadoop中实现,它可受益于跨计算机群的大数据集的分布式处理。\url{http://www.cs.cmu.edu/zollmann/samt/}
\item SAMT:SAMT是由卡内基梅隆大学MT小组开发的语法增强的SMT系统(syn\\tax-augmented SMT system)。SAMT在解码的时候使用目标树来生成翻译规则,而不严格遵守目标语言的语法。SAMT的一个亮点是它提供了简单但高效的方式来利用在SMT中句法信息,并且在一些任务中这样做有很好的结果甚至超过了基于层次短语的系统。由于SAMT在hadoop中实现,它可受益于跨计算机群的大数据集的分布式处理。\url{http://www.cs.cmu.edu/zollmann/samt/}
\vspace{0.5em}
\item cdec:cdec是一个强大的解码器,是由Chris Dyer 和他的合作者们一起开发。cdec的主要的功能是它使用了翻译模型的一个统一的内部表示,并为实验结构预测问题的各种模型和算法提供了框架。所以,cdec也可以在SMT中被用来做一个对齐器或者一个更通用的学习框架。此外,cdec由于高效的使用C++语言编写,所以非常快。\url{http://cdec-decoder.org/index.php?title=MainPage}
\vspace{0.5em}
......@@ -523,7 +523,7 @@ His house is on the south bank of the river.
\vspace{0.5em}
\item GIZA++:GIZA++是由moses-smt团队研发的用于训练IBM模型1-5和HMM单词对齐模型的SMT工具包。\url{https://github.com/moses-smt/giza-pp}
\vspace{0.5em}
\item UCAM-SMT:UCAM-SMT是由剑桥大学统计机器翻译系统。\\ \url{http://ucam-smt.github.io/}
\item UCAM-SMT:UCAM-SMT是由剑桥大学统计机器翻译系统。该系统完全基于有限状态自动机实现,因此非常适合对搜索空间进行有效的表示。\\ \url{http://ucam-smt.github.io/}
\vspace{0.5em}
\item FastAlign:FastAlign是一个快速,无监督的词对齐工具,由卡内基梅隆大学开发。\url{https://github.com/clab/fast\_align}
\end{itemize}
......@@ -541,9 +541,9 @@ His house is on the south bank of the river.
\vspace{0.5em}
\item Fairseq:Fairseq是由facebook的AI研究小组开发的,基于Torch框架的用以解决序列到序列问题的工具包,其中包括基于卷积神经网络的机器翻译模型,基于循环神经网络的机器翻译模型,以及Transformer模型等。https://github.com/facebookresearch/fairseq
\vspace{0.5em}
\item Transformer:Transformer是由谷歌推出的,基于TensorFlow框架的NMT系统。该系统与之前的使用循环神经网络或卷积神经网络结构不同,而是使用self-attention机制以及最简单的前馈神经网络构成的。得益于Transformer的网络结构,可使得系统可以在多个GPU上并行运行,大大加快了训练的速度。该系统由于没有循环等复杂的运算,故训练和解码都比循环神经网络快。此外,目前该系统的翻译效果比循环神经网络结构的神经机器翻译系统更好一点。\url{https://github.com/tensorflow/tensor2tensor}
\item Tensor2Tensor:Tensor2Tensor是由谷歌推出的,基于TensorFlow框架的Transformer系统。该系统与之前的使用循环神经网络或卷积神经网络结构不同,而是使用self-attention机制以及最简单的前馈神经网络构成的。得益于Transformer的网络结构,可使得系统可以在多个GPU上并行运行,大大加快了训练的速度。该系统由于没有循环等复杂的运算,故训练和解码都比循环神经网络快。此外,目前该系统的翻译效果比循环神经网络结构的神经机器翻译系统更好一点。\url{https://github.com/tensorflow/tensor2tensor}
\vspace{0.5em}
\item OpenNMT:OpenNMT系统是由Harvard NLP(哈佛大学自然语言处理研究组)开源的,基于Torch框架的神经机器翻译系统。OpenNMT系统使用Lua 语言编写,设计简单易用,易于扩展,同时保持效率和翻译精度。其接口简单通用,只需源/目标文件。可以在GPU 上快速高性能训练,且优化了内存。此外,OpenNMT可扩展到其他序列生成任务,例如文本摘要和多模态翻译等。\url{https://github.com/OpenNMT/OpenNMT}
\item OpenNMT:OpenNMT系统是由Harvard NLP(哈佛大学自然语言处理研究组)开源的,基于Torch框架的神经机器翻译系统。OpenNMT系统的早期版本使用Lua 语言编写,现在也扩展到了TensorFlow和PyTorch,设计简单易用,易于扩展,同时保持效率和翻译精度。其接口简单通用,只需源/目标文件。可以在GPU 上快速高性能训练,且优化了内存。此外,OpenNMT可扩展到其他序列生成任务,例如文本摘要和多模态翻译等。\url{https://github.com/OpenNMT/OpenNMT}
\vspace{0.5em}
\item 斯坦福NMT开源代码库:斯坦福大学自然语言处理组(Stanford NLP)发布了一片文章,总结了该研究组在神经机器翻译上的研究信息,同时他们实现了当前最佳结果的代码库。斯坦福NMT开源代码库包括了3种NMT系统,分别为基于字词混合的hybrid NMT,基于注意力机制的attention-based NMT以及通过剪枝方式压缩模型的pruning NMT。\url{https://nlp.stanford.edu/projects/nmt/}
\vspace{0.5em}
......@@ -567,60 +567,65 @@ His house is on the south bank of the river.
\end{itemize}
\vspace{0.5em}
\subsection{常用数据集及评测任务}\index{Chapter1.7.2}
\subsection{常用数据集及公开评测任务}\index{Chapter1.7.2}
\parinterval机器翻译相关评测主要有两种组织形式,一种是由政府及国家相关机构组织,权威性强,如由美国国家标准技术研究所组织的NIST评测、日本国家科学咨询系统中心主办的NACSIS Test Collections for IR(NTCIR)PatentMT、日本科学振兴机构(Japan Science and Technology Agency,简称JST)等组织联合举办的Workshop on Asian Translation(WAT)以及国内由中文信息学会主办的全国机器翻译研讨会(China Workshop on Machine Translation,简称CWMT)机器翻译评测,另一种为由相关学术机构组织,具有领域针对性的特点,如倾向新闻领域的Workshop on Statistical Machine Translation(WMT)以及面向口语的the International Workshop on Spoken Language Translation(IWSLT)。下面将针对上述评测进行详细介绍。
\parinterval机器翻译相关评测主要有两种组织形式,一种是由政府及国家相关机构组织,权威性强,如由美国国家标准技术研究所组织的NIST评测、日本国家科学咨询系统中心主办的NACSIS Test Collections for IR(NTCIR)PatentMT、日本科学振兴机构(Japan Science and Technology Agency,简称JST)等组织联合举办的Workshop on Asian Translation(WAT)以及国内由中文信息学会主办的全国机器翻译大会(China Conference on Machine Translation,简称CCMT);另一种是由相关学术机构组织,具有领域针对性的特点,如倾向新闻领域的Workshop on Statistical Machine Translation(WMT)以及面向口语的International Workshop on Spoken Language Translation(IWSLT)。下面将针对上述评测进行详细介绍。
\vspace{0.5em}
\begin{itemize}
\item NIST机器翻译评测开始于2001年,由美国国家标准技术研究所主办,作为美国国防高级计划署(DARPA)中TIDES计划的重要组成部分,为机器翻译的技术对比以及沟通交流提供了良好的平台。其宗旨在于吸引更多研究人员关注到机器翻译技术的核心问题,为大家提供良好的参与平台。早期,NIST评测主要评价阿拉伯语和汉语等语言到英语的翻译效果,评价方法一般采用人工评价与自动评价相结合的方式。人工评价采用5分制评价。自动评价使用多种方式,包括BLEU,METEOR,TER以及HyTER。此外NIST从2016 年起开始对稀缺语言资源技术进行评估,其中机器翻译作为其重要组成部分共同参与评测,评测指标主要为BLEU。除对机器翻译系统进行评测之外,NIST在2008 和2010年对于机器翻译的自动评价方法(MetricsMaTr)也进行了评估,以鼓励更多研究人员对现有评价方法进行改进或提出更加贴合人工评价的方法。同时NIST评测所提供的数据集由于其认可度、数据质量较高等特点受到众多科研人员喜爱,如MT04,MT06等(汉英)平行语料经常被科研人员在实验中使用。更多NIST的机器翻译评测相关信息可参考官网:\url{https://www.nist.gov/programs-projects/machine-translation}
\item CCMT(全国机器翻译大会),前身为CWMT(全国机器翻译研讨会)是国内机器翻译领域旗舰会议,自2005年起已经组织多次机器翻译评测,对国内机器翻译相关技术的发展产生了深远影响。该评测主要针对汉语、英语以及国内的少数民族语言(蒙古语、藏语、维吾尔语等)进行评测,领域包括新闻、口语、政府文件等,不同语言方向对应的领域也有所不同。评价方式不同届略有不同,主要采用自动评价的方式,自CWMT 2013起则针对某些领域增设人工评价。自动评价的指标一般包括BLEU-SBP、BLEU-NIST、TER、METEOR、NIST、GTM、mWER、mPER 以及ICT 等,其中以\\BLEU-SBP 为主,汉语为目标语的翻译采用基于字符的评价方式,面向英语的翻译基于词进行评价。每年该评测吸引国内外近数十家家企业及科研机构参赛,业内认可度极高。关于CCMT的更多信息可参考官网:\url{http://www.ai-ia.ac.cn/cwmt2015/evaluation.html} (链接为CWMT 2015)
\vspace{0.5em}
\item CCMT(全国机器翻译大会),前身为CWMT(全国机器翻译研讨会)是国内机器翻译领域顶级会议,兴起于2005年,并组织多次机器翻译评测,对国内机器翻译相关技术的发展产生了深远影响。该评测主要针对汉语、英语以及国内的少数民族语言(蒙古语、藏语、维吾尔语等)进行评测,领域包括新闻、口语、政府文件等,不同语言方向对应的领域也有所不同。评价方式不同届略有不同,主要采用自动评价的方式,自CWMT 2013起则针对某些领域增设人工评价。自动评价的指标一般包括BLEU-SBP、BLEU-NIST、TER、METEOR、NIST、GTM、mWER、mPER 以及ICT 等,其中以\\BLEU-SBP 为主,汉语为目标语的翻译采用基于字符的评价方式,面向英语的翻译基于词进行评价。每年该评测吸引国内外近数十家家企业及科研机构参赛,业内认可度颇高,19年更名为CCMT。更多CWMT 的机器翻译评测相关信息可参考官网:\url{http://www.ai-ia.ac.cn/cwmt2015/evaluation.html} (链接为CWMT 2015)
\item WMT由Special Interest Group for Machine Translation(SIGMT)主办,会议自2006年起每年召开一次,是一个针对机器翻译多种任务的综合性会议,包括多领域翻译评测任务、评价任务(如自动评价标准评测、翻译质量评估评测等)以及其它与机器翻译的相关任务(如文档对齐评测等)。现在WMT已经成为机器翻译领域的旗舰评测任务,很多研究工作都以WMT任务作为基准。其翻译评测任务中其涉及的语言范围较广,包括英语、德语、芬兰语、捷克语、罗马尼亚语等十多种语言,翻译方向一般以英语为核心,探索英语与其他欧洲语言翻译的性能,领域包括新闻、信息技术、生物医学。最近,也增加了无指导机器翻译等热门问题。WMT在评价方面类似于CCMT,也采用人工评价与自动评价相结合的方式,自动评价的指标一般为BLEU、NIST以及TER 等。此外,WMT公开了所有评测数据,因此也经常被机器翻译相关人员所使用。更多WMT 的机器翻译评测相关信息可参考官网:\url{http://www.sigmt.org/}
\vspace{0.5em}
