Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Toy-MT-Introduction
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
单韦乔
Toy-MT-Introduction
Commits
9974fde7
Commit
9974fde7
authored
Nov 14, 2019
by
Lee
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of
http://47.105.50.196/NiuTrans/Toy-MT-Introduction
parents
ed397f52
2b827edc
隐藏空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
330 行增加
和
69 行删除
+330
-69
Section06-Neural-Machine-Translation/section06-test.tex
+163
-69
Section06-Neural-Machine-Translation/section06.tex
+167
-0
没有找到文件。
Section06-Neural-Machine-Translation/section06-test.tex
查看文件 @
9974fde7
...
...
@@ -83,6 +83,7 @@
\newcounter
{
mycount3
}
\newcounter
{
mycount4
}
\newlength
{
\mystep
}
\newlength
{
\base
}
\usefonttheme
[onlylarge]
{
structurebold
}
...
...
@@ -138,83 +139,176 @@
\subsection
{
注意力机制
}
%%%------------------------------------------------------------------------------------------------------------
%%%
C_i的定义
\begin{frame}
{
上下文向量
$
C
_
i
$
}
%%%
NMT的数学描述
\begin{frame}
{
数学建模
}
\begin{itemize}
\item
对于目标语位置
$
i
$
,
$
C
_
i
$
是目标语
$
i
$
使用的上下文向量
\begin{itemize}
\item
$
h
_
j
$
表示编码器第
$
j
$
个位置的隐层状态
\item
$
s
_
i
$
表示解码器第
$
i
$
个位置的隐层状态
\item
<2->
$
\alpha
_{
i,j
}$
表示注意力权重,表示目标语第
$
i
$
个位置与源语第
$
j
$
个位置之间的相关性大小
\item
<2->
$
a
(
\cdot
)
$
表示注意力函数,计算
$
s
_{
i
-
1
}$
和
$
h
_
j
$
之间的相关性
\item
<3->
$
C
_
i
$
是所有源语编码表示a
$
\{
h
_
j
\}
$
的加权求和,权重为
$
\{\alpha
_{
i,j
}
\}
$
\end{itemize}
\end{itemize}
\begin{center}
\begin{tikzpicture}
\begin{scope}
\node
[anchor=west,draw,fill=red!20!white,inner sep=3pt,minimum width=2em,minimum height=1.2em] (h1) at (0,0)
{
\scriptsize
{$
h
_
1
$}}
;
\node
[anchor=west,draw,fill=red!20!white,inner sep=3pt,minimum width=2em,minimum height=1.2em] (h2) at ([xshift=1em]h1.east)
{
\scriptsize
{$
h
_
2
$}}
;
\node
[anchor=west,inner sep=0pt,minimum width=3em] (h3) at ([xshift=0.5em]h2.east)
{
\scriptsize
{
...
}}
;
\node
[anchor=west,draw,fill=red!20!white,inner sep=3pt,minimum width=2em,minimum height=1.2em] (h4) at ([xshift=0.5em]h3.east)
{
\scriptsize
{$
h
_
n
$}}
;
\node
[anchor=south,circle,minimum size=1.0em,draw,ublue,thick] (sum) at ([yshift=2em]h2.north east)
{}
;
\draw
[thick,-,ublue] (sum.north) -- (sum.south);
\draw
[thick,-,ublue] (sum.west) -- (sum.east);
\item
对于源语言序列
$
\textbf
{
x
}
=
\{
x
_
1
,x
_
2
,...,x
_
m
\}
$
,生成目标语序列
$
\textbf
{
y
}
=
\{
y
_
1
,y
_
2
,...,y
_
n
\}
