% !Mode:: "TeX:UTF-8" % !TEX encoding = UTF-8 Unicode \def\CTeXPreproc{Created by ctex v0.2.13, don't edit!} \documentclass[cjk,t,compress,12pt]{beamer} \usepackage{pstricks} \usepackage{etex} \usepackage{eso-pic,graphicx} \usepackage{fancybox} \usepackage{amsmath,amssymb} \usepackage{setspace} \usepackage{xcolor} \usepackage{array,multirow} \usepackage{CJK} \usepackage{tikz} \usepackage{tikz-qtree} \usepackage{hyperref} \usepackage{changepage} \usepackage{pgfplots} \usepackage{subfigure} \usepackage{tikz-3dplot} \usepackage{esvect} \usepackage{tcolorbox} \tcbuselibrary{skins} \usetikzlibrary{calc,intersections} \usetikzlibrary{matrix} \usetikzlibrary{arrows,decorations.pathreplacing} \usetikzlibrary{shadows} % LATEX and plain TEX when using Tik Z \usetikzlibrary{shadows.blur} \usepgflibrary{arrows} % LATEX and plain TEX and pure pgf \usetikzlibrary{arrows} % LATEX and plain TEX when using Tik Z \usetikzlibrary{decorations} \usetikzlibrary{arrows,shapes} \usetikzlibrary{positioning,fit,calc} \usetikzlibrary{mindmap,backgrounds} % mind map \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \setbeamertemplate{items}[ball] \usefonttheme[onlymath]{serif} % fout of math \definecolor{ugreen}{rgb}{0,0.5,0} \definecolor{lgreen}{rgb}{0.9,1,0.8} \definecolor{xtgreen1}{rgb}{0.824,0.898,0.8} \definecolor{xtgreen}{rgb}{0.914,0.945,0.902} \definecolor{lightgray}{gray}{0.85} \setbeamercolor{uppercol}{fg=white,bg=ugreen} \setbeamercolor{lowercol}{fg=black,bg=xtgreen} \definecolor{ublue}{rgb}{0.152,0.250,0.545} \setbeamercolor{uppercolblue}{fg=white,bg=ublue} \setbeamercolor{lowercolblue}{fg=black,bg=blue!10} %\usetheme{default} %\usetheme{Darmstadt} %\usetheme{Madrid} %\usetheme{Frankfurt} %\usetheme{Dresden} %\usetheme{Boadilla} %\usecolortheme{dolphin} \usefonttheme[onlylarge]{structurebold} \IfFileExists{C:/WINDOWS/win.ini} {\newcommand{\mycfont}{you}} {\newcommand{\mycfont}{gbsn}} \begin{CJK}{UTF8}{\mycfont} \end{CJK} \setbeamerfont*{frametitle}{size=\large,series=\bfseries} \setbeamertemplate{navigation symbols}{\begin{CJK}{UTF8}{\mycfont} 第五章 神经网络和语言模型 \hspace*{2em} 肖桐\&朱靖波 \end{CJK} \hspace*{2em} \today \hspace*{2em} \insertframenumber{}/\inserttotalframenumber} \setbeamertemplate{itemize items}[circle] % if you want a circle \setbeamertemplate{itemize subitem}[triangle] % if you wnat a triangle \setbeamertemplate{itemize subsubitem}[ball] % if you want a ball \begin{document} \begin{CJK}{UTF8}{\mycfont} \title{\Large{神经网络和语言模型}} \author{\large{\textbf{肖桐\ \ 朱靖波}}} \institute{ \blue{\url{xiaotong@mail.neu.edu.cn}} \black{} \\ \blue{\url{zhujingbo@mail.neu.edu.cn}} \black{} \\ \vspace{1.0em} 东北大学 自然语言处理实验室 \\ \blue{\underline{\url{http://www.nlplab.com}}} \black{} \\ \vspace{0.2cm} \hspace{0.1cm} \includegraphics[scale=0.1]{../Figures/logo.pdf} } \date{} \maketitle \setlength{\leftmargini}{1em} \setlength{\leftmarginii}{1em} %%%------------------------------------------------------------------------------------------------------------ \section{为什么要谈神经网络} \newcounter{mycount1} \newcounter{mycount2} \newcounter{mycount3} \newcounter{mycount4} %%%------------------------------------------------------------------------------------------------------------ \section{神经语言模型} %%%------------------------------------------------------------------------------------------------------------ \subsection{词嵌入} %%%------------------------------------------------------------------------------------------------------------ %%% 线性代数基础 \begin{frame}{预热 - 线性代数知识} \begin{itemize} \item \textbf{矩阵}:我们用$a$表示一个标量(一个数),用粗体$\textbf{a}$表示一个矩阵(或向量),其中$a_{ij}$表示$\textbf{a}$第$i$行、第$j$列的元素\\ \begin{displaymath} a = 5 \hspace{3em} \textbf{a} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \end{displaymath} \item \textbf{向量}:一种特殊的矩阵,只有一行或者一列,这里默认使用行向量,比如$\textbf{a} = (a_1,a_2,a_3) = (10, 20, 30)$,$\textbf{a}$对应的列向量记为$\textbf{a}^T$ \item<2-> \textbf{代数运算}:矩阵可以按位进行+、-等代数运算,对于$\textbf{a} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$,$\textbf{b} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$,有$\textbf{a} + \textbf{b} = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$ \item<3-> \textbf{矩阵的微分}:按位进行,对于矩阵$\textbf{c}$和标量$x$有 \begin{displaymath} \frac{\partial \textbf{c}}{\partial x} = \begin{pmatrix} \frac{\partial c_{11}}{\partial x} & \frac{\partial c_{12}}{\partial x} \\ \frac{\partial c_{21}}{\partial x} & \frac{\partial c_{22}}{\partial x} \end{pmatrix} \hspace{2em} \frac{\partial x}{\partial \textbf{c}} = \begin{pmatrix} \frac{\partial x}{\partial c_{11}} & \frac{\partial x}{\partial c_{12}} \\ \frac{\partial x}{\partial c_{21}} & \frac{\partial x}{\partial c_{22}} \end{pmatrix} \end{displaymath} \end{itemize} \end{frame} %%%------------------------------------------------------------------------------------------------------------ %%% 线性代数基础 \begin{frame}{预热 - 线性代数知识(续)} \begin{itemize} \item \textbf{矩阵的乘法}:对于$\textbf{a} \in \mathbb{R}^{n \times k}$和$\textbf{b} \in \mathbb{R}^{k \times m}$,用$\textbf{c} = \textbf{a} \textbf{b} \in \mathbb{R}^{n \times m}$表示\textbf{a}和\textbf{b}的矩阵乘法,其中 \begin{displaymath} c_{pq} = \sum_{i = 1}^k a_{pi} b_{iq} \end{displaymath} 对于方程$\left\{ \begin{array}{l} 5x_{1} + 2x_{2} = y_{1} \\ 3x_{1} + x_{2} = y_{2}\end{array} \right.$,可以表示为$\textbf{a} \textbf{x}^T = \textbf{y}^T$ 其中$\textbf{a}=\begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix}$,$\textbf{x}^T =\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$,$\textbf{y}^T =\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ \item<2-> \textbf{其它} \begin{itemize} \item \textbf{单位矩阵}:方阵$\textbf{I}$,$I_{ij} = 1$当且仅当$i=j$,否则$I_{ij} = 0$ \item \textbf{转置}:$\textbf{a}$的转置记为$\textbf{a}^T$,有$a^T_{ji}=a_{ij}$ \item \textbf{逆矩阵}:方阵$\textbf{a}$的逆矩阵记为$\textbf{a}^{-1}$,有$\textbf{a} \textbf{a}^{-1} = \textbf{a}^{-1} \textbf{a} = \textbf{I}$ \item \textbf{向量(矩阵)的范数}:$||\textbf{a}||_p = \big( \sum_i |a_i|^p \big)^{\frac{1}{p}}$ \end{itemize} \end{itemize} \end{frame} %%%------------------------------------------------------------------------------------------------------------ %%% 深度学习带来的问题及思考 - 并不是无所不能 \end{CJK} \end{document}