\item WMT由Special Interest Group for Machine Translation(SIGMT)主办,自2006年起每年一次,是一个针对机器翻译多种任务的综合性会议,包括多领域翻译评测任务、评价任务(如自动评价标准评测、翻译质量评估评测等)以及其他技术相关任务(如文档对齐评测等)。现在WMT任务已经成为机器翻译领域的旗舰评测任务,很多研究工作都已WMT任务作为基准。其翻译评测任务中其涉及的语言范围较广,包括英语、德语、芬兰语、捷克语、罗马尼亚语等十多种语言,翻译方向一般以英语为核心,探索英语与其他欧洲语言翻译的性能,领域包括新闻、信息技术、生物医学。WMT在在评价方面类似其他评测,也采用人工评价与自动评价相结合的方式,自动评价的指标一般为NIST、BLEU以及TER 等。此外WMT公开的评测数据集也经常被研究欧洲语系的机器翻译相关人员所使用。更多WMT 的机器翻译评测相关信息可参考官网:\url{http://www.sigmt.org/}
\item NIST机器翻译评测开始于2001年,是机器翻译公开评测中颇具代表性的任务,现在WMT和CCMT很多任务的设置也大量参考了当年NIST评测的内容。NIST评测由美国国家标准技术研究所主办,作为美国国防高级计划署(DARPA)中TIDES计划的重要组成部分。早期,NIST评测主要评价阿拉伯语和汉语等语言到英语的翻译效果,评价方法一般采用人工评价与自动评价相结合的方式。人工评价采用5分制评价。自动评价使用多种方式,包括BLEU,METEOR,TER以及HyTER。此外NIST从2016 年起开始对稀缺语言资源技术进行评估,其中机器翻译作为其重要组成部分共同参与评测,评测指标主要为BLEU。除对机器翻译系统进行评测之外,NIST在2008 和2010年对于机器翻译的自动评价方法(MetricsMaTr)也进行了评估,以鼓励更多研究人员对现有评价方法进行改进或提出更加贴合人工评价的方法。同时NIST评测所提供的数据集由于数据质量较高等特点受到众多科研人员喜爱,如MT04,MT06等(汉英)平行语料经常被科研人员在实验中使用。更多NIST的机器翻译评测相关信息可参考官网:\url{https://www.nist.gov/programs-projects/machine-translation}
\vspace{0.5em}
\item 从2004年开始举办的IWSLT评测逐渐在国际舞台备受瞩目,它主要关注口语相关的机器翻译任务,使用材料主要包括TED talks的多语言字幕以及QED 教育讲座影片字幕等,语言涉及英语、法语、德语、捷克语、汉语、阿拉伯语等众多语言。此外在IWSLT 2016 中还加入了对于日常对话的翻译评测,尝试将微软Skype中一种语言的对话翻译成其他语种。评价方式一般采用自动评价的模式,评价标准和WMT类似,一般为NIST、BLEU以及TER。另外,IWSLT除了对文本到文本的翻译评测外,还有自动语音识别以及语音转另一种语言的文本的评测。更多IWSLT的机器翻译评测相关信息可参考官网:\url{https://workshop2016.iwslt.org/} (链接为IWSLT2016)
\item 从2004年开始举办的IWSLT也是颇具特色的机器翻译评测,它主要关注口语相关的机器翻译任务,使用材料主要包括TED talks的多语言字幕以及QED 教育讲座影片字幕等,语言涉及英语、法语、德语、捷克语、汉语、阿拉伯语等众多语言。此外在IWSLT 2016 中还加入了对于日常对话的翻译评测,尝试将微软Skype中一种语言的对话翻译成其它语言。评价方式一般采用自动评价的模式,评价标准和WMT类似,一般为NIST、BLEU以及TER。另外,IWSLT除了对文本到文本的翻译评测外,还有自动语音识别以及语音转另一种语言的文本的评测。更多IWSLT的机器翻译评测相关信息可参考官网:\url{https://workshop2016.iwslt.org/} (链接为IWSLT2016)
\vspace{0.5em}
\item NTCIR计划是由日本国家科学咨询系统中心策划主办的,旨在建立一个用在自然语言处理以及信息检索相关任务上的日文标准测试集。从1999年至今,NTCIR评测任务已举办13届,每届可能涉及不同的评测任务。在NTCIR-9的和NTCIR-10中开设的Patent Machine Translation(PatentMT)任务主要针对专利领域进行翻译测试,其目的在于促进机器翻译在专利领域的发展和应用。在两届PatentMT中评测的语言方向包括中到英、日到英、英到日,中到英提供100万专利描述平行句对,日英互译提供300万平行句对,参与者可选择某个或某些语言方向参与评测。在NTCIR-9中,评测方式采取人工评价与自动评价相结合,以人工评价为主导。人工评价主要根据忠实度和流畅度进行评估,自动评价采用BLEU、NIST的方式进行。NTCIR-10评价方式在此基础上增加了专利审查评估、时间评估以及多语种评估,分别考察机器翻译系统在专利领域翻译的实用性、耗时情况以及不同语种的翻译效果等。更多NTCIR评测相关信息可参考官网:\url{http://research.nii.ac.jp/ntcir/index-en.html}
\item 日本举办的机器翻译评测WAT是亚洲范围内的重要评测之一,由日本科学振兴机构(JST)、情报通信研究机构(NICT)等多家机构共同组织,旨在为亚洲各国之间交流融合提供便宜之处。语言方向主要包括亚洲主流语言(汉语、韩语、印地语等)以及英语对日语的翻译,领域丰富多样,包括学术论文、专利、新闻、食谱等。评价方式包括自动评价(BLEU、RIBES以及AMFM 等)以及人工评价,其特点在于对于测试语料以段落为单位进行评价,考察其上下文关联的翻译效果。更多WAT的机器翻译评测相关信息可参考官网:\url{http://lotus.kuee.kyoto-u.ac.jp/WAT/}
\vspace{0.5em}
\item 日本举办的机器翻译评测WAT也是亚洲范围内的重要评测之一,由日本科学振兴机构(JST)、情报通信研究机构(NICT)等多家机构共同组织,旨在为亚洲各国之间交流融合提供便宜之处。语言方向主要包括亚洲主流语言(汉语、韩语以及印地语等)以及英语对日语的翻译,领域丰富多样,包括学术论文、专利、新闻、食谱等。评价方式包括自动评价(BLEU、RIBES以及AMFM 等)以及人工评价,其特点在于对于测试语料以段落为单位进行评价,考察其上下文关联的翻译效果。更多WAT的机器翻译评测相关信息可参考官网:\url{http://lotus.kuee.kyoto-u.ac.jp/WAT/}
\item NTCIR计划是由日本国家科学咨询系统中心策划主办的,旨在建立一个用在自然语言处理以及信息检索相关任务上的日文标准测试集。从1999年至今,NTCIR评测任务已举办13届,每届可能涉及不同的评测任务。在NTCIR-9的和NTCIR-10中开设的Patent Machine Translation(PatentMT)任务主要针对专利领域进行翻译测试,其目的在于促进机器翻译在专利领域的发展和应用。在NTCIR-9中,评测方式采取人工评价与自动评价相结合,以人工评价为主导。人工评价主要根据忠实度和流畅度进行评估,自动评价采用BLEU、NIST的方式进行。NTCIR-10评价方式在此基础上增加了专利审查评估、时间评估以及多语种评估,分别考察机器翻译系统在专利领域翻译的实用性、耗时情况以及不同语种的翻译效果等。更多NTCIR评测相关信息可参考官网:\url{http://research.nii.ac.jp/ntcir/index-en.html}
\end{itemize}
\vspace{0.5em}
\parinterval以上机器翻译评测各自有不同的特点,NIST最近几年更加关注稀缺资源翻译相关问题;NTCIR 在评估方式上纳入了时间、多语种评估等手段;WAT倾向于评测亚洲相关语言的翻译;CWMT以汉语为核心,并支持国内许多少数民族语言;WMT面向欧洲语系,语种范围广,评测类型丰富;IWSLT针对语音对话的翻译相关问题进行评测。
\parinterval以上机器翻译评测各自有不同的特点,NIST最近几年更加关注稀缺资源翻译相关问题;NTCIR 在评估方式上纳入了时间、多语种评估等手段;WAT倾向于评测亚洲相关语言的翻译;CCMT以汉语为核心,并支持国内许多少数民族语言;WMT面向欧洲语系,现在也延伸到汉语,语种范围广,评测类型丰富;IWSLT针对语音对话的翻译相关问题进行评测。
\parinterval实验数据均可以从评测网站上下载,此外目前研究的绝大多数数据都可以从LDC(Linguistic Data Consortium)上下载,网址为\url{https://www.ldc.upenn.edu/},ELRA(European Language Resources Association)上也有一些免费的语料库供研究使用,其官网为\url{http://www.elra.info/}
\parinterval以上评测数据大多可以从评测网站上下载,此外部分数据也可以从LDC(Linguistic Data Consortium)上申请,网址为\url{https://www.ldc.upenn.edu/}。ELRA(European Language Resources Association)上也有一些免费的语料库供研究使用,其官网为\url{http://www.elra.info/}{\red 更多机器翻译的语料信息可参看附录??}
\parinterval从机器翻译发展的角度看,这些评测任务给相关研究提供了基准数据集,使得不同的系统都可以在同一个环境下进行比较和分析,进而建立了机器翻译研究所需的实验基础。此外,这些评测任务也使得研究者可以第一时间了解机器翻译研究的最新成果,比如,有多篇ACL最佳论文的灵感就来自当年参加机器翻译评测任务的系统。
\section{推荐学习材料}\index{Chapter1.8}
\parinterval首先,推荐一本书《Statistical Machine Translation》,其作者是机器翻译领域著名学者Philipp Koehn。该书是机器翻译领域内的经典之作,介绍了统计机器翻译技术的进展,并解释了如何为任意两种语言搭建机器翻译系统。该书从语言学和概率学两个方面介绍了本课题的构成要素,然后介绍了机器翻译的主要模型:基于词的、基于短语的和基于树的,以及机器翻译评价、语言建模、区分训练和集成语言标注的先进方法。这本书还报道了当时的最新研究,提出了主要的挑战,并使新手以及经验丰富的研究员能够为这一令人兴奋的领域做出新的贡献。该书内容全面,被很多欧美高校和机器翻译的研究者使用。
\parinterval首先,推荐一本书《Statistical Machine Translation》,其作者是机器翻译领域著名学者Philipp Koehn教授。该书是机器翻译领域内的经典之作,介绍了统计机器翻译技术的进展,并解释了如何为任意两种语言搭建机器翻译系统。该书从语言学和概率学两个方面介绍了统计机器翻译的构成要素,然后介绍了统计机器翻译的主要模型:基于词、基于短语和基于树的模型,以及机器翻译评价、语言建模、判别式训练等方法。这本书还报道了当时的最新研究,提出了主要的挑战,并使新手以及经验丰富的研究员能够为这一令人兴奋的领域做出新的贡献。该书内容全面,被很多高校和机器翻译的研究者使用。
\parinterval《Foundations of Statistical Natural Language Processing》中文译名《自然语言处理基础》。该书是首次对统计自然语言处理进行全面介绍。书中讲解了必要的语言学和概率论基础知识,介绍了机器翻译评价、语言建模、判别式训练以及整合语言学信息等前言方法。其中包含了构建NLP工具所需基本的理论和算法,提供了数学和语言学基础的广泛而严格的覆盖,以及统计方法的详细讨论,帮助学生和研究人员构建自己的解决方案
\parinterval《Foundations of Statistical Natural Language Processing》中文译名《自然语言处理基础》,作者是自然语言处理领域的权威Chris Manning教授和Hinrich Sch$\ddot{\textrm{u}}$tze教授。该书对统计自然语言处理方法进行了全面介绍。书中讲解了必要的语言学和概率论基础知识,介绍了机器翻译评价、语言建模、判别式训练以及整合语言学信息等基础方法。其中包含了构建NLP工具所需的基本理论和算法,提供了对数学和语言学基础内容广泛而严格的覆盖,以及统计方法的详细讨论
\parinterval《统计自然语言处理》由中国科学院自动化所宗成庆所著,其中全面介绍了统计自然语言处理的基本概念、理论方法和最新研究进展,内容包括形式语言与自动机及其在自然语言处理中的应用、语言模型、隐马尔可夫模型、语料库技术、汉语自动分词与词性标注、句法分析、词义消歧、篇章分析、统计机器翻译、语音翻译、文本分类、信息检索与问答系统、自动文摘和信息抽取、口语信息处理与人机对话系统等,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。可供从事自然语言处理、数据挖掘和人工智能等研究的相关人员参考。
\parinterval《统计自然语言处理》由中国科学院自动化所宗成庆教授所著,其中全面介绍了统计自然语言处理的基本概念、理论方法和最新研究进展,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。可供从事自然语言处理、机器翻译等研究的相关人员参考。
\parinterval Ian Goodfellow、Yoshua Bengio,Aaron Courville三位机器学习领域的学者所写的《深度学习》也是值得一读的参考书。其讲解了有关深度学习常用的方法,其中很多都会在深度学习模型设计和使用中用到。同时在《深度学习》应用一章中也简单讲解了神经机器翻译的任务定义和发展过程。
\parinterval《机器学习》由南京大学教授周志华所著,作为机器学习领域入门教材,该书尽可能地涵盖了机器学习基础知识的各个方面,试图尽可能少地使用数学知识接受机器学习方法与思想。全书大致分为三个部分:第1部分介绍了机器学习的基础知识;第2部分讨论了一些经典和常用的机器学习方法(决策树,神经网络,支持向量机,贝叶斯分类器,集成学习,聚类,降维和度量学习)。 第三部分为高级知识,涉及特征选择与稀疏学习,计算学习理论,半监督学习,概率图模型,规则学习和强化学习。