$
的概率可以被描述为
\node
[anchor=south,draw,fill=green!20!white,inner sep=3pt,minimum width=2em,minimum height=1.2em] (th1) at ([yshift=2em,xshift=-1em]sum.north west)
{
\scriptsize
{$
s
_{
i
-
1
}$}}
;
\node
[anchor=west,draw,fill=green!20!white,inner sep=3pt,minimum width=2em,minimum height=1.2em] (th2) at ([xshift=2em]th1.east)
{
\scriptsize
{$
s
_{
i
}$}}
;
\begin{displaymath}
\log\textrm
{
P
}
(
\textbf
{
y
}
|
\textbf
{
x
}
) =
\sum
_{
j=1
}^{
n
}
\log\textrm
{
P
}
(y
_
j|
\textbf
{
y
}_{
<j
}
,
\textbf
{
x
}
)
\end{displaymath}
\draw
[->] (h1.north) .. controls +(north:0.8) and +(west:1) .. (sum.190) node [pos=0.3,left]
{
\tiny
{$
\alpha
_{
i,
1
}$}}
;
\draw
[->] (h2.north) .. controls +(north:0.6) and +(220:0.2) .. (sum.220) node [pos=0.2,right]
{
\tiny
{$
\alpha
_{
i,
2
}$}}
;
\draw
[->] (h4.north) .. controls +(north:0.8) and +(east:1) .. (sum.-10) node [pos=0.1,left] (alphan)
{
\tiny
{$
\alpha
_{
i,n
}$}}
;
根据源于句子
$
\textbf
{
x
}$
和已生成的译文
$
\textbf
{
y
}_{
<j
}
=
\{
y
_
1
,y
_
2
,...,y
_{
j
-
1
}
\}
$
生成第
$
j
$
个译文
$
y
_
j
$
\draw
[->] ([xshift=-1.5em]th1.west) -- ([xshift=-0.1em]th1.west);
\draw
[->] ([xshift=0.1em]th1.east) -- ([xshift=-0.1em]th2.west);
\draw
[->] ([xshift=0.1em]th2.east) -- ([xshift=1.5em]th2.east);
\draw
[->] (sum.north) .. controls +(north:0.8) and +(west:0.2) .. ([yshift=-0.4em,xshift=-0.1em]th2.west) node [pos=0.2,right] (ci)
{
\scriptsize
{$
C
_{
i
}$}}
;
\node
[anchor=south,inner sep=1pt] (output) at ([yshift=0.8em]th2.north)
{
\tiny
{
输出层
}}
;
\draw
[->] ([yshift=0.1em]th2.north) -- ([yshift=-0.1em]output.south);
\node
[anchor=north] (enc1) at (h1.south)
{
\tiny
{
编码器输出
}}
;
\node
[anchor=north] (enc12) at ([yshift=0.5em]enc1.south)
{
\tiny
{
(位置
$
1
$
)
}}
;
\node
[anchor=north] (enc2) at (h2.south)
{
\tiny
{
编码器输出
}}
;
\node
[anchor=north] (enc22) at ([yshift=0.5em]enc2.south)
{
\tiny
{
(位置
$
2
$
)
}}
;
\node
[anchor=north] (enc4) at (h4.south)
{
\tiny
{
编码器输出
}}
;
\node
[anchor=north] (enc42) at ([yshift=0.5em]enc4.south)
{
\tiny
{
(位置
$
4
$
)
}}
;
\visible
<2->
{
\node
[anchor=west] (math1) at ([xshift=5em,yshift=1em]th2.east)
{$
C
_
i
=
\sum
_{
j
}
\alpha
_{
i,j
}
h
_
j
\ \
$}
;
}
\visible
<3->
{
\node
[anchor=north west] (math2) at ([yshift=-2em]math1.south west)
{$
\alpha
_{
i,j
}
=
\frac
{
\exp
(
\beta
_{
i,j
}
)
}{
\sum
_
j
\exp
(
\beta
_{
i,j
}
)
}$}
;
\node
[anchor=north west] (math3) at ([yshift=-0em]math2.south west)