\parinterval《机器学习》由南京大学教授周志华教授所著,作为机器学习领域入门教材,该书尽可能地涵盖了机器学习基础知识的各个方面,试图尽可能少地使用数学知识接受机器学习方法与思想。在机器翻译中使用的很多机器学习概念和方法可以从该书中进行学习。
\parinterval TensorFlow官网提供了一个有关神经机器翻译的教程,介绍了从数据处理开始如何利用TensorFlow工具从零搭建一个神经机器翻译系统以及如何解码,其地址为\url{https://www.tensorflow.org/tutorials/text/nmt\_with\_attention}。此外谷歌和Facebook也分别提供了基于序列到序列机器翻译模型的高级教程,能基于此实验更多的方法。谷歌的版本是基于TensorFlow实现,网址为:\url{https://github.com/tensorflow/nmt},Facebook的教程主要是基于PyTorch实现--\url{https://pytorch.org/tutorials/intermediate/seq2seq\_translation\_tutorial.html}。此外也有一些综述论文详细的介绍了神经机器翻译的发展历程,问题定义以及目前遇到的问题。
\parinterval TensorFlow官网提供了一个有关神经机器翻译的教程,介绍了从数据处理开始如何利用TensorFlow工具从零搭建一个神经机器翻译系统以及如何解码,其地址为\url{https://www.tensorflow.org/tutorials/text/nmt\_with\_attention}。此外谷歌和Facebook也分别提供了基于序列到序列机器翻译模型的高级教程。谷歌的版本是基于TensorFlow实现,网址为:\url{https://github.com/tensorflow/nmt},Facebook的教程主要是基于PyTorch实现--\url{https://pytorch.org/tutorials/intermediate/seq2seq\_translation\_tutorial.html}。网站上也包含一些综述论文详细的介绍了神经机器翻译的发展历程,问题定义以及目前遇到的问题。
\parinterval \url{http://www.statmt.org}是一个介绍机器翻译研究的网站,该网站包含了对统计机器翻译研究的一些介绍资料,一些自然语言处理的会议和workshop,常用工具以及语料库。\url{http://www.mt-archive.info}\url{https://www.aclweb.org/anthology}网站上有许多介绍机器翻译和自然语言处理的论文。通过这个网站可以了解到自然语言处理领域的一些重要的会议,比如与机器翻译相关的会议有:
\parinterval \url{http://www.statmt.org}是一个介绍机器翻译研究的网站,该网站包含了对统计机器翻译研究的一些介绍资料,一些自然语言处理的会议和workshop,常用工具以及语料库。\url{http://www.mt-archive.info}\url{https://www.aclweb.org/anthology}网站上有许多介绍机器翻译和自然语言处理的论文。通过这个网站可以了解到自然语言处理领域的一些重要的会议,比如与机器翻译相关的国际会议有:
\vspace{0.5em}
\begin{itemize}
\item ACL,全称Annual Meeting of the Association for Computational Linguistics,是自然语言处理领域最高级别会议。每年举办一次,主题包括机器翻译,对话,信息抽取,信息检索,语言生成,语言资源,多模态,情感分析,语音等多个方面。
\item ACL,全称Annual Meeting of the Association for Computational Linguistics,是自然语言处理领域最高级别会议。每年举办一次,主题包括机器翻译,对话,信息抽取,信息检索,语言生成,语言资源,多模态,情感分析,语音等多个方面。
\vspace{0.5em}
\item NAACL,全称Annual Meeting of the Association for Computational Linguistics,为ACL北美分会,在自然语言处理领域也属于顶级会议,每年会选择一个北美城市召开会议。
\vspace{0.5em}
\item EMNLP,全称Conference on Empirical Methods in Natural Language Processing ,由ACL当中对语言数据和经验方法有特殊兴趣的团体主办,始于1996年。会议比较偏重于方法和经验性结果。
\item EMNLP,全称Conference on Empirical Methods in Natural Language Processing ,自然语言处理另一个顶级会议之一,由ACL当中对语言数据和经验方法有特殊兴趣的团体主办,始于1996年。会议比较偏重于方法和经验性结果。
\vspace{0.5em}
\item COLING,全称Int'l Committee on Computational Linguistics (ICCL) Conf.,该会议始于1965年,是由ICCL国际计算语言学委员会主办,自从第三届会议在斯德哥尔摩举办之后,会议简称为COLING,是谐音瑞典著名作家 Albert Engström小说中的虚构人物Kolingen。COLING每两年举报一次。
\item COLING,全称Int'l Committee on Computational Linguistics (ICCL) Conf.,自然语言处理老牌顶级会议之一。该会议始于1965年,是由ICCL国际计算语言学委员会主办,自从第三届会议在斯德哥尔摩举办之后,会议简称为COLING,是谐音瑞典著名作家 Albert Engstr$\ddot{\textrm{o}}$m小说中的虚构人物Kolingen。COLING每两年举报一次。
\vspace{0.5em}
\item WMT,全称Conference on Machine Translation。机器翻译领域一年一度研讨会,是国际公认的顶级机器翻译赛事之一。
\vspace{0.5em}
\item AMTA,全称Association for Machine Translation in the Americas。AMTA会议汇聚了学术界、产业界和政府的MT研究人员、开发人员和用户,让工业界和学术界进行交流。
\vspace{0.5em}
\item {\red CCL}
\item {\red NLPCC}
\item {\red CCMT}
\end{itemize}
\vspace{0.5em}
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -1203,7 +1203,7 @@ p_0+p_1 & = & 1 \label{eqC3.5.12}
\subsection{其它问题}\index{Chapter3.6.5}
\noindent\hspace{2em}模型5的意义?模型5的提出是为了消除了模型3和模型4的Deficiency问题。\\Deficiency问题的本质是,$\textrm{P}(s,a|t)$在所有合理的对齐上概率和不为1。但是,在统计机器翻译中我们更关心是哪个对齐$a$使$\textrm{P}(s,a|t)$达到最大,即使$P(s,a|t)$不符合概率分布的定义,也并不影响我们寻找理想的对齐$a$。从这个工程的角度说,$\textrm{P}(s,a|t)$不归一并不是一个十分严重的问题。遗憾的是,实际上至今也太多对IBM模型3和模型4中的deficiency问题进行过系统的实验和分析,这个问题到底有多严重并没有定论。当然用模型5是可以解决这个问题。但是如果用一个非常复杂的模型去解决了一个并不产生严重后果的问题,那这个模型也就没有太大意义了(从实践的角度)。
\noindent\hspace{2em}模型5的意义?模型5的提出是为了消除了模型3和模型4的Deficiency问题。\\Deficiency问题的本质是,$\textrm{P}(s,a|t)$在所有合理的对齐上概率和不为1。但是,在统计机器翻译中我们更关心是哪个对齐$a$使$\textrm{P}(s,a|t)$达到最大,即使$P(s,a|t)$不符合概率分布的定义,也并不影响我们寻找理想的对齐$a$。从这个工程的角度说,$\textrm{P}(s,a|t)$不归一并不是一个十分严重的问题。遗憾的是,实际上至今也太多对IBM模型3和模型4中的Deficiency问题进行过系统的实验和分析,这个问题到底有多严重并没有定论。当然用模型5是可以解决这个问题。但是如果用一个非常复杂的模型去解决了一个并不产生严重后果的问题,那这个模型也就没有太大意义了(从实践的角度)。
\noindent\hspace{2em}概念(Cept.)的意义?经过前面的分析可知,IBM模型的词对齐模型是使用了cept.这个概念。但是实质上,在IBM模型中使用的cept.最多只能对应一个目标语言单词(模型并没有用到源语言cept.的概念)。因此可以直接用单词代替cept.。这样,即使不引入cept.的概念,也并不影响IBM模型的建模。实际上,cept.的引入确实可以帮助我们从语法和语义的角度解释词对齐过程。不过,这个方法在IBM模型中的效果究竟如何也没有定论。
......
% $ biblatex auxiliary file $
% $ biblatex bbl format version 3.1 $
% Do not modify the above lines!
%
% This is an auxiliary file used by the 'biblatex' package.
% This file may safely be deleted. It will be recreated by
% biber as required.
%
\begingroup
\makeatletter
\@ifundefined{ver@biblatex.sty}
{\@latex@error
{Missing 'biblatex' package}
{The bibliography requires the 'biblatex' package.}
\aftergroup\endinput}
{}
\endgroup
\refsection{0}
\datalist[entry]{nyt/global//global/global}
\entry{aho1972theory}{book}{}
\name{author}{2}{}{%
{{hash=87e9142329f09390b038692270dc2168}{%
family={Aho},
familyi={A\bibinitperiod},
given={Alfred\bibnamedelima V},
giveni={A\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
{{hash=cafe1d770c56825ebccdb81e9f7c9b3b}{%
family={Ullman},
familyi={U\bibinitperiod},
given={Jeffrey\bibnamedelima D},
giveni={J\bibinitperiod\bibinitdelim D\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Prentice-Hall Englewood Cliffs, NJ}%
}
\strng{namehash}{012da699a378a549fed2220d3c78ed22}
\strng{fullhash}{012da699a378a549fed2220d3c78ed22}
\strng{bibnamehash}{012da699a378a549fed2220d3c78ed22}
\strng{authorbibnamehash}{012da699a378a549fed2220d3c78ed22}
\strng{authornamehash}{012da699a378a549fed2220d3c78ed22}
\strng{authorfullhash}{012da699a378a549fed2220d3c78ed22}
\field{sortinit}{A}
\field{sortinithash}{a3dcedd53b04d1adfd5ac303ecd5e6fa}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{title}{The theory of parsing, translation, and compiling}
\field{volume}{1}
\field{year}{1972}
\endentry
\entry{bahdanau2014neural}{article}{}
\name{author}{3}{}{%
{{hash=6d80adec79a13a33e73215c5f46f1605}{%
family={Bahdanau},
familyi={B\bibinitperiod},
given={Dzmitry},
giveni={D\bibinitperiod}}}%
{{hash=3da7501a79d9346572c7fd6e41b615df}{%
family={Cho},
familyi={C\bibinitperiod},
given={Kyunghyun},
giveni={K\bibinitperiod}}}%
{{hash=40a8e4774982146adc2688546f54efb2}{%
family={Bengio},
familyi={B\bibinitperiod},
given={Yoshua},
giveni={Y\bibinitperiod}}}%
}
\strng{namehash}{ccf5ebef61998aaab5ec6eace8f4564d}
\strng{fullhash}{ccf5ebef61998aaab5ec6eace8f4564d}
\strng{bibnamehash}{ccf5ebef61998aaab5ec6eace8f4564d}
\strng{authorbibnamehash}{ccf5ebef61998aaab5ec6eace8f4564d}
\strng{authornamehash}{ccf5ebef61998aaab5ec6eace8f4564d}
\strng{authorfullhash}{ccf5ebef61998aaab5ec6eace8f4564d}
\field{sortinit}{B}
\field{sortinithash}{8de16967003c7207dae369d874f1456e}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{arXiv preprint arXiv:1409.0473}
\field{title}{Neural machine translation by jointly learning to align and translate}
\field{year}{2014}
\endentry
\entry{bengio2003neural}{article}{}
\name{author}{4}{}{%
{{hash=40a8e4774982146adc2688546f54efb2}{%
family={Bengio},
familyi={B\bibinitperiod},
given={Yoshua},
giveni={Y\bibinitperiod}}}%
{{hash=dcb65deeb8d2de03d00f0aeeb3499771}{%
family={Ducharme},
familyi={D\bibinitperiod},
given={R{é}jean},
giveni={R\bibinitperiod}}}%
{{hash=da21e966c02c3cfd33d74369c7435c1a}{%
family={Vincent},
familyi={V\bibinitperiod},
given={Pascal},
giveni={P\bibinitperiod}}}%
{{hash=bd9126e06687017f43910a8eb056bb0a}{%
family={Jauvin},
familyi={J\bibinitperiod},
given={Christian},
giveni={C\bibinitperiod}}}%
}
\strng{namehash}{058f6aa7282521dda725a309bd2d3fea}
\strng{fullhash}{214c0985c7c874b6fb51e84e6ea66db3}
\strng{bibnamehash}{058f6aa7282521dda725a309bd2d3fea}
\strng{authorbibnamehash}{058f6aa7282521dda725a309bd2d3fea}
\strng{authornamehash}{058f6aa7282521dda725a309bd2d3fea}
\strng{authorfullhash}{214c0985c7c874b6fb51e84e6ea66db3}
\field{sortinit}{B}
\field{sortinithash}{8de16967003c7207dae369d874f1456e}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Journal of machine learning research}
\field{number}{Feb}
\field{title}{A neural probabilistic language model}
\field{volume}{3}
\field{year}{2003}
\field{pages}{1137\bibrangedash 1155}
\range{pages}{19}
\endentry
\entry{brown1990statistical}{article}{}
\name{author}{8}{}{%
{{hash=b269d63ed0974176f251e8034564855e}{%
family={Brown},
familyi={B\bibinitperiod},
given={Peter\bibnamedelima F},
giveni={P\bibinitperiod\bibinitdelim F\bibinitperiod}}}%
{{hash=7e6f41b987a6ec2b9b01a3d33cdd2ddb}{%
family={Cocke},
familyi={C\bibinitperiod},
given={John},
giveni={J\bibinitperiod}}}%
{{hash=4a93f8dffb0593ae148a8ef335eabe24}{%
family={Della\bibnamedelima Pietra},
familyi={D\bibinitperiod\bibinitdelim P\bibinitperiod},
given={Stephen\bibnamedelima A},
giveni={S\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
{{hash=4bbdbda1345838fb46c88bd6afda258c}{%
family={Della\bibnamedelima Pietra},
familyi={D\bibinitperiod\bibinitdelim P\bibinitperiod},
given={Vincent\bibnamedelima J},
giveni={V\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
{{hash=48d2d6e25183229596dbf23cf956498e}{%
family={Jelinek},
familyi={J\bibinitperiod},
given={Frederick},
giveni={F\bibinitperiod}}}%
{{hash=88426f033c21f91cad168597555d363d}{%
family={Lafferty},
familyi={L\bibinitperiod},
given={John},
giveni={J\bibinitperiod}}}%
{{hash=619872e7225f85d3b1c89906ec54e067}{%
family={Mercer},
familyi={M\bibinitperiod},
given={Robert\bibnamedelima L},
giveni={R\bibinitperiod\bibinitdelim L\bibinitperiod}}}%
{{hash=60b30df74a8e4cd8b96789ea5dae645e}{%
family={Roossin},
familyi={R\bibinitperiod},
given={Paul\bibnamedelima S},
giveni={P\bibinitperiod\bibinitdelim S\bibinitperiod}}}%
}
\strng{namehash}{e1a7aeb09589fa95d5b84765dc9acb1d}
\strng{fullhash}{16f3c666fcb85cefe7854f3250ea6ff5}
\strng{bibnamehash}{e1a7aeb09589fa95d5b84765dc9acb1d}
\strng{authorbibnamehash}{e1a7aeb09589fa95d5b84765dc9acb1d}
\strng{authornamehash}{e1a7aeb09589fa95d5b84765dc9acb1d}
\strng{authorfullhash}{16f3c666fcb85cefe7854f3250ea6ff5}
\field{sortinit}{B}
\field{sortinithash}{8de16967003c7207dae369d874f1456e}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Computational linguistics}
\field{number}{2}
\field{title}{A statistical approach to machine translation}
\field{volume}{16}
\field{year}{1990}
\field{pages}{79\bibrangedash 85}
\range{pages}{7}
\endentry
\entry{chen2014fast}{inproceedings}{}
\name{author}{2}{}{%
{{hash=aed188db3fc6855ac5666aa14e04a3bb}{%
family={Chen},
familyi={C\bibinitperiod},
given={Danqi},
giveni={D\bibinitperiod}}}%
{{hash=2214edb8305f7ccd7cdc310b3a8ae1b4}{%
family={Manning},
familyi={M\bibinitperiod},
given={Christopher\bibnamedelima D},
giveni={C\bibinitperiod\bibinitdelim D\bibinitperiod}}}%
}
\strng{namehash}{ee9c66797e7327b2ee7b96862e634853}
\strng{fullhash}{ee9c66797e7327b2ee7b96862e634853}
\strng{bibnamehash}{ee9c66797e7327b2ee7b96862e634853}
\strng{authorbibnamehash}{ee9c66797e7327b2ee7b96862e634853}
\strng{authornamehash}{ee9c66797e7327b2ee7b96862e634853}
\strng{authorfullhash}{ee9c66797e7327b2ee7b96862e634853}
\field{sortinit}{C}
\field{sortinithash}{4c244ceae61406cdc0cc2ce1cb1ff703}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)}
\field{title}{A fast and accurate dependency parser using neural networks}
\field{year}{2014}
\field{pages}{740\bibrangedash 750}
\range{pages}{11}
\endentry
\entry{chen1999empirical}{article}{}
\name{author}{2}{}{%
{{hash=22329e4fad1d1d229e5afbe4fe5bcca6}{%
family={Chen},
familyi={C\bibinitperiod},
given={Stanley\bibnamedelima F},
giveni={S\bibinitperiod\bibinitdelim F\bibinitperiod}}}%
{{hash=cff3ac3b4d16dde2f682dce454449cff}{%
family={Goodman},
familyi={G\bibinitperiod},
given={Joshua},
giveni={J\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Elsevier}%
}
\strng{namehash}{e7766dbeb1e894d1a1c85e82dc9d26a7}
\strng{fullhash}{e7766dbeb1e894d1a1c85e82dc9d26a7}
\strng{bibnamehash}{e7766dbeb1e894d1a1c85e82dc9d26a7}
\strng{authorbibnamehash}{e7766dbeb1e894d1a1c85e82dc9d26a7}
\strng{authornamehash}{e7766dbeb1e894d1a1c85e82dc9d26a7}
\strng{authorfullhash}{e7766dbeb1e894d1a1c85e82dc9d26a7}
\field{sortinit}{C}
\field{sortinithash}{4c244ceae61406cdc0cc2ce1cb1ff703}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Computer Speech \& Language}
\field{number}{4}
\field{title}{An empirical study of smoothing techniques for language modeling}
\field{volume}{13}
\field{year}{1999}
\field{pages}{359\bibrangedash 394}
\range{pages}{36}
\endentry
\entry{chomsky2002syntactic}{book}{}
\name{author}{1}{}{%