{$
\beta
_{
i,j
}
=
a
(
s
_{
i
-
1
}
, h
_
j
)
$}
;
}
\item
<2->
\textbf
{
核心
}
:如何求解
$
\textrm
{
P
}
(
y
_
j|
\textbf
{
y
}_{
<j
}
,
\textbf
{
x
}
)
$
。在这个循环神经网络模型中,有三个步骤
\begin{enumerate}
\item
输入的单词用分布式表示,如
$
\textbf
{
x
}$
被表示为词向量序列
$
e
_
x
(
\textbf
{
x
}
)
$
,同理
$
\textbf
{
y
}_{
<j
}$
被表示为
$
e
_
y
(
\textbf
{
y
}_{
<j
}
)
$
\item
源语言句子被一个RNN编码为一个表示
$
C
$
,如前面的例子中是一个实数向量
\item
目标端解码用另一个RNN,因此生成
$
y
_
j
$
时只考虑前一个状态
$
s
_{
j
-
1
}$
(这里,
$
s
_{
j
-
1
}$
表示RNN第
$
j
-
1
$
步骤的隐层状态)
\end{enumerate}
\end{itemize}
\end{frame}
\begin{pgfonlayer}
{
background
}
\visible
<2->
{
\node
[rectangle,inner sep=0.4em,rounded corners=1pt,fill=blue!10,drop shadow] [fit = (math1)] (box1)
{}
;
}
\visible
<3->
{
\node
[rectangle,inner sep=0.4em,rounded corners=1pt,fill=orange!10,drop shadow] [fit = (math2) (math3)] (box2)
{}
;
}
\end{pgfonlayer}
%%%------------------------------------------------------------------------------------------------------------
%%% 各部分的解释
\begin{frame}
{
数学建模(续)
}
\vspace
{
-1.5em
}
\begin{center}
% \hspace*{-1.5cm}
\begin{tikzpicture}
\setlength
{
\base
}{
0.9cm
}
\tikzstyle
{
rnnnode
}
= [rounded corners=1pt,minimum height=0.5
\base
,minimum width=1
\base
,draw,inner sep=0pt,outer sep=0pt]
\tikzstyle
{
wordnode
}
= [font=
\tiny
]
% RNN translation model
\begin{scope}
[local bounding box=RNNMT]
% RNN Encoder
\coordinate
(eemb0) at (0,0);
\foreach
\x
[count=
\y
from 0] in
{
1,2,...,3
}
\node
[rnnnode,minimum height=0.5\base,fill=green!30!white,anchor=west]
(eemb
\x
) at ([xshift=0.4
\base
]eemb
\y
.east)
{
\tiny
{$
e
_
x
()
$}}
;
\foreach
\x
in
{
1,2,...,3
}
\node
[rnnnode,fill=blue!30!white,anchor=south]
(enc
\x
) at ([yshift=0.3
\base
]eemb
\x
.north)
{}
;
\node
[]
(enclabel1) at (enc1)
{
\tiny
{$
h
_{
m
-
2
}$}}
;
\node
[]
(enclabel2) at (enc2)
{
\tiny
{$
h
_{
m
-
1
}$}}
;
\node
[rnnnode,fill=purple!30!white]
(enclabel3) at (enc3)
{
\tiny
{$
h
_{
m
}$}}
;
\node
[wordnode,left=0.4\base of enc1]
(init1)
{$
\cdots
$}
;
\node
[wordnode,left=0.4\base of eemb1]
(init2)
{$
\cdots
$}
;
\node
[wordnode,below=0pt of eemb1]
()
{
走
}
;
\node
[wordnode,below=0pt of eemb2]
()
{
吗
}
;
\node
[wordnode,below=0pt of eemb3]
()
{$
\langle
$
eos
$
\rangle
$}
;
% RNN Decoder
\foreach
\x
in
{
1,2,...,3
}
\node
[rnnnode,minimum height=0.5\base,fill=green!30!white,anchor=south]
(demb
\x
) at ([yshift=
\base
]enc
\x
.north)
{
\tiny
{$
e
_
y
()
$}}
;
\foreach
\x
in
{
1,2,...,3
}
\node
[rnnnode,fill=blue!30!white,anchor=south]
(dec
\x
) at ([yshift=0.3
\base
]demb
\x
.north)
{{
\tiny
{$
s
_
\x
$}}}
;
\foreach
\x
in
{
1,2,...,3
}
\node
[rnnnode,minimum height=0.5\base,fill=red!30!white,anchor=south]
(softmax
\x
) at ([yshift=0.3
\base
]dec
\x
.north)
{
\tiny
{
Softmax
}}
;
\node
[wordnode,right=0.4\base of demb3]
(end1)
{$
\cdots
$}
;
\node
[wordnode,right=0.4\base of dec3]
(end2)
{$
\cdots
$}
;
\node
[wordnode,right=0.4\base of softmax3]
(end3)
{$
\cdots
$}
;
% Decoder input words
\node
[wordnode,below=0pt of demb1]
(decwordin)
{$
\langle
$
sos
$
\rangle
$}
;
\ExtractX
{$
(
demb
2
.south
)
$}
\ExtractY
{$
(
decwordin.base
)
$}
\node
[wordnode,anchor=base]
() at (
\XCoord
,
\YCoord
)
{
Do
}
;
\ExtractX
{$
(
demb
3
.south
)
$}
\ExtractY
{$
(
decwordin.base
)
$}
\node
[wordnode,anchor=base]
() at (
\XCoord
,
\YCoord
)
{
you
}
;
% Decoder output words
\node
[wordnode,above=0pt of softmax1]
(decwordout)
{
Do
}
;
\ExtractX
{$
(
softmax
2
.north
)
$}
\ExtractY
{$
(
decwordout.base
)
$}
\node
[wordnode,anchor=base]
() at (
\XCoord
,
\YCoord
)
{
you
}
;
\ExtractX
{$
(
softmax
3
.north
)
$}
\ExtractY
{$
(
decwordout.base
)
$}
\node
[wordnode,anchor=base]
() at (
\XCoord
,
\YCoord
)
{
know
}
;
% Connections
\draw
[-latex']
(init1.east) to (enc1.west);
\draw
[-latex']
(dec3.east) to (end2.west);
\foreach
\x
in
{
1,2,...,3
}
\draw
[-latex']
(eemb
\x
) to (enc
\x
);
\foreach
\x
in
{
1,2,...,3
}
\draw
[-latex']
(demb
\x
) to (dec
\x
);
\foreach
\x
in
{
1,2,...,3
}
\draw
[-latex']
(dec
\x
.north) to (softmax
\x
.south);
\foreach
\x
[count=
\y
from 2] in
{
1,2
}
{
\draw
[-latex']
(enc
\x
.east) to (enc
\y
.west);
\draw
[-latex']
(dec
\x
.east) to (dec
\y
.west);
}
\coordinate
(bridge) at ([yshift=0.4
\base
]enc2.north west);
\draw
[-latex']
(enc3.north) .. controls +(north:0.3
\base
) and +(east:
\base
) .. (bridge) .. controls +(west:2.7
\base
) and +(west:0.3
\base
) .. (dec1.west);
\visible
<2->
{
\node
[anchor=east] (line1) at ([xshift=-3em,yshift=0.5em]softmax1.west)
{
\scriptsize
{
基于RNN的隐层状态
$
s
_
i
$}}
;
\node
[anchor=north west] (line2) at ([yshift=0.3em]line1.south west)
{
\scriptsize
{
预测目标词的概率
}}
;
\node
[anchor=north west] (line3) at ([yshift=0.3em]line2.south west)
{
\scriptsize
{
通常,用Softmax函数
}}
;
\node
[anchor=north west] (line4) at ([yshift=0.3em]line3.south west)
{
\scriptsize
{
实现
$
\textrm
{
P
}
(
y
_
i|...