{{hash=28167c0b3800bc5cfb686676277005b0}{%
family={Chomsky},
familyi={C\bibinitperiod},
given={Noam},
giveni={N\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Walter de Gruyter}%
}
\strng{namehash}{28167c0b3800bc5cfb686676277005b0}
\strng{fullhash}{28167c0b3800bc5cfb686676277005b0}
\strng{bibnamehash}{28167c0b3800bc5cfb686676277005b0}
\strng{authorbibnamehash}{28167c0b3800bc5cfb686676277005b0}
\strng{authornamehash}{28167c0b3800bc5cfb686676277005b0}
\strng{authorfullhash}{28167c0b3800bc5cfb686676277005b0}
\field{sortinit}{C}
\field{sortinithash}{4c244ceae61406cdc0cc2ce1cb1ff703}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{title}{Syntactic structures}
\field{year}{2002}
\endentry
\entry{gale1995good}{article}{}
\name{author}{2}{}{%
{{hash=2347dfd9dcf20ea2a38d78f8e6c8e8ab}{%
family={Gale},
familyi={G\bibinitperiod},
given={William\bibnamedelima A},
giveni={W\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
{{hash=cf4650e11caf59af25efb68329bcd096}{%
family={Sampson},
familyi={S\bibinitperiod},
given={Geoffrey},
giveni={G\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Taylor \& Francis}%
}
\strng{namehash}{2ac04dc08f08d1c00b1f04f417ac73bb}
\strng{fullhash}{2ac04dc08f08d1c00b1f04f417ac73bb}
\strng{bibnamehash}{2ac04dc08f08d1c00b1f04f417ac73bb}
\strng{authorbibnamehash}{2ac04dc08f08d1c00b1f04f417ac73bb}
\strng{authornamehash}{2ac04dc08f08d1c00b1f04f417ac73bb}
\strng{authorfullhash}{2ac04dc08f08d1c00b1f04f417ac73bb}
\field{sortinit}{G}
\field{sortinithash}{62eb2aa29549e4fdbd3cb154ec5711cb}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Journal of quantitative linguistics}
\field{number}{3}
\field{title}{Good-turing frequency estimation without tears}
\field{volume}{2}
\field{year}{1995}
\field{pages}{217\bibrangedash 237}
\range{pages}{21}
\endentry
\entry{good1953population}{article}{}
\name{author}{1}{}{%
{{hash=287d039fb19c46dd90dd18326ebee81a}{%
family={Good},
familyi={G\bibinitperiod},
given={Irving\bibnamedelima J},
giveni={I\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Oxford University Press}%
}
\strng{namehash}{287d039fb19c46dd90dd18326ebee81a}
\strng{fullhash}{287d039fb19c46dd90dd18326ebee81a}
\strng{bibnamehash}{287d039fb19c46dd90dd18326ebee81a}
\strng{authorbibnamehash}{287d039fb19c46dd90dd18326ebee81a}
\strng{authornamehash}{287d039fb19c46dd90dd18326ebee81a}
\strng{authorfullhash}{287d039fb19c46dd90dd18326ebee81a}
\field{sortinit}{G}
\field{sortinithash}{62eb2aa29549e4fdbd3cb154ec5711cb}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Biometrika}
\field{number}{3-4}
\field{title}{The population frequencies of species and the estimation of population parameters}
\field{volume}{40}
\field{year}{1953}
\field{pages}{237\bibrangedash 264}
\range{pages}{28}
\endentry
\entry{huang2015bidirectional}{article}{}
\name{author}{3}{}{%
{{hash=6e8d947dd72de23b8500095b595e1e99}{%
family={Huang},
familyi={H\bibinitperiod},
given={Zhiheng},
giveni={Z\bibinitperiod}}}%
{{hash=b1dd1a9ff59cc6aeba590fc68bcc39cf}{%
family={Xu},
familyi={X\bibinitperiod},
given={Wei},
giveni={W\bibinitperiod}}}%
{{hash=f5a13dcc79cf0ffe67e50260860f709a}{%
family={Yu},
familyi={Y\bibinitperiod},
given={Kai},
giveni={K\bibinitperiod}}}%
}
\strng{namehash}{2f75424f8afa62a5d143e289d08f1665}
\strng{fullhash}{2f75424f8afa62a5d143e289d08f1665}
\strng{bibnamehash}{2f75424f8afa62a5d143e289d08f1665}
\strng{authorbibnamehash}{2f75424f8afa62a5d143e289d08f1665}
\strng{authornamehash}{2f75424f8afa62a5d143e289d08f1665}
\strng{authorfullhash}{2f75424f8afa62a5d143e289d08f1665}
\field{sortinit}{H}
\field{sortinithash}{6db6145dae8dc9e1271a8d556090b50a}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{arXiv preprint arXiv:1508.01991}
\field{title}{Bidirectional LSTM-CRF models for sequence tagging}
\field{year}{2015}
\endentry
\entry{kneser1995improved}{inproceedings}{}
\name{author}{2}{}{%
{{hash=d9f3c3457f75f60955fa5c2b36fc86ec}{%
family={Kneser},
familyi={K\bibinitperiod},
given={Reinhard},
giveni={R\bibinitperiod}}}%
{{hash=cf68a4c2b64db77cc898cdc9fbdeb0c4}{%
family={Ney},
familyi={N\bibinitperiod},
given={Hermann},
giveni={H\bibinitperiod}}}%
}
\list{organization}{1}{%
{IEEE}%
}
\strng{namehash}{68602597fa7a823464f42d5ef1f755d3}
\strng{fullhash}{68602597fa7a823464f42d5ef1f755d3}
\strng{bibnamehash}{68602597fa7a823464f42d5ef1f755d3}
\strng{authorbibnamehash}{68602597fa7a823464f42d5ef1f755d3}
\strng{authornamehash}{68602597fa7a823464f42d5ef1f755d3}
\strng{authorfullhash}{68602597fa7a823464f42d5ef1f755d3}
\field{sortinit}{K}
\field{sortinithash}{d3edc18d54b9438a72c24c925bfb38f4}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{1995 International Conference on Acoustics, Speech, and Signal Processing}
\field{title}{Improved backing-off for m-gram language modeling}
\field{volume}{1}
\field{year}{1995}
\field{pages}{181\bibrangedash 184}
\range{pages}{4}
\endentry
\entry{koehn2003statistical}{inproceedings}{}
\name{author}{3}{}{%
{{hash=dac0b41a5ea5e261d00f3251b76b91bd}{%
family={Koehn},
familyi={K\bibinitperiod},
given={Philipp},
giveni={P\bibinitperiod}}}%
{{hash=32b0f992581826baf8262f7355351480}{%
family={Och},
familyi={O\bibinitperiod},
given={Franz\bibnamedelima Josef},
giveni={F\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
{{hash=e2a39610bfa3753b6cd9117b5f1c4854}{%
family={Marcu},
familyi={M\bibinitperiod},
given={Daniel},
giveni={D\bibinitperiod}}}%
}
\list{organization}{1}{%
{Association for Computational Linguistics}%
}
\strng{namehash}{9f2b4690ea540aa758f18faa6477fd3a}
\strng{fullhash}{9f2b4690ea540aa758f18faa6477fd3a}
\strng{bibnamehash}{9f2b4690ea540aa758f18faa6477fd3a}
\strng{authorbibnamehash}{9f2b4690ea540aa758f18faa6477fd3a}
\strng{authornamehash}{9f2b4690ea540aa758f18faa6477fd3a}
\strng{authorfullhash}{9f2b4690ea540aa758f18faa6477fd3a}
\field{sortinit}{K}
\field{sortinithash}{d3edc18d54b9438a72c24c925bfb38f4}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1}
\field{title}{Statistical phrase-based translation}
\field{year}{2003}
\field{pages}{48\bibrangedash 54}
\range{pages}{7}
\endentry
\entry{kolmogorov2018foundations}{book}{}
\name{author}{2}{}{%
{{hash=9d75b8e6905d1c3bbd7c677597929d6c}{%