)
$}}
;
}
\visible
<3->
{
\node
[anchor=north west] (line11) at ([yshift=-1.8em]line4.west)
{
\scriptsize
{
每个词的one-hot
}}
;
\node
[anchor=north west] (line12) at ([yshift=0.3em]line11.south west)
{
\scriptsize
{
离散化表示都被转化为
}}
;
\node
[anchor=north west] (line13) at ([yshift=0.3em]line12.south west)
{
\scriptsize
{
实数向量,即词嵌入
}}
;
\node
[anchor=north west] (line14) at ([yshift=0.3em]line13.south west)
{
\scriptsize
{
(
$
e
_
x
()
$
和
$
e
_
y
()
$
函数)
}}
;
}
\visible
<4->
{
\node
[anchor=west] (line21) at ([xshift=1.3em,yshift=1.5em]enc3.east)
{
\scriptsize
{
源语编码器最后一个
}}
;
\node
[anchor=north west] (line22) at ([yshift=0.3em]line21.south west)
{
\scriptsize
{
循环单元的输出被
}}
;
\node
[anchor=north west] (line23) at ([yshift=0.3em]line22.south west)
{
\scriptsize
{
看作是句子的表示,
}}
;
\node
[anchor=north west] (line24) at ([yshift=0.3em]line23.south west)
{
\scriptsize
{
记为
$
C
$}}
;
}
\begin{pgfonlayer}
{
background
}
\visible
<2->
{
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,fill=red!10,drop shadow,draw=red] [fit = (line1) (line2) (line3) (line4)] (box1)
{}
;
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,very thick,dotted,draw=red] [fit = (softmax1) (softmax2) (softmax3)] (box4)
{}
;
\draw
[->,dotted,very thick,red] ([yshift=1em,xshift=2.5em]box1.east) -- ([yshift=1em,xshift=0.1em]box1.east);
}
\visible
<3->
{
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,fill=green!10,drop shadow,draw=ugreen] [fit = (line11) (line12) (line13) (line14)] (box2)
{}
;
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,very thick,dotted,draw=ugreen] [fit = (eemb1) (eemb2) (eemb3)] (box5)
{}
;
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,very thick,dotted,draw=ugreen] [fit = (demb1) (demb2) (demb3)] (box6)
{}
;
\draw
[->,dotted,very thick,ugreen] ([yshift=-1.3em,xshift=2.5em]box2.east) -- ([yshift=-1.3em,xshift=0.1em]box2.east);
\draw
[->,dotted,very thick,ugreen] ([xshift=0.1em]box6.west) .. controls +(west:1) and +(east:1) .. ([yshift=1.0em]box2.east) ;
}
\visible
<4->
{
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,fill=purple!10,drop shadow,draw=purple] [fit = (line21) (line22) (line23) (line24)] (box3)
{}
;
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,very thick,dotted,draw=purple] [fit = (enc3)] (box7)
{}
;
\draw
[->,dotted,very thick,purple] ([xshift=0.1em]box7.east) -- ([xshift=0.8em]box7.east) ;
}
\end{pgfonlayer}
\end{scope}
\end{tikzpicture}
\end{center}
\visible
<5->
{
\vspace
{
-1.5em
}
\begin{itemize}
\item
可以重新定义
\\
\vspace
{
-0.8em
}
\begin{displaymath}
\textrm
{
P
}
(y
_
j|
\textbf
{
y
}_{
<j
}
,
\textbf
{
x
}
)
\triangleq
\textrm
{
P
}
(y
_
j|s
_{
j-1
}
, C)
\end{displaymath}
对于上图中的模型,进一步化简为:
\\
\vspace
{
-0.3em
}
\begin{displaymath}
\textrm
{
P
}
(y
_
j|
\textbf
{
y
}_{
<j
}
,
\textbf
{
x
}
)
\triangleq
\left\{
\begin{matrix}
\textrm
{
P
}
(y
_
j|C)
\ \ \ \
&
j = 1
\\
\textrm
{
P
}
(y
_
j|s
_{
j-1
}
)
&
j > 1
\end{matrix}
\right
.
\end{displaymath}
\visible
<2->
{
\draw
[->,dotted,thick,blue] (box1.west) .. controls +(west:1.2) and +(east:2.0) .. ([xshift=-0.3em]ci.east);
}
\visible
<3->
{
\draw
[->,dotted,thick,orange] ([yshift=1em]box2.west) .. controls +(west:1.2) and +(east:1.0) .. ([xshift=-0.35em]alphan.east);
\end{itemize}
}
\end{scope}
\end{tikzpicture}
\end{center}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
...
...
Section06-Neural-Machine-Translation/section06.tex
查看文件 @
9974fde7
...
...