family={Kolmogorov},
familyi={K\bibinitperiod},
given={Andre\bibnamedelima Nikolaevich},
giveni={A\bibinitperiod\bibinitdelim N\bibinitperiod}}}%
{{hash=528750b676e83a30cc4ff893ee954b75}{%
family={Bharucha-Reid},
familyi={B\bibinithyphendelim R\bibinitperiod},
given={Albert\bibnamedelima T},
giveni={A\bibinitperiod\bibinitdelim T\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Courier Dover Publications}%
}
\strng{namehash}{f43d1e88513d70674f8e142337d15d17}
\strng{fullhash}{f43d1e88513d70674f8e142337d15d17}
\strng{bibnamehash}{f43d1e88513d70674f8e142337d15d17}
\strng{authorbibnamehash}{f43d1e88513d70674f8e142337d15d17}
\strng{authornamehash}{f43d1e88513d70674f8e142337d15d17}
\strng{authorfullhash}{f43d1e88513d70674f8e142337d15d17}
\field{sortinit}{K}
\field{sortinithash}{d3edc18d54b9438a72c24c925bfb38f4}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{title}{Foundations of the theory of probability: Second English Edition}
\field{year}{2018}
\endentry
\entry{lafferty2001conditional}{article}{}
\name{author}{3}{}{%
{{hash=88426f033c21f91cad168597555d363d}{%
family={Lafferty},
familyi={L\bibinitperiod},
given={John},
giveni={J\bibinitperiod}}}%
{{hash=17d73a3a5be48993791cbe4db8855331}{%
family={McCallum},
familyi={M\bibinitperiod},
given={Andrew},
giveni={A\bibinitperiod}}}%
{{hash=b99bb6fa4fedf907a397363d63528047}{%
family={Pereira},
familyi={P\bibinitperiod},
given={Fernando\bibnamedelima CN},
giveni={F\bibinitperiod\bibinitdelim C\bibinitperiod}}}%
}
\strng{namehash}{f1fb6bc84c219f4a487f94edf3d76b14}
\strng{fullhash}{f1fb6bc84c219f4a487f94edf3d76b14}
\strng{bibnamehash}{f1fb6bc84c219f4a487f94edf3d76b14}
\strng{authorbibnamehash}{f1fb6bc84c219f4a487f94edf3d76b14}
\strng{authornamehash}{f1fb6bc84c219f4a487f94edf3d76b14}
\strng{authorfullhash}{f1fb6bc84c219f4a487f94edf3d76b14}
\field{sortinit}{L}
\field{sortinithash}{dad3efd0836470093a7b4a7bb756eb8c}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{title}{Conditional random fields: Probabilistic models for segmenting and labeling sequence data}
\field{year}{2001}
\endentry
\entry{ma2016end}{article}{}
\name{author}{2}{}{%
{{hash=a8f9a3f746656cec93579a6eb8fcd518}{%
family={Ma},
familyi={M\bibinitperiod},
given={Xuezhe},
giveni={X\bibinitperiod}}}%
{{hash=4c40167d6c8ae2073badfccef0c76767}{%
family={Hovy},
familyi={H\bibinitperiod},
given={Eduard},
giveni={E\bibinitperiod}}}%
}
\strng{namehash}{19c7a6df63f9822d4097371fd8d8a305}
\strng{fullhash}{19c7a6df63f9822d4097371fd8d8a305}
\strng{bibnamehash}{19c7a6df63f9822d4097371fd8d8a305}
\strng{authorbibnamehash}{19c7a6df63f9822d4097371fd8d8a305}
\strng{authornamehash}{19c7a6df63f9822d4097371fd8d8a305}
\strng{authorfullhash}{19c7a6df63f9822d4097371fd8d8a305}
\field{sortinit}{M}
\field{sortinithash}{2e5c2f51f7fa2d957f3206819bf86dc3}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{arXiv preprint arXiv:1603.01354}
\field{title}{End-to-end sequence labeling via bi-directional lstm-cnns-crf}
\field{year}{2016}
\endentry
\entry{mikolov2010recurrent}{inproceedings}{}
\name{author}{5}{}{%
{{hash=4a0e59cc1dbb8ca9e8342475f60e326a}{%
family={Mikolov},
familyi={M\bibinitperiod},
given={Tom{á}{š}},
giveni={T\bibinitperiod}}}%
{{hash=532398c21f4c14f31d6c3f5c9fb97d3b}{%
family={Karafi{á}t},
familyi={K\bibinitperiod},
given={Martin},
giveni={M\bibinitperiod}}}%
{{hash=ec089170ef346616c7b4c55ff60fd6cc}{%
family={Burget},
familyi={B\bibinitperiod},
given={Luk{á}{š}},
giveni={L\bibinitperiod}}}%
{{hash=c2b4fbf4b66e87721a2fbe956a495a78}{%
family={{Č}ernock{ỳ}},
familyi={Č\bibinitperiod},
given={Jan},
giveni={J\bibinitperiod}}}%
{{hash=d787f09b6c6cc374a9ad21fe9120fc1f}{%
family={Khudanpur},
familyi={K\bibinitperiod},
given={Sanjeev},
giveni={S\bibinitperiod}}}%
}
\strng{namehash}{2db95ca456b29eae853859553b1267c8}
\strng{fullhash}{8ba380599995fb34b87426fbc79dbda6}
\strng{bibnamehash}{2db95ca456b29eae853859553b1267c8}
\strng{authorbibnamehash}{2db95ca456b29eae853859553b1267c8}
\strng{authornamehash}{2db95ca456b29eae853859553b1267c8}
\strng{authorfullhash}{8ba380599995fb34b87426fbc79dbda6}
\field{sortinit}{M}
\field{sortinithash}{2e5c2f51f7fa2d957f3206819bf86dc3}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{Eleventh annual conference of the international speech communication association}
\field{title}{Recurrent neural network based language model}
\field{year}{2010}
\endentry
\entry{nagao1984framework}{article}{}
\name{author}{1}{}{%
{{hash=a9664468e1992444282044b192539ec1}{%
family={Nagao},
familyi={N\bibinitperiod},
given={Makoto},
giveni={M\bibinitperiod}}}%
}
\strng{namehash}{a9664468e1992444282044b192539ec1}
\strng{fullhash}{a9664468e1992444282044b192539ec1}
\strng{bibnamehash}{a9664468e1992444282044b192539ec1}
\strng{authorbibnamehash}{a9664468e1992444282044b192539ec1}
\strng{authornamehash}{a9664468e1992444282044b192539ec1}
\strng{authorfullhash}{a9664468e1992444282044b192539ec1}
\field{sortinit}{N}
\field{sortinithash}{98cf339a479c0454fe09153a08675a15}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Artificial and human intelligence}
\field{title}{A framework of a mechanical translation between Japanese and English by analogy principle}
\field{year}{1984}
\field{pages}{351\bibrangedash 354}
\range{pages}{4}
\endentry
\entry{ney1994structuring}{article}{}
\name{author}{3}{}{%
{{hash=cf68a4c2b64db77cc898cdc9fbdeb0c4}{%
family={Ney},
familyi={N\bibinitperiod},
given={Hermann},
giveni={H\bibinitperiod}}}%
{{hash=b2ef0258c04f3ad7e91e09d0279e802e}{%
family={Essen},
familyi={E\bibinitperiod},
given={Ute},
giveni={U\bibinitperiod}}}%
{{hash=d9f3c3457f75f60955fa5c2b36fc86ec}{%
family={Kneser},
familyi={K\bibinitperiod},
given={Reinhard},
giveni={R\bibinitperiod}}}%
}
\strng{namehash}{55fd427c3f707df2bb830dcbeac8cfeb}
\strng{fullhash}{55fd427c3f707df2bb830dcbeac8cfeb}
\strng{bibnamehash}{55fd427c3f707df2bb830dcbeac8cfeb}
\strng{authorbibnamehash}{55fd427c3f707df2bb830dcbeac8cfeb}
\strng{authornamehash}{55fd427c3f707df2bb830dcbeac8cfeb}
\strng{authorfullhash}{55fd427c3f707df2bb830dcbeac8cfeb}
\field{sortinit}{N}
\field{sortinithash}{98cf339a479c0454fe09153a08675a15}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Computer Speech \& Language}