@@ -851,9 +851,176 @@ NLP问题的隐含结构假设 & 无隐含结构假设,端到端学习 \\
%%%------------------------------------------------------------------------------------------------------------
%%% NMT的数学描述
\begin{frame}
{
数学建模
}
\begin{itemize}
\item
对于源语言序列
$
\textbf
{
x
}
=
\{
x
_
1
,x
_
2
,...,x
_
m
\}
$
,生成目标语序列
$
\textbf
{
y
}
=
\{
y
_
1
,y
_
2
,...,y
_
n
\}
$
的概率可以被描述为
\begin{displaymath}
\log\textrm
{
P
}
(
\textbf
{
y
}
|
\textbf
{
x
}
) =
\sum
_{
j=1
}^{
n
}
\log\textrm
{
P
}
(y
_
j|
\textbf
{
y
}_{
<j
}
,
\textbf
{
x
}
)
\end{displaymath}
根据源于句子
$
\textbf
{
x
}$
和已生成的译文
$
\textbf
{
y
}_{
<j
}
=
\{
y
_
1
,y
_
2
,...,y
_{
j
-
1
}
\}
$
生成第
$
j
$
个译文
$
y
_
j
$
\item
<2->
\textbf
{
核心
}
:如何求解
$
\textrm
{
P
}
(
y
_
j|
\textbf
{
y
}_{
<j
}
,
\textbf
{
x
}
)
$
。在这个循环神经网络模型中,有三个步骤
\begin{enumerate}
\item
输入的单词用分布式表示,如
$
\textbf
{
x
}$
被表示为词向量序列
$
e
_
x
(
\textbf
{
x
}
)
$
,同理
$
\textbf
{
y
}_{
<j
}$
被表示为
$
e
_
y
(
\textbf
{
y
}_{
<j
}
)
$
\item
源语言句子被一个RNN编码为一个表示
$
C
$
,如前面的例子中是一个实数向量
\item
目标端解码用另一个RNN,因此生成
$
y
_
j
$
时只考虑前一个状态
$
s
_{
j
-
1
}$
(这里,
$
s
_{
j
-
1
}$
表示RNN第
$
j
-
1
$
步骤的隐层状态)
\end{enumerate}
\end{itemize}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
%%% 各部分的解释
\begin{frame}
{
数学建模(续)
}
\vspace
{
-1.5em
}
\begin{center}
% \hspace*{-1.5cm}
\begin{tikzpicture}
\setlength
{
\base
}{
0.9cm
}
\tikzstyle
{
rnnnode
}
= [rounded corners=1pt,minimum height=0.5
\base
,minimum width=1
\base
,draw,inner sep=0pt,outer sep=0pt]
\tikzstyle
{
wordnode
}
= [font=
\tiny
]
% RNN translation model
\begin{scope}
[local bounding box=RNNMT]
% RNN Encoder
\coordinate
(eemb0) at (0,0);
\foreach
\x
[count=
\y
from 0] in
{
1,2,...,3
}
\node
[rnnnode,minimum height=0.5\base,fill=green!30!white,anchor=west]
(eemb
\x
) at ([xshift=0.4
\base
]eemb
\y
.east)
{
\tiny
{$
e
_
x
()
$}}
;
\foreach
\x
in
{
1,2,...,3
}
\node
[rnnnode,fill=blue!30!white,anchor=south]
(enc
\x
) at ([yshift=0.3
\base
]eemb
\x
.north)
{}
;
\node
[]
(enclabel1) at (enc1)
{
\tiny
{$
h
_{
m
-
2
}$}}
;
\node
[]
(enclabel2) at (enc2)
{
\tiny
{$
h
_{
m
-
1
}$}}
;
\node
[rnnnode,fill=purple!30!white]
(enclabel3) at (enc3)
{
\tiny
{$
h
_{
m
}$}}
;
\node
[wordnode,left=0.4\base of enc1]
(init1)
{$
\cdots
$}
;
\node
[wordnode,left=0.4\base of eemb1]
(init2)
{$
\cdots
$}
;
\node
[wordnode,below=0pt of eemb1]
()
{
走
}
;
\node
[wordnode,below=0pt of eemb2]
()
{
吗
}
;
\node
[wordnode,below=0pt of eemb3]
()
{$
\langle
$
eos
$
\rangle
$}
;
% RNN Decoder
\foreach
\x
in
{
1,2,...,3
}
\node
[rnnnode,minimum height=0.5\base,fill=green!30!white,anchor=south]