\field{number}{1}
\field{title}{On structuring probabilistic dependences in stochastic language modelling}
\field{volume}{8}
\field{year}{1994}
\field{pages}{1\bibrangedash 38}
\range{pages}{38}
\endentry
\entry{ng2002discriminative}{inproceedings}{}
\name{author}{2}{}{%
{{hash=49e889356ff39df159461bc2895c7e16}{%
family={Ng},
familyi={N\bibinitperiod},
given={Andrew\bibnamedelima Y},
giveni={A\bibinitperiod\bibinitdelim Y\bibinitperiod}}}%
{{hash=8a36116840c7ee55901618c95fd08a58}{%
family={Jordan},
familyi={J\bibinitperiod},
given={Michael\bibnamedelima I},
giveni={M\bibinitperiod\bibinitdelim I\bibinitperiod}}}%
}
\strng{namehash}{dca981b2891288e8bdd7d6fbf1a6a9c4}
\strng{fullhash}{dca981b2891288e8bdd7d6fbf1a6a9c4}
\strng{bibnamehash}{dca981b2891288e8bdd7d6fbf1a6a9c4}
\strng{authorbibnamehash}{dca981b2891288e8bdd7d6fbf1a6a9c4}
\strng{authornamehash}{dca981b2891288e8bdd7d6fbf1a6a9c4}
\strng{authorfullhash}{dca981b2891288e8bdd7d6fbf1a6a9c4}
\field{sortinit}{N}
\field{sortinithash}{98cf339a479c0454fe09153a08675a15}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{Advances in neural information processing systems}
\field{title}{On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes}
\field{year}{2002}
\field{pages}{841\bibrangedash 848}
\range{pages}{8}
\endentry
\entry{papineni2002bleu}{inproceedings}{}
\name{author}{4}{}{%
{{hash=7f72c67734e28d79452d687f2b2825d0}{%
family={Papineni},
familyi={P\bibinitperiod},
given={Kishore},
giveni={K\bibinitperiod}}}%
{{hash=fcdf7cf3f3cfe87d0f08f8f4d98b1137}{%
family={Roukos},
familyi={R\bibinitperiod},
given={Salim},
giveni={S\bibinitperiod}}}%
{{hash=630f7af400534d0e9f11cc0befbb3fe3}{%
family={Ward},
familyi={W\bibinitperiod},
given={Todd},
giveni={T\bibinitperiod}}}%
{{hash=ecc966c09b4816bda3be0efb9bedb125}{%
family={Zhu},
familyi={Z\bibinitperiod},
given={Wei-Jing},
giveni={W\bibinithyphendelim J\bibinitperiod}}}%
}
\list{organization}{1}{%
{Association for Computational Linguistics}%
}
\strng{namehash}{d4eb40956a6de2c2fe50bfef6a72df63}
\strng{fullhash}{0a6e6b36539eaebe00a3fef93d4cd32a}
\strng{bibnamehash}{d4eb40956a6de2c2fe50bfef6a72df63}
\strng{authorbibnamehash}{d4eb40956a6de2c2fe50bfef6a72df63}
\strng{authornamehash}{d4eb40956a6de2c2fe50bfef6a72df63}
\strng{authorfullhash}{0a6e6b36539eaebe00a3fef93d4cd32a}
\field{sortinit}{P}
\field{sortinithash}{bb5b15f2db90f7aef79bb9e83defefcb}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{Proceedings of the 40th annual meeting on association for computational linguistics}
\field{title}{BLEU: a method for automatic evaluation of machine translation}
\field{year}{2002}
\field{pages}{311\bibrangedash 318}
\range{pages}{8}
\endentry
\entry{parsing2009speech}{article}{}
\name{author}{1}{}{%
{{hash=39bd56e32c83d8349b276dbb954c1bd6}{%
family={Parsing},
familyi={P\bibinitperiod},
given={Constituency},
giveni={C\bibinitperiod}}}%
}
\strng{namehash}{39bd56e32c83d8349b276dbb954c1bd6}
\strng{fullhash}{39bd56e32c83d8349b276dbb954c1bd6}
\strng{bibnamehash}{39bd56e32c83d8349b276dbb954c1bd6}
\strng{authorbibnamehash}{39bd56e32c83d8349b276dbb954c1bd6}
\strng{authornamehash}{39bd56e32c83d8349b276dbb954c1bd6}
\strng{authorfullhash}{39bd56e32c83d8349b276dbb954c1bd6}
\field{sortinit}{P}
\field{sortinithash}{bb5b15f2db90f7aef79bb9e83defefcb}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{title}{Speech and language processing}
\field{year}{2009}
\endentry
\entry{resnick1992adventures}{book}{}
\name{author}{1}{}{%
{{hash=2becf933ecad0836916af8d8e92ca548}{%
family={Resnick},
familyi={R\bibinitperiod},
given={Sidney\bibnamedelima I},
giveni={S\bibinitperiod\bibinitdelim I\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Springer Science \& Business Media}%
}
\strng{namehash}{2becf933ecad0836916af8d8e92ca548}
\strng{fullhash}{2becf933ecad0836916af8d8e92ca548}
\strng{bibnamehash}{2becf933ecad0836916af8d8e92ca548}
\strng{authorbibnamehash}{2becf933ecad0836916af8d8e92ca548}
\strng{authornamehash}{2becf933ecad0836916af8d8e92ca548}
\strng{authorfullhash}{2becf933ecad0836916af8d8e92ca548}
\field{sortinit}{R}
\field{sortinithash}{b9c68a358aea118dfa887b6e902414a7}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{title}{Adventures in stochastic processes}
\field{year}{1992}
\endentry
\entry{shannon1948mathematical}{article}{}
\name{author}{1}{}{%
{{hash=536c91678d1dde76c9acd47047556291}{%
family={Shannon},
familyi={S\bibinitperiod},
given={Claude\bibnamedelima E},
giveni={C\bibinitperiod\bibinitdelim E\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Wiley Online Library}%
}
\strng{namehash}{536c91678d1dde76c9acd47047556291}
\strng{fullhash}{536c91678d1dde76c9acd47047556291}
\strng{bibnamehash}{536c91678d1dde76c9acd47047556291}
\strng{authorbibnamehash}{536c91678d1dde76c9acd47047556291}
\strng{authornamehash}{536c91678d1dde76c9acd47047556291}
\strng{authorfullhash}{536c91678d1dde76c9acd47047556291}
\field{sortinit}{S}
\field{sortinithash}{c319cff79d99c853d775f88277d4e45f}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Bell system technical journal}
\field{number}{3}
\field{title}{A mathematical theory of communication}
\field{volume}{27}
\field{year}{1948}
\field{pages}{379\bibrangedash 423}
\range{pages}{45}
\endentry
\entry{shiwen1993automatic}{article}{}
\name{author}{1}{}{%
{{hash=79a954956a47a1a00e0fe51f901be97a}{%
family={Shiwen},
familyi={S\bibinitperiod},
given={Yu},
giveni={Y\bibinitperiod}}}%
}
\list{publisher}{1}{%
{Springer}%
}
\strng{namehash}{79a954956a47a1a00e0fe51f901be97a}
\strng{fullhash}{79a954956a47a1a00e0fe51f901be97a}
\strng{bibnamehash}{79a954956a47a1a00e0fe51f901be97a}
\strng{authorbibnamehash}{79a954956a47a1a00e0fe51f901be97a}
\strng{authornamehash}{79a954956a47a1a00e0fe51f901be97a}
\strng{authorfullhash}{79a954956a47a1a00e0fe51f901be97a}
\field{sortinit}{S}
\field{sortinithash}{c319cff79d99c853d775f88277d4e45f}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Machine Translation}
\field{number}{1-2}
\field{title}{Automatic evaluation of output quality for machine translation systems}
\field{volume}{8}
\field{year}{1993}