(demb
\x
) at ([yshift=
\base
]enc
\x
.north)
{
\tiny
{$
e
_
y
()
$}}
;
\foreach
\x
in
{
1,2,...,3
}
\node
[rnnnode,fill=blue!30!white,anchor=south]
(dec
\x
) at ([yshift=0.3
\base
]demb
\x
.north)
{{
\tiny
{$
s
_
\x
$}}}
;
\foreach
\x
in
{
1,2,...,3
}
\node
[rnnnode,minimum height=0.5\base,fill=red!30!white,anchor=south]
(softmax
\x
) at ([yshift=0.3
\base
]dec
\x
.north)
{
\tiny
{
Softmax
}}
;
\node
[wordnode,right=0.4\base of demb3]
(end1)
{$
\cdots
$}
;
\node
[wordnode,right=0.4\base of dec3]
(end2)
{$
\cdots
$}
;
\node
[wordnode,right=0.4\base of softmax3]
(end3)
{$
\cdots
$}
;
% Decoder input words
\node
[wordnode,below=0pt of demb1]
(decwordin)
{$
\langle
$
sos
$
\rangle
$}
;
\ExtractX
{$
(
demb
2
.south
)
$}
\ExtractY
{$
(
decwordin.base
)
$}
\node
[wordnode,anchor=base]
() at (
\XCoord
,
\YCoord
)
{
Do
}
;
\ExtractX
{$
(
demb
3
.south
)
$}
\ExtractY
{$
(
decwordin.base
)
$}
\node
[wordnode,anchor=base]
() at (
\XCoord
,
\YCoord
)
{
you
}
;
% Decoder output words
\node
[wordnode,above=0pt of softmax1]
(decwordout)
{
Do
}
;
\ExtractX
{$
(
softmax
2
.north
)
$}
\ExtractY
{$
(
decwordout.base
)
$}
\node
[wordnode,anchor=base]
() at (
\XCoord
,
\YCoord
)
{
you
}
;
\ExtractX
{$
(
softmax
3
.north
)
$}
\ExtractY
{$
(
decwordout.base
)
$}
\node
[wordnode,anchor=base]
() at (
\XCoord
,
\YCoord
)
{
know
}
;
% Connections
\draw
[-latex']
(init1.east) to (enc1.west);
\draw
[-latex']
(dec3.east) to (end2.west);
\foreach
\x
in
{
1,2,...,3
}
\draw
[-latex']
(eemb
\x
) to (enc
\x
);
\foreach
\x
in
{
1,2,...,3
}
\draw
[-latex']
(demb
\x
) to (dec
\x
);
\foreach
\x
in
{
1,2,...,3
}
\draw
[-latex']
(dec
\x
.north) to (softmax
\x
.south);
\foreach
\x
[count=
\y
from 2] in
{
1,2
}
{
\draw
[-latex']
(enc
\x
.east) to (enc
\y
.west);
\draw
[-latex']
(dec
\x
.east) to (dec
\y
.west);
}
\coordinate
(bridge) at ([yshift=0.4
\base
]enc2.north west);
\draw
[-latex']
(enc3.north) .. controls +(north:0.3
\base
) and +(east:
\base
) .. (bridge) .. controls +(west:2.7
\base
) and +(west:0.3
\base
) .. (dec1.west);
\visible
<2->
{
\node
[anchor=east] (line1) at ([xshift=-3em,yshift=0.5em]softmax1.west)
{
\scriptsize
{
基于RNN的隐层状态
$
s
_
i
$}}
;
\node
[anchor=north west] (line2) at ([yshift=0.3em]line1.south west)
{
\scriptsize
{
预测目标词的概率
}}
;
\node
[anchor=north west] (line3) at ([yshift=0.3em]line2.south west)
{
\scriptsize
{
通常,用Softmax函数
}}
;
\node
[anchor=north west] (line4) at ([yshift=0.3em]line3.south west)
{
\scriptsize
{
实现
$
\textrm
{
P
}
(
y
_
i|...
)
$}}
;
}
\visible
<3->
{
\node
[anchor=north west] (line11) at ([yshift=-1.8em]line4.west)
{
\scriptsize
{
每个词的one-hot
}}
;
\node
[anchor=north west] (line12) at ([yshift=0.3em]line11.south west)
{
\scriptsize
{
离散化表示都被转化为
}}
;
\node
[anchor=north west] (line13) at ([yshift=0.3em]line12.south west)
{
\scriptsize
{
实数向量,即词嵌入
}}
;
\node
[anchor=north west] (line14) at ([yshift=0.3em]line13.south west)
{
\scriptsize
{
(
$
e
_
x
()
$
和
$
e
_
y
()
$
函数)
}}
;
}
\visible
<4->
{
\node
[anchor=west] (line21) at ([xshift=1.3em,yshift=1.5em]enc3.east)
{
\scriptsize
{
源语编码器最后一个
}}
;
\node
[anchor=north west] (line22) at ([yshift=0.3em]line21.south west)
{
\scriptsize
{
循环单元的输出被
}}
;
\node
[anchor=north west] (line23) at ([yshift=0.3em]line22.south west)
{
\scriptsize
{
看作是句子的表示,
}}
;
\node
[anchor=north west] (line24) at ([yshift=0.3em]line23.south west)
{
\scriptsize
{
记为
$
C
$}}
;
}
\begin{pgfonlayer}
{
background
}
\visible
<2->
{
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,fill=red!10,drop shadow,draw=red] [fit = (line1) (line2) (line3) (line4)] (box1)
{}
;
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,very thick,dotted,draw=red] [fit = (softmax1) (softmax2) (softmax3)] (box4)
{}
;
\draw
[->,dotted,very thick,red] ([yshift=1em,xshift=2.5em]box1.east) -- ([yshift=1em,xshift=0.1em]box1.east);
}
\visible
<3->
{
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,fill=green!10,drop shadow,draw=ugreen] [fit = (line11) (line12) (line13) (line14)] (box2)
{}
;
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,very thick,dotted,draw=ugreen] [fit = (eemb1) (eemb2) (eemb3)] (box5)
{}
;
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,very thick,dotted,draw=ugreen] [fit = (demb1) (demb2) (demb3)] (box6)
{}
;
\draw
[->,dotted,very thick,ugreen] ([yshift=-1.3em,xshift=2.5em]box2.east) -- ([yshift=-1.3em,xshift=0.1em]box2.east);
\draw
[->,dotted,very thick,ugreen] ([xshift=0.1em]box6.west) .. controls +(west:1) and +(east:1) .. ([yshift=1.0em]box2.east) ;
}
\visible
<4->
{
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,fill=purple!10,drop shadow,draw=purple] [fit = (line21) (line22) (line23) (line24)] (box3)
{}
;
\node
[rectangle,inner sep=0.2em,rounded corners=1pt,very thick,dotted,draw=purple] [fit = (enc3)] (box7)
{}
;
\draw
[->,dotted,very thick,purple] ([xshift=0.1em]box7.east) -- ([xshift=0.8em]box7.east) ;
}
\end{pgfonlayer}
\end{scope}
\end{tikzpicture}
\end{center}
\visible
<5->
{
\vspace
{
-1.5em
}
\begin{itemize}
\item
可以重新定义
\\
\vspace
{
-0.8em
}
\begin{displaymath}
\textrm
{
P
}
(y
_
j|
\textbf
{
y
}_{
<j
}
,
\textbf
{
x
}
)
\triangleq
\textrm
{
P
}
(y
_
j|s
_{
j-1
}
, C)
\end{displaymath}
对于上图中的模型,进一步化简为:
\\
\vspace
{
-0.3em
}
\begin{displaymath}
\textrm
{
P
}
(y
_
j|
\textbf
{
y
}_{
<j
}
,
\textbf
{
x
}
)
\triangleq
\left\{
\begin{matrix}
\textrm
{
P
}
(y
_
j|C)
\ \ \ \
&
j = 1
\\
\textrm
{
P
}
(y
_
j|s
_{
j-1
}
)
&
j > 1
\end{matrix}
\right
.
\end{displaymath}
\end{itemize}
}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
%%% 词嵌入
\begin{frame}
{
模块1:词嵌入层
}
\begin{itemize}
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论