\field{pages}{117\bibrangedash 126}
\range{pages}{10}
\endentry
\entry{snover2006study}{inproceedings}{}
\name{author}{5}{}{%
{{hash=57fddde22dd45c3fd89f698609a15e64}{%
family={Snover},
familyi={S\bibinitperiod},
given={Matthew},
giveni={M\bibinitperiod}}}%
{{hash=c401d97f1db13573221c0d16dc3cf8c8}{%
family={Dorr},
familyi={D\bibinitperiod},
given={Bonnie},
giveni={B\bibinitperiod}}}%
{{hash=ed9b7985941f821b7c600e3973f62e51}{%
family={Schwartz},
familyi={S\bibinitperiod},
given={Richard},
giveni={R\bibinitperiod}}}%
{{hash=0a0cf3ca917fdcd5c1b176d34e1d6a7f}{%
family={Micciulla},
familyi={M\bibinitperiod},
given={Linnea},
giveni={L\bibinitperiod}}}%
{{hash=be711c1d20e2f962368bf225974dc978}{%
family={Makhoul},
familyi={M\bibinitperiod},
given={John},
giveni={J\bibinitperiod}}}%
}
\strng{namehash}{a778f5e3fb96c1f0f14573ab770f17d2}
\strng{fullhash}{3c6143a66e4a7a04971c5c4c84f895fe}
\strng{bibnamehash}{a778f5e3fb96c1f0f14573ab770f17d2}
\strng{authorbibnamehash}{a778f5e3fb96c1f0f14573ab770f17d2}
\strng{authornamehash}{a778f5e3fb96c1f0f14573ab770f17d2}
\strng{authorfullhash}{3c6143a66e4a7a04971c5c4c84f895fe}
\field{sortinit}{S}
\field{sortinithash}{c319cff79d99c853d775f88277d4e45f}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{Proceedings of association for machine translation in the Americas}
\field{number}{6}
\field{title}{A study of translation edit rate with targeted human annotation}
\field{volume}{200}
\field{year}{2006}
\endentry
\entry{sutskever2014sequence}{inproceedings}{}
\name{author}{3}{}{%
{{hash=8d569d1d5b8b5a7836017a98b430f959}{%
family={Sutskever},
familyi={S\bibinitperiod},
given={Ilya},
giveni={I\bibinitperiod}}}%
{{hash=494b568c5dc85ba8f3f409635f9c5f25}{%
family={Vinyals},
familyi={V\bibinitperiod},
given={Oriol},
giveni={O\bibinitperiod}}}%
{{hash=c636f146591d51579a8119b777394878}{%
family={Le},
familyi={L\bibinitperiod},
given={Quoc\bibnamedelima V},
giveni={Q\bibinitperiod\bibinitdelim V\bibinitperiod}}}%
}
\strng{namehash}{d60494862bf48faf76d925f3780a6aee}
\strng{fullhash}{d60494862bf48faf76d925f3780a6aee}
\strng{bibnamehash}{d60494862bf48faf76d925f3780a6aee}
\strng{authorbibnamehash}{d60494862bf48faf76d925f3780a6aee}
\strng{authornamehash}{d60494862bf48faf76d925f3780a6aee}
\strng{authorfullhash}{d60494862bf48faf76d925f3780a6aee}
\field{sortinit}{S}
\field{sortinithash}{c319cff79d99c853d775f88277d4e45f}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{booktitle}{Advances in neural information processing systems}
\field{title}{Sequence to sequence learning with neural networks}
\field{year}{2014}
\field{pages}{3104\bibrangedash 3112}
\range{pages}{9}
\endentry
\entry{zhu2015long}{article}{}
\name{author}{3}{}{%
{{hash=7db206795c9c6671b7060b6153bcdab6}{%
family={Zhu},
familyi={Z\bibinitperiod},
given={Xiaodan},
giveni={X\bibinitperiod}}}%
{{hash=aafed55fdbb7a25c1ab43ed724eb953c}{%
family={Sobhani},
familyi={S\bibinitperiod},
given={Parinaz},
giveni={P\bibinitperiod}}}%
{{hash=9ef1c27eeeb236462f52032de708fe81}{%
family={Guo},
familyi={G\bibinitperiod},
given={Hongyu},
giveni={H\bibinitperiod}}}%
}
\strng{namehash}{08aaf389d8d0218d66adedd3df030f19}
\strng{fullhash}{08aaf389d8d0218d66adedd3df030f19}
\strng{bibnamehash}{08aaf389d8d0218d66adedd3df030f19}
\strng{authorbibnamehash}{08aaf389d8d0218d66adedd3df030f19}
\strng{authornamehash}{08aaf389d8d0218d66adedd3df030f19}
\strng{authorfullhash}{08aaf389d8d0218d66adedd3df030f19}
\field{sortinit}{Z}
\field{sortinithash}{8f7b480688e809b50b6f6577b16f3db5}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{arXiv: Computation and Language}
\field{title}{Long Short-Term Memory Over Tree Structures.}
\field{year}{2015}
\endentry
\entry{liuke-markov-2004}{book}{}
\name{author}{1}{}{%
{{hash=c01ef9a560378730f00ebeecceb572d4}{%
family={刘克},
familyi={刘\bibinitperiod}}}%
}
\list{publisher}{1}{%
{清华大学出版社}%
}
\strng{namehash}{c01ef9a560378730f00ebeecceb572d4}
\strng{fullhash}{c01ef9a560378730f00ebeecceb572d4}
\strng{bibnamehash}{c01ef9a560378730f00ebeecceb572d4}
\strng{authorbibnamehash}{c01ef9a560378730f00ebeecceb572d4}
\strng{authornamehash}{c01ef9a560378730f00ebeecceb572d4}
\strng{authorfullhash}{c01ef9a560378730f00ebeecceb572d4}
\field{sortinit}{刘}
\field{sortinithash}{f3ff24b163d4496b49484b7a115b76c9}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{title}{实用马尔可夫决策过程}
\field{volume}{3}
\field{year}{2004}
\endentry
\entry{mao-prob-book-2011}{book}{}
\name{author}{6}{}{%
{{hash=2830831f67df549d8bcc4980e281a6ca}{%
family={茆诗松},
familyi={茆\bibinitperiod}}}%
{{hash=07f329c27730232bd243800625979283}{%
family={程依明},
familyi={程\bibinitperiod}}}%
{{hash=614b04f1697449a3d7a6615f9552d64d}{%
family={濮晓龙},
familyi={濮\bibinitperiod}}}%
{{hash=75212c77695d1b78aaf6d5f383728eb4}{%
family={平装},
familyi={平\bibinitperiod}}}%
{{hash=4d7ffbb58d61f76765dea25a0d4da1ec}{%
family={查看清},
familyi={查\bibinitperiod}}}%
{{hash=562a92d3f2b96306488b04b8b94b427a}{%
family={单书目},
familyi={单\bibinitperiod}}}%
}
\list{publisher}{1}{%
{北京: 高等教育出版社}%
}
\strng{namehash}{a5d297d55af03f5c30541752e4e66972}
\strng{fullhash}{0cd8944e1838d053c86a350a486cd430}
\strng{bibnamehash}{a5d297d55af03f5c30541752e4e66972}
\strng{authorbibnamehash}{a5d297d55af03f5c30541752e4e66972}
\strng{authornamehash}{a5d297d55af03f5c30541752e4e66972}
\strng{authorfullhash}{0cd8944e1838d053c86a350a486cd430}
\field{sortinit}{茆}
\field{sortinithash}{e6b0878d3262ba263a8d6ee4986b856f}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{title}{概率论与数理统计教程: 第二版}
\field{year}{2011}
\endentry
\enddatalist
\missing{huang2008advanced}
\endrefsection
\endinput
......@@ -54,7 +54,8 @@
%----------------------------------------------------------------------------------------
\IfFileExists{C:/WINDOWS/win.ini}
{\newcommand{\mycfont}{song}}
{\newcommand{\mycfont}{you}}
{\newcommand{\mycfont}{gbsn}}
\begin{CJK}{UTF8}{\mycfont}
\end{CJK}
......@@ -117,7 +118,7 @@
%\chapter*{Bibliography}
%\addcontentsline{toc}{chapter}{\textcolor{ocre}{Bibliography}} % 增加一个标题
%\printbibliography[heading=bibempty]
\printbibliography
%\printbibliography
%------------------------------------------------
